第6讲 带电粒子在电场中运动的综合问题
- 格式:pptx
- 大小:743.70 KB
- 文档页数:37
带电粒子在重力场与电场中的运动[学习目标] 1.会应用运动和力、功和能的关系分析带电粒子在复合场中的直线运动问题.2.会应用运动和力、功和能的关系分析带电粒子在复合场中的类平抛运动问题和圆周运动问题.一、带电粒子在复合场中的直线运动讨论带电粒子在复合场中做直线运动(加速或减速)的方法(1)动力学方法——牛顿运动定律、运动学公式.当带电粒子所受合力为恒力,且与速度方向共线时,粒子做匀变速直线运动,若题目涉及运动时间,优先考虑牛顿运动定律、运动学公式.在重力场和电场叠加场中的匀变速直线运动,亦可以分解为重力方向上、静电力方向上的直线运动来处理.(2)功、能量方法——动能定理、能量守恒定律.若题中已知量和所求量涉及功和能量,那么应优先考虑动能定理、能量守恒定律.(2019·广州二中高二期中)如图1所示,水平放置的平行板电容器的两极板M、N接直流电源,两极板间的距离为L=15 cm.上极板M的中央有一小孔A,在A的正上方h处的B 点有一小油滴自由落下.已知带正电小油滴的电荷量q=3.5×10-14 C、质量m=3.0×10-9 kg.当小油滴即将落到下极板时速度恰好为零.两极板间的电势差U=6×105 V .(不计空气阻力,取g=10 m/s2)图1(1)两极板间的电场强度E的大小为多少?(2)设平行板电容器的电容C=4.0×10-12 F,则该电容器所带电荷量Q是多少?(3)B点在A点正上方的高度h是多少?答案(1)4×106 V/m(2)2.4×10-6 C(3)0.55 m解析(1)由匀强电场的场强与电势差的关系式可得两极板间的电场强度大小为E=U L =4×106 V/m.(2)该电容器所带电荷量为Q =CU =2.4×10-6 C.(3)小油滴自由落下,即将落到下极板时,速度恰好为零由动能定理可得:mg (h +L )-qU =0则B 点在A 点正上方的高度是h =qU mg -L =3.5×10-14×6×1053.0×10-9×10m -15×10-2 m =0.55 m. 针对训练1 (多选)如图2所示,平行板电容器的两个极板与水平地面成一角度,两极板与一恒压直流电源相连 .若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )图2A .所受重力与静电力平衡B .电势能逐渐增加C .动能逐渐增加D .做匀变速直线运动答案 BD解析 对带电粒子受力分析如图所示,F 合≠0,A 错误 .由图可知静电力与重力的合力方向与v 0方向相反,F 合对粒子做负功,其中重力mg 不做功,静电力Eq 做负功,故粒子动能减少,电势能增加,B 正确,C 错误 .F 合恒定且F 合与v 0方向相反,粒子做匀减速直线运动,D 正确 .二、带电粒子的类平抛运动带电粒子在电场中的类平抛运动的处理方法:1 .运动分解的方法:将运动分解为沿初速度方向的匀速直线运动和垂直初速度方向的匀加速直线运动,在这两个方向上分别列运动学方程或牛顿第二定律 .2 .利用功能关系和动能定理分析:(1)功能关系:静电力做功等于电势能的减少量,W 电=E p1-E p2.(2)动能定理:合力做功等于动能的变化,W =E k2-E k1.(2019·全国卷Ⅲ)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点 .从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0) .A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t 2.重力加速度为g ,求: (1)电场强度的大小;(2)B 运动到P 点时的动能 .答案 (1)3mg q(2)2m (v 02+g 2t 2) 解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ①12a (t 2)2=12gt 2② 解得E =3mg q③ (2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④ 且有v 1t 2=v 0t ⑤ h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2) .针对训练2 如图3所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行板电场左端的中点P 以相同的初速度沿水平方向垂直于电场方向进入电场,它们分别落在A 、B 、C 三点,可以判断( )图3A .小球A带正电,B不带电,C带负电B .三个小球在电场中运动时间相等C .三个小球到达极板时的动能E k A>E k B>E k CD .三个小球在电场中运动的加速度a A>a B>a C答案 A解析三个小球在水平方向做匀速直线运动;竖直方向,带正电荷小球受静电力向上,合力为mg-F电,带负电荷小球受静电力向下,合力为mg+F电,不带电小球只受重力,因此带负电荷小球加速度最大,运动时间最短,水平位移最短,带正电荷小球加速度最小,运动时间最长,水平位移最大,不带电小球水平位移居中,选项A正确,选项B、D错误.在运动过程中,三个小球竖直方向位移相等,带负电荷小球合力做功最大,动能改变量最大,带正电荷小球动能改变量最小,即E k C>E k B>E k A,选项C错误.三、带电粒子在电场(复合场)中的圆周运动解决电场(复合场)中的圆周运动问题,关键是分析向心力的来源,向心力的来源有可能是重力和静电力的合力,也有可能是单独的静电力.如图4所示,半径为R的光滑绝缘圆环竖直置于场强大小为E、方向水平向右的匀强电场中,质量为m、带电荷量为+q的空心小球穿在环上,当小球从顶点A由静止开始下滑到与圆心O等高的位置B时,求小球对环的压力.(重力加速度为g)图4答案2mg+3Eq,方向水平向右解析小球从A到B的过程中,重力做正功,静电力做正功,动能增加,由动能定理有mgR +qER=12,在B点时小球受到重力mg、静电力qE和圆环对小球的弹力F1三个力的作用,2m v静电力和弹力沿半径方向指向圆心的合力提供向心力,则F1-Eq=m v2R联立解得F1=2mg+3Eq小球对环的压力与环对小球的弹力为作用力与反作用力,两者等大反向,即小球对环的压力大小F1′=F1=2mg+3Eq,方向水平向右.1.如图1所示,在某一真空中,只有水平向右的匀强电场和竖直向下的重力场,在竖直平面内有初速度为v0的带电微粒,恰能沿图示虚线由A向B做直线运动.那么()图1A .微粒带正、负电荷都有可能B .微粒做匀减速直线运动C .微粒做匀速直线运动D .微粒做匀加速直线运动答案 B解析微粒做直线运动的条件是速度方向和合力的方向在同一条直线上,只有微粒受到水平向左的静电力才能使得合力方向与速度方向在同一条直线上,由此可知微粒所受的静电力的方向与场强方向相反,则微粒必带负电,微粒所受合力与初速度方向相反,故微粒做匀减速直线运动,故选项B正确 .2.(多选)如图2所示,真空环境下,三个质量相同、带电荷量分别为+q、-q和0的小液滴a、b、c,从竖直放置的两板中间上方由静止释放,最后从两板间穿过,小液滴a、b、c的运动轨迹如图所示,则在穿过极板的过程中,下列说法正确的是()图2A .静电力对液滴a、b做的功相等B .三者动能的增量相同C .液滴a与液滴b电势能的变化量相等D .重力对液滴c做的功最多答案AC解析因为液滴a、b的带电荷量的绝对值相等,则液滴所受的静电力大小相等,由静止释放,穿过两板的时间相等,则偏转位移大小相等,静电力做功相等,故A正确;静电力对a、b 两液滴做功相等,重力做功相等,则a、b动能的增量相等,对于液滴c,只有重力做功,故c动能的增量小于a、b动能的增量,故B错误;对于液滴a和液滴b,静电力均做正功,静电力所做的功等于电势能的变化量,故C正确;三者在穿过极板的过程中竖直方向的位移相等,质量相同,所以重力做的功相等,故D错误.3.如图3所示,平行金属板A、B水平正对放置,分别带等量异号的电荷.一带电微粒沿水平方向射入板间,在重力和静电力共同作用下运动,其运动轨迹如图中虚线所示,那么()图3A .若微粒带正电荷,则A板一定带正电荷B .微粒从M点运动到N点,其电势能一定增加C .微粒从M点运动到N点,其动能一定增加D .微粒从M点运动到N点,其机械能一定增加答案 C解析由于不知道重力和静电力大小关系,所以不能确定静电力方向,不能由微粒电性确定极板所带电荷的电性,也不能确定静电力对微粒做功的正、负,选项A、B、D错误;根据微粒偏转方向可知微粒所受合外力一定竖直向下,则合外力对微粒做正功,由动能定理知微粒的动能一定增加,选项C 正确 .4.(多选)如图4所示,用绝缘细线拴一带负电小球,在竖直平面内做圆周运动,匀强电场方向竖直向下,则( )图4A .当小球运动到最高点a 时,细线的张力一定最小B .当小球运动到最低点b 时,小球的速度一定最大C .当小球运动到最高点a 时,小球的电势能最小D .小球在运动过程中机械能不守恒答案 CD解析 若qE =mg ,小球做匀速圆周运动,球在各处对细线的拉力一样大,故细线的张力一样大 .若qE <mg ,球在a 处速度最小,若qE >mg ,球在a 处速度最大,故A 、B 错误;a 点电势最高,负电荷在电势最高处电势能最小,故C 正确;小球在运动过程中除受到重力外,还受到静电力,静电力对小球做功,小球的机械能不守恒,D 正确 .5.(多选)两个共轴的半圆柱形电极间的缝隙中存在一沿半径方向的电场,如图5所示,带正电的粒子流由电场区域边缘的M 点射入电场,沿图中所示的半圆形轨道通过电场并从另一边缘的N 点射出,由此可知( )图5A .若入射粒子的电荷量相等,则出射粒子的质量一定相等B .若入射粒子的电荷量相等,则出射粒子的动能一定相等C .若入射粒子的比荷相等,则出射粒子的速率一定相等D .若入射粒子的比荷相等,则出射粒子的动能一定相等答案 BC解析 由题图可知,粒子在电场中做匀速圆周运动,静电力提供向心力,则有qE =m v 2R,得R =m v 2qE,R 、E 为定值,若入射粒子的电荷量相等,则出射粒子的动能一定相等,质量不一定相等;若入射粒子的比荷相等,则出射粒子的速率v一定相等,但动能不一定相等,故B、C正确.6.(多选)如图6所示,将一带正电的小球向右水平抛入范围足够大的匀强电场中,电场方向水平向左,不计空气阻力,则小球()图6A .做直线运动B .做曲线运动C .速率先减小后增大D .速率先增大后减小答案BC解析如图所示,对小球受力分析,小球受重力、静电力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,选项A错误,B正确;在运动的过程中,合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,选项C正确,D错误.7 .(2020·河南郑州一中期中)在地面附近存在一个有界电场,边界将空间分成上、下两个区域Ⅰ、Ⅱ,在区域Ⅱ中有竖直向上的匀强电场,在区域Ⅰ中离边界某一高度处由静止释放一个质量为m的带电小球A,如图7甲所示,小球运动的v-t图像如图乙所示,不计空气阻力,则()图7A .小球受到的重力与静电力大小之比为4∶5B .t =5 s 时,小球经过边界MNC .在0~5 s 过程中,重力做的功大于克服静电力做的功D .在1~4 s 过程中小球机械能先减小后增大答案 D解析 由题意知,小球进入电场前做自由落体运动,进入电场后受到静电力作用先做减速运动后做加速运动,由题图分析可知,小球经过边界MN 的时刻是t =1 s 和t =4 s ,B 错误;由v -t 图像的斜率表示加速度,知小球进入电场前的加速度为a 1=v 1t 1=v 11=v 1(m/s 2),进入电场后的加速度大小为a 2=2v 1t 2=2v 13(m/s 2),由牛顿第二定律得mg =ma 1,F -mg =ma 2,得静电力F =mg +ma 2=53ma 1,可得重力mg 与静电力F 的大小之比为3∶5,A 错误;0~5 s 过程中,动能变化量为零,根据动能定理,整个过程中重力做的功与克服静电力做的功大小相等,C 错误;由题图可得,小球在0~2.5 s 内向下运动,在2.5~5 s 内向上运动,在1~4 s 过程中,静电力先做负功后做正功,小球的机械能先减小后增大,D 正确 .8.如图8所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电的微粒静止在空间范围足够大、电场强度为E 的匀强电场中,取g =10 m/s 2.图8(1)求匀强电场的电场强度E 的大小和方向;(2)在t =0时刻,电场强度大小突然变为E 0=4.0×103 N/C ,方向不变 .求在0.20 s 时间内静电力做的功;(3)在(2)的情况下,t =0.20 s 时刻突然撤掉电场,求带电微粒回到出发点时的动能 . 答案 (1)2×103 N/C 方向向上 (2)8.0×10-4 J (3)8.0×10-4 J解析 (1)因微粒静止,可知其受力平衡,对其进行受力分析可知静电力方向向上,且Eq =mg ,解得E =mg q =2.0×10-4×101.0×10-6 N/C =2.0×103 N/C ,微粒带正电,知电场方向向上 .(2)在t =0时刻,电场强度大小突然变为E 0=4.0×103 N/C ,设微粒的加速度大小为a ,在0.20 s 时间内上升的高度为h ,静电力做功为W ,则qE 0-mg =ma ,解得a =10 m/s 2,h =12at 2,解得h =0.20 m , W =qE 0h ,解得W =8.0×10-4 J.(3)设在t =0.20 s 时刻突然撤掉电场时微粒的速度大小为v ,回到出发点时的动能为E k ,则v =at ,E k =mgh +12m v 2, 解得E k =8.0×10-4 J.9.如图9所示,水平地面上方分布着水平向右的匀强电场 .一L 形的绝缘硬质管竖直固定在匀强电场中,管的水平部分为l 1=0.2 m ,离水平地面的距离为h =5.0 m ,竖直部分长为l 2=0.1 m .一带正电的小球从管的上端口A 由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短,可不计)时没有能量损失,小球在电场中受的静电力大小为重力的一半 .求:(g 取10 m/s 2)图9(1)小球运动到管口B 时的速度大小;(2)小球落地点与管的下端口B 的水平距离 .答案 (1)2.0 m/s (2)4.5 m解析 (1)小球从A 运动到B 的过程中,对小球,根据动能定理得mgl 2+F 电l 1=12m v B 2-0, F 电=12mg , 解得v B =g (l 1+2l 2),代入数据可得v B =2.0 m/s.(2)小球离开B 点后,设水平方向的加速度为a ,在空中运动的时间为t .水平方向有a =g 2,x =v B t +12at 2,竖直方向有h =12gt 2 联立以上各式可得x =4.5 m.10.(2020·雅安市期末)如图10所示,内表面光滑且绝缘的半径为1.2 m 的圆形轨道处于竖直平面内,有竖直向下的匀强电场,场强大小为3×106 V/m.有一质量为0.12 kg 、带负电的小球,电荷量大小为1.6×10-6 C ,小球在圆轨道内壁做圆周运动,当运动到最低点A 时,小球与轨道压力恰好为零,g 取10 m/s 2,求:图10(1)小球在A 点时的速度大小;(2)小球运动到最高点B 时对轨道的压力大小 .答案 (1)6 m/s (2)21.6 N解析 (1)重力:G =mg =0.12 kg ×10 N/kg =1.2 N ,静电力:F =qE =1.6×10-6 C ×3×106 V/m =4.8 N ,在A 点,有:qE -mg =m v 12R, 代入数据解得:v 1=6 m/s.(2)设球在B 点的速度大小为v 2,从A 到B ,由动能定理有:(qE -mg )2R =12m v 22-12m v 12, 在B 点,设轨道对小球的弹力为F N ,则有:F N +mg -qE =m v 22R, 由牛顿第三定律有:F N ′=F N ,代入数据解得:F N ′=21.6 N.11 .(多选)在空间水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图11所示 .重力加速度为g ,由此可见( )图11A .静电力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 两个平抛过程水平方向的位移是二倍的关系,所以时间也是二倍的关系,故C 错误;分别列出竖直方向的方程,即h =12gt 2,h 2=12×F -mg m (t 2)2,解得F =3mg ,故A 正确;小球受到的静电力向上,与电场方向相反,所以小球应该带负电,故B 错误;速度变化量等于加速度与时间的乘积,即Δv =at ,结合以上的分析可得,AB 过程Δv =gt ,BC 过程Δv =3mg -mg m×t 2=gt ,故D 正确 .。
专题12 带电粒子在电场中运动的综合问题一:专题概述示波管的工作原理1.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出的电子束沿直线运动,打在荧光屏中心,在那里产生一个亮斑.2.YY′上加的是待显示的信号电压.XX′上是机器自身产生的锯齿形电压,叫做扫描电压,若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内随时间变化的稳定图象。
(如图1)电场中的力电综合问题1.动力学的观点(1)由于匀强电场中带电粒子所受电场力和重力都是恒力,可用正交分解法.(2)综合运用牛顿运动定律和匀变速直线运动公式,注意受力分析要全面,特别注意重力是否需要考虑的问题.2.能量的观点(1)运用动能定理,注意过程分析要全面,准确求出过程中的所有力做的功,判断选用分过程还是全过程使用动能定理.(2)运用能量守恒定律,注意题目中有哪些形式的能量出现.二:典例精讲1.示波管的工作原理典例1:示波器可以用来观察电信号随时间变化的情况,其核心部件是示波管,其原理图如下, XX'为水平偏转电极,YY'为竖直偏转电极。
以下说法正确的是()A. XX'加图3波形电压、YY'不加信号电压,屏上在两个位置出现亮点B。
XX'加图2波形电压、YY'加图1波形电压,屏上将出现两条竖直亮线C。
XX'加图4波形电压、YY'加图2波形电压,屏上将出现一条竖直亮线D。
XX'加图4波形电压、YY'加图3波形电压,屏上将出现图1所示图线【答案】A2.带电粒子在复合场中的应用问题典例2:美国科学家密立根通过油滴实验首次测得电子的电荷量。
油滴实验的原理如图所示,两块水平放置的平行金属板与电源相连,上、下板分别带正、负电荷。
油滴从喷雾器喷出后,由于摩擦而带电,经上板中央小孔落到两板间的匀强电场中,通过显微镜可以观察到油滴的运动情况,两金属板间的距离为d,忽略空气对油滴的浮力和阻力作用。
高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p vgh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=2.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .3.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+;(2)① ②()1122211sin 2e v mθϕϕ=-+4.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v ,则:t 1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;5.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 20v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 02y )2y由数学知识可知,当(x 02y )2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm6.如图所示,两块平行金属极板MN 水平放置,板长L =" 1" m .间距d =33m ,两金属板间电压U MN = 1×104V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2,已知A 、F 、G 处于同一直线上.B 、C 、H 也处于同一直线上.AF 两点距离为23m .现从平行金属极板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .(1)求带电粒子从电场中射出时的速度v 的大小和方向(2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1 (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件. 【答案】(152310/m s ;垂直于AB 方向出射.(2)3310(323+ 【解析】试题分析:(1)设带电粒子在电场中做类平抛运动的时间为t ,加速度为a , 则:U qma d =解得:102310/qU a m s md == 50110Lt s v -==⨯ 竖直方向的速度为:v y =at =33×105m/s 射出时速度为:22502310/y v v v m s =+=速度v 与水平方向夹角为θ,03tan 3y v v θ==,故θ=30°,即垂直于AB 方向出射. (2)带电粒子出电场时竖直方向的偏转的位移213262d y at ===,即粒子由P 1点垂直AB 射入磁场,由几何关系知在磁场ABC 区域内做圆周运动的半径为12cos303d R m ==o由211vB qv mR=知:113310mvB TqR==(3)分析知当轨迹与边界GH相切时,对应磁感应强度B2最大,运动轨迹如图所示:由几何关系得:221sin60RRo+=故半径2(233)R m=-又222vB qv mR=故2235B T+=所以B2应满足的条件为大于235T+.考点:带电粒子在匀强磁场中的运动.7.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆=(2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为: 2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆= (2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ= 设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=, 式中00y U e v t dm =又:1mv R Be= 解得:00U t B dL= ②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=8.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B的匀强磁场.荧光屏MN与电场方向平行,且到匀强电、磁场右侧边界的距离为x,电容器左侧中间有发射质量为m带+q的粒子源,如图甲所示.假设a、b、c三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O点;b粒子在电、磁场中向上偏转;c粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a、b、c粒子在原来位置上以各自的原速度水平射入电场,结果a粒子仍恰好打在荧光屏上的O点;b、c中有一个粒子也能打到荧光屏,且距O点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B d q m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a 粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O 点,运动轨迹如图中Ⅰ所示.U q Bqv d=, Bd U v =, L LBd t v U==, 222122a Uq L B qd y t dm mU==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d= (2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122d y L L x +, 1()2x y d L =+ (3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md= 122221·2y Uq t m y t dv +=, 22158qU y t md=, 124=5y y , 11224==5Uq y W d Uq W y d9.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0;(2)第三、四象限磁感应强度的大小B /;【答案】(1)3E B(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r,由几何知识得:23603 d d drsin sinα===︒根据2mvqv Br=得233qBdvm=粒子在第一象限中做类平抛运动,则有21602qEr cos tm-︒=();00yv qEttanv mvα==联立解得03EvB=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x和y,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x轴正方向的夹角等于α.则有:x=v0t,2yvy t=得322yvy tanx vα===由几何知识可得 y=r-rcosα=132r=则得23x d=所以粒子在第三、四象限圆周运动的半径为125323d dRsinα⎛⎫+⎪⎝⎭==粒子进入第三、四象限运动的速度0432v qBdv vcosα===根据2'vqvB mR=得:B′=2.4B考点:带电粒子在电场及磁场中的运动10.如图,光滑水平面上静置质量为m ,长为L 的绝缘板a,绝缘板右端园定有竖直挡板,整个装置置于水平向右的匀强电场中.现将一质量也为m 、带电量为q(q>0)的物块b 置于绝缘板左端(b 可视为质点且初速度为零),已知匀强电场的场强大小为E=3μmg/q ,物块与绝缘板板间动摩擦数为μ(设最大静摩擦力等于滑动摩擦力),物块与绝缘板右端竖直挡板碰撞后a 、b 速度交换,且碰撞时间极短可忽略不计,物块带电量始终保持不变,重力加速度为g 。
高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m= 222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。
高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.【答案】(1)24mv e (2)①439avπ ②(31)B ae ≥-【解析】 【详解】(1)对电子经C 、A 间的电场加速时,由动能定理得()2211322eU m v mv =- 得24mv U e=(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.设此轨迹圆的半径为r ,则)2223a rr a -=+又2rT vπ=得tan 3arθ== 故θ=60°所以电子在磁场中运动的时间2-22t T πθπ= 得439at vπ=(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:23r a a '=-又2v evB m r ='得3-1B ae =()所以3-1B ae≥()2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x=2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅===有H =(3a -x )·tan θ=(32)2a y y -当322a y y -=时,即y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a3.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W4.一带正电小球通过绝缘细线悬挂于场强大小为E 1的水平匀强电场中,静止时细线与竖直方向的夹角θ=45°,如图所示。
带电物体在电场中的综合计算【学习目标】1、进一步强化对静电场的认识,理解静电场力的性质和能的性质;2、能够熟练地解决带电粒子在恒定的电场以及一些变化的电场中的加速和偏转问题;3、能够熟练地解决带电物体在静电场和重力场所构成的复合场中的运动问题. 【要点梳理】知识点一:带电粒子在电场中的加速运动 要点诠释:(1)带电粒子在任何静电场中的加速问题,都可以运用动能定理解决,即带电粒子在电场中通过电势差为U AB 的两点时动能的变化是k E ∆,则21222121mv mv E qU k AB -=∆= (2)带电粒子在静电场和重力场的复合场中的加速,同样可以运用动能定理解决,即21222121mv mv E qU mgh W k AB AB -=∆=++(W 为重力和电场力以外的其它力的功) (3)带电粒子在恒定场中运动的计算方法带电粒子在恒力场中受到恒力的作用,除了可以用动能定理解决外还可以由牛顿第二定律以及匀变速直线运动的公式进行计算.知识点二:带电粒子在偏转电场中的运动问题(定量计算通常是在匀强电场中,并且大多数情况是初速度方向与电场线方向垂直) 要点诠释:(1)运动性质:受到恒力的作用,初速度与电场力垂直,做类平抛运动. (2)常用的关系:,,粒子的加速度:偏转电场强度:md qU a d U E ==v L t =时间:粒子在偏转电场中运动(U 为偏转电压,d 为两平行金属板间的距离或沿着电场线方向运动的距离,L 为偏转电场的宽度(或者是平行板的长度),v 0为经加速电场后粒子进入偏转电场时的初速度.)带电粒子离开电场时:沿电场线方向的速度 0mdv qULat v y ==; 垂直电场线方向的速度 0v v x = 合速度大小是:22yx v v v +=方向是:2tan mdv qULv v xy ==θ 离开电场时沿电场线方向发生的位移222122qUL y at mdv == 知识点三:带电微粒或者带电物体在静电场和重力场的复合场中运动时的能量守恒要点诠释:(1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能量守恒,即(恒定值)电重K E K =++P P E E (2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决. 【典型例题】类型一、带电粒子在匀强电场中的加速例1、如图所示,平行板电容器两极板间有场强为E 的匀强电场,且带正电的极板接地.一质量为m 、电荷量为+q 的带电粒子(不计算重力)从x 轴上坐标为x 0处静止释放. (1)求该粒子在x 0处的电势能E px0;(2)试从牛顿第二定律出发,证明该带电粒子在极板间运动过程中,其动能与电势能之和保持不变.【思路点拨】带电粒子在某点的电势能等于电场力将该带电粒子从零势能处移动到该点做的负功(做正功电势能减小做负功电势能增加),可求出该粒子在x 0处的电势能;运用运动学、动力学结合动能定理,均可证明动能与电势能之和保持不变。
微专题61带电粒子在电场中的力电综合问题解决电场、重力场、复合场问题的两个角度:1.功能角度:运用动能定理和功能关系分析粒子的运动,注意等效最高点和等效最低点速度的计算和向心力公式的应用.2.动力学角度:涉及运动时间、速度、位移时一般从动力学角度分析.1.如图所示,在水平向左的匀强电场中,可视为质点的带负电物块,以某一初速度从足够长的绝缘斜面上的A点沿斜面向下运动,经C点到达B点时,速度减为零,然后再返回到A点.已知斜面倾角θ=30°,物块与斜面间的动摩擦因数μ=33,整个过程斜面均保持静止,物块所带电荷量不变.则下列判断正确的是()A.物块在上滑过程中机械能一定减小B.物块在上滑过程中,增加的重力势能一定大于减少的电势能C.物块下滑时经过C点的动能一定大于上滑时经过C点的动能D.物块在下滑过程中,斜面与地面之间的摩擦力可能不为零答案C解析上滑过程中满足Eq cosθ>F f+mg sinθ,则静电力做功大于摩擦力做功,即除重力以外的其他力的合力对物块做正功,则物块的机械能增加,选项A错误;上滑过程中由动能定理W电+W f+W G=ΔE k,W电>|W G|,则物块在上滑过程中,增加的重力势能一定小于减少的电势能,选项B错误;由于物块下滑经过C点往下运动,再返回到C点时有摩擦力做功,则由功能关系可知物块下滑时经过C点的动能一定大于上滑时经过C点的动能,选项C正确;当不加电场时,由于斜面对物块的支持力为F N=mg cos30°,摩擦力F f=μmg cos30°=mg sin30°,可知支持力和摩擦力的合力方向竖直向上;当加电场时,F N=mg cos30°+qE sin30°,F f=μ(mg cos30°+qE sin30°),支持力和摩擦力成比例关系增加,则摩擦力和支持力的合力仍竖直向上,根据牛顿第三定律,则物块给斜面的摩擦力和压力的合力方向竖直向下,可知斜面在水平方向受力为零,则斜面所受地面的摩擦力为零,选项D错误.2.(2023·河北邯郸市模拟)如图所示,在一带电竖直平行金属板之间,有一质量为m,带电荷量为+q的小球被绝缘细线悬挂静止于A点,剪断细线后,小球恰能沿直线AB运动,经时间t后到达B点,已知直线AB与水平方向的夹角为45°,重力加速度为g,规定A点的电势为零,下列说法正确的是()A .电场强度大小为E =2mg qB .B 点的电势φB =mg 2t 22qC .小球在B 点的电势能E B =mg 2t 22D .小球机械能的变化量为mg 2t 22答案D 解析小球沿直线AB 运动,合力沿AB 方向,如图所示则有qE tan 45°=mg ,解得E =mg q ,故A 错误;由牛顿第二定律得加速度为mg sin 45°=ma ,由匀变速直线运动规律,得小球到B 点的速度为v =at ,设AB =L ,根据动能定理得mgL sin 45°+qEL cos 45°=12m v 2,解得静电力做功W =qEL cos 45°=m v 24,根据W =qU AB ,解得U AB =m v 24q,根据U AB =φA -φB ,且A 点的电势为零,解得φB =-mg 2t 22q,B 点的电势能为E B =qφB ,联立解得:E B =-mg 2t 22,故B 、C 错误;小球机械能的变化量等于静电力做的功,ΔE =W =mg 2t 22,故D 正确.3.如图所示,在地面上方的水平匀强电场中,一个质量为m 、电荷量为+q 的小球,系在一根长为L 的绝缘细线一端,可以在竖直平面内绕O 点做圆周运动.AB 为圆周的水平直径,CD 为竖直直径,已知重力加速度为g ,电场强度E =mg q,不计空气阻力,下列说法正确的是()A .若小球在竖直平面内绕O 点做圆周运动,则它运动的最小速度v =2gLB .若小球在竖直平面内绕O 点做圆周运动,则小球运动到A 点时的机械能最小C .若将小球在A 点由静止开始释放,则小球运动到B 点时的速度为v =2gLD .若将小球在A 点以大小为v =gL 的速度竖直向上抛出,它将沿圆周到达B 点答案B 解析由于电场强度E =mg q,故mg =Eq ,物体的加速度大小为a =2g ,若小球在竖直平面内绕O 点做圆周运动,则它运动的最小速度为v ,则有2mg =m v 2L ,解得v =2gL ,A 错误;除重力和弹力外其他力做功等于机械能的增加值,若小球在竖直平面内绕O 点做圆周运动,则小球运动到A 点时,电势能最大,故到A 点时的机械能最小,故B 正确;小球受合力方向与电场方向夹角45°斜向下,故若将小球在A 点由静止开始释放,小球运动到B 点的过程中,由动能定理得qE ·2L =12m v 2,解得:v =2gL ,故C 错误;若将小球在A 点以大小为gL 的速度竖直向上抛出,小球将不会沿圆周运动,小球在竖直方向做竖直上抛运动,水平方向做匀加速运动,因Eq =mg ,故水平加速度与竖直加速度大小均为g ,当竖直方向上的位移为零时,时间t =2L g ,则水平位移x =12gt 2=2L ,则说明小球刚好运动到B 点,故D 错误.4.(多选)如图所示,在竖直面内有一半径为R 的圆环形轨道,轨道内部最低点A 处有一质量为m 的光滑带正电的小球(可视作质点),其所带电荷量为q ,在圆环区域内存在着方向水平向右的匀强电场,电场强度E =3mg 3q ,现给小球一个水平向右的初速度,使小球开始运动,以下说法正确的是()A .若v 0> 1+3 gR ,则小球可以做完整的圆周运动B .若小球可以做完整的圆周运动,则轨道所给弹力的最大值与最小值相差43mgC .若v 0=5gR ,则小球将在轨道最高点B 处脱离轨道D .若v 0=gR ,则小球不会脱离轨道答案BCD 解析小球同时受到重力和静电力作用,这时可认为小球处于等效重力场中,小球受到的等效重力为:G ′= mg 2+ qE 2=mg 2+ 33mg 2=233mg ,等效重力加速度为g ′=G ′m =233g ,等效重力与竖直方向的夹角为θ,如图所示,则有:tan θ=qE mg =33,θ=30°,小球可以做完整的圆周运动,在等效最高点,有:mg ′≤m v 2R,从等效最高点达到A 点过程中,根据动能定理可得:mg ′(R +R cos θ)=12m v 02-12m v 2,解得:v 0≥2 3+1 gR ,故A 错误;若小球可以做完整的圆周运动,则小球在等效重力场中最低点轨道所给的弹力最大,等效最高点轨道所给的弹力最小;在等效最低点有:F 1-G ′=m v 12R ,在等效最高点有:F 2+G ′=m v 22R,在等效重力场中,从最高点达到最低点过程中,根据动能定理可得:mg ′·2R =12m v 12-12m v 22,解得轨道所给弹力的最大值与最小值相差为:F 1-F 2=43mg ,故B 正确;若v 0=5gR ,小球到达最高点B 处的过程中,重力做负功,静电力不做功,则有:-mg ·2R =12m v B 2-12m v 02,解得:v B =gR ,故可得小球将在轨道最高点B 处脱离轨道,故C 正确;在等效重力场中,若v 0=gR ,小球没有超过等效重力场中的半圆,故小球不会脱离轨道,故D 正确.5.如图所示,在竖直平面内有直角坐标系xOy ,有一匀强电场,其方向与水平方向成α=30°角斜向上,在电场中有一质量为m =1×10-3kg 、电荷量为q =1.0×10-4C 的带电小球,用长为L =335m 的不可伸长的绝缘细线挂于坐标原点O ,当小球静止于M 点时,细线恰好伸直且水平.现用外力将小球拉到最低点P ,然后无初速度释放,g =10m/s 2.(1)求电场强度E 的大小;(2)求小球再次到达M 点时的速度大小;(3)如果小球再次到达M 点时,细线突然断裂,从此时开始计时,求小球运动t =1s 时的位置坐标.答案(1)200N/C (2)6m/s (3)(2835m,6m)解析(1)当小球静止于M 点时,由平衡条件得qE sin α=mg解得E =200N/C(2)小球所受静电力和重力的合力恒定,大小为F =3mg ,方向水平向右,设小球运动到M 点时,小球的速度为v ,则由动能定理得3mgL =12v 2解得v =6m/s(3)小球运动到M 点时,细线突然断裂,小球的速度方向竖直向上,所受合力F 水平向右,小球将做类平抛运动,由牛顿第二定律得3mg =ma在竖直方向上,有y =v t在水平方向上,有x 1=12at 2解得x =x 1+L =2835m ,y =6m 所以小球的位置坐标为(2835m,6m).6.(2023·新疆喀什市检测)如图所示,水平绝缘粗糙的轨道AB 与处于竖直平面内的半圆形绝缘光滑轨道BC 平滑连接,半圆形轨道的半径R =0.40m ,在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E =3.0×104N/C.现有一电荷量q =+1.0×10-5C 、质量m =0.04kg 的带电体(可视为质点),在水平轨道上的P 点由静止释放,带电体恰好能通过半圆形轨道的最高点C ,然后落至水平轨道上的D 点(图中未画出),取g =10m/s 2.求:(1)带电体运动到圆形轨道C 点时的速度大小;(2)带电体在圆弧形轨道上运动的最大速度;(3)D 点到B 点的距离x .答案(1)2.0m/s (2)22m/s (3)0.2m 解析(1)设带电体经过C 点时的速度为v C ,根据牛顿第二定律得:mg =m v C 2R解得:v C =2.0m/s(2)设带电体通过B 点时的速度为v B ,带电体从B 运动到C 的过程中,根据动能定理得:-2mgR =12m v C 2-12m v B 2解得:v B =25m/s 根据静电力和重力的比值关系可知,等效最低点与竖直方向的夹角为tan θ=qE mg =1.0×10-5×3.0×100.04×10=34即θ=37°,等效最低点的位置如图所示:由B 到等效最低点根据动能定理得:qE ·R sin 37°-mg ·R (1-cos 37°)=12m v m 2-12m v B 2解得:v m =22m/s(3)带电体离开圆弧轨道后在竖直方向上:2R =12gt 2在水平方向上:x =v C t -qE 2mt 2联立解得:x =0.2m.7.如图所示,绝缘轨道CDGH 位于竖直平面内,圆弧段DG 的圆心角为θ=37°,DG 与水平段CD 、倾斜段GH 分别相切于D 点和G 点.CD 段粗糙,DGH 段光滑.在H 处固定一垂直于轨道的绝缘挡板,整个轨道处于电场强度为E =1×104N/C 、水平向右的匀强电场中,一质量m =4×10-3kg 、带电荷量q =+3×10-6C 的小滑块在C 处由静止释放,经挡板碰撞后滑回到CD 段的中点P 处时速度恰好为零.已知CD 段长度L =0.8m ,圆弧DG 的半径r =0.2m;不计滑块与挡板碰撞时的动能损失,滑块可视为质点.g=10m/s2,cos37°=0.8,sin 37°=0.6,求:(1)滑块与CD段之间的动摩擦因数μ;(2)滑块在CD段上运动的总路程;(3)滑块与绝缘挡板碰撞时的最大动能和最小动能.答案(1)0.25(2)2.4m(3)0.018J0.002J解析(1)滑块由C处释放,经挡板碰撞后第一次滑回P点的过程中,由动能定理得qE L 2-μmg(L+12L)=0解得μ=Eq3mg=0.25;(2)滑块在CD段上受到的滑动摩擦力μmg=0.01N静电力Eq=0.03N滑动摩擦力小于静电力,故不可能停在CD段,滑块最终会在DGH间来回往复运动,到达D 点的速度为0.全过程由动能定理得EqL-μmgs=0解得s=2.4m;(3)GH段的倾角为37°,因为Eq cosθ=mg sinθ=0.024N,则加速度a=0,所以滑块与绝缘挡板碰撞的最大动能为滑块第一次运动到G点的动能.对C到G过程由动能定理得E kmax=Eq(L+r sinθ)-μmgL-mg(r-r cosθ)=0.018J滑块最终在DGH间来回往复运动,碰撞绝缘挡板时有最小动能.对D到G过程由动能定理得E kmin=Eqr sinθ-mg(r-r cosθ)=0.002J.8.如图所示,圆心为O、半径为R的圆弧形光滑轨道MN固定在竖直平面内,O、N恰好处于同一竖直线上,ON=R,OM与竖直方向之间的夹角θ=37°,水平面上方空间存在水平向左的匀强电场.水平面上有一点P,点P、M的连线恰好与圆弧轨道相切于M点,PM=2R.现有一质量为m、电荷量为+q的小球(可视为质点)从P点以一定的初速度沿PM做直线运动,小球从M点进入圆弧轨道后,恰好能沿圆弧轨道运动并从N点射出.sin37°=0.6,cos37°=0.8,重力加速度为g.求:(1)小球沿圆弧轨道运动过程中的最小速度的大小;(2)小球在P 点时的初速度大小;(3)小球在水平面上的落点到P 点的距离.答案(1)53gR (2)353gR (3)(32+3)R 解析(1)由小球沿PM 做直线运动可知,小球所受的静电力与重力的合力方向沿MP 方向,受力分析如图(a)所示:则qE tan θ=mg解得:E =4mg3q小球恰好能沿圆弧运动并从N 点射出可知,小球在圆弧轨道上经过“等效最高点G ”时速度最小,如图(b)所示:此时小球所受的静电力与重力的合力提供向心力,则mg sin θ=m v G 2R 解得:v G =53gR (2)小球从P 点运动到G 点的过程中,根据动能定理得:-mg sin θ·3R =12m v G 2-12m v 02解得:v 0=353gR (3)小球从G 点运动到N 点的过程中,根据动能定理得:mg sin θ(R -R sin θ)=12m v N 2-12m v G 2解得:v N =3gR小球从N 水平飞出后,在水平方向上做初速度为3gR 的匀加速运动,在竖直方向上做自由落体运动,设小球从N 飞出到落地的时间为t ,则竖直方向上:R +R cos θ+2R sin θ=12gt 2解得:t =6R g水平方向上的加速度大小为a x =qE m =43g 小球在水平面上的落点到N 点的水平距离为x =v N t +12a x t 2解得:x =(32+4)R则小球在水平面上的落点到P 点的距离为x 0=x -(2R cos θ-R sin θ)=(32+3)R .。