2015年浙江省杭州市初中学业水平抽测数学卷
- 格式:doc
- 大小:260.00 KB
- 文档页数:6
亲爱的同学:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分. 2.答题前,请在答题卷的密封区内填写学校、学籍号、班级和姓名. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应.试题卷一.仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1.下列运算正确的是( )A .2523a a a =+ B.632a a a =⋅ C .22))((b a b a b a -=-+ D .222)(b a b a +=+2.杭州跨境贸易产业园(下沙园区)从去年5月7日开园试点到今年1月26日,园区实现进口业务109万单,其中109万用科学记数法表示为( )A.410109⨯B.5109.10⨯C.61009.1⨯D.810109.0⨯3.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )A .B .C .D .4.如图,在半径为5的⊙O 中,如果弦AB 的长为8,那么它的弦心距OC 等于( ) A.2 B.3 C.4 D.65.下列命题中,是真命题的是( ) A .一组邻边相等的平行四边形是正方形;B .依次连结四边形四边中点所组成的图形是平行四边形;C .平分弦的直径垂直于弦,并且平分弦所对的弧;D .相等的圆心角所对的弧相等,所对的弦也相等6.在三月下旬结束的中考体育测试中,九年级某班15位女同学的一分钟仰卧起坐成绩(单位:个)如下表这次测试成绩的中位数和众数分别是( )A .47, 49B .47.5, 49C .48, 49D .48, 50(第4题)(第13题)A.1.50.5m B.2.51.5m C.3.52.5m D4.53.5m.8.从-1,0,31,π,3中随机任取一数,取到无理数的概率是()A.51B.52C.53D.549.如果关于x的一元二次方程01122=++-xkkx有两个不相等的实数根,那么k的取值范围是()A.21k B.021≠kk且C.2121k≤- D.02121≠≤-kk且10.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;②BCCDBEBD=;③点F是BC的中点;④若23=ABBC,tanE=3110-A.①②B.③④C.①②③D.①②④二.认真填一填 (本题有6个小题, 每小题4分, 共24分)11.分解因式2224)1(aa-+=▲ .12.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=42°,则∠2= ▲ .13.如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1 个单位长度)的格点上,将△ABC绕点B顺时针旋转到△CBA''的位置,且点A'、C'仍落在格点上,则线段AB扫过的图形面积是▲平方单位。
2015年浙江省杭州市初中学业水平抽测数学卷【附答案】2015年杭州市初中学业水平抽测卷-数学考生须知:1.本试卷分试题卷和答题卷两部分,满分100分,考试时间90分钟。
2.答题前,在答题纸上写姓名和准考证号。
3.必须在答题纸的对应答题位置上答题,写在其他地方无效。
答题方式详见答题纸上的说明。
4.考试结束后,试题卷和答题纸一并上交。
试题卷一。
选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把代表正确选项的字母涂黑。
1.-3×(-3) =。
A。
1B。
-9C。
9D。
-12.在下列各几何图形中,有对称中心但没有对称轴的是?A。
圆形B。
正方形C。
平行四边形D。
等边三角形3.下列各等式中,错误的是?A。
x + 11/x = 2B。
(x-3)² = x²-9C。
x²-x = x(x-1)D。
|x-1|² = (x-1)²4.给出下列各命题,其中不正确的是?A。
在大量的随机试验中,事件A出现的频率可作为事件A出现的概率的估计值。
B。
随机抽样就是使得总体中每一个个体都有同样的可能性被选入样本的一种抽样方法。
C。
如果两个三角形全等,那么这两个三角形的对应边成比例。
D。
如果两个三角形相似,那么这两个三角形中不可能存在相等的边。
5.如图是2015年3月份其中某连续7天气温的统计图,其中实线表示最高气温,虚线表示最低气温。
在下列结论中(某天中最高气温与最低气温的差值叫做温差):①这7天中温差最大的达13℃;②这7天中各天最高气温与最低气温成正比关系;③最高气温的中位数是17;④该7天杭城气温变化较大。
你认为正确的是?A。
①②③④B。
①②C。
①③D。
③④6.在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F。
若AD = 3AB= 3,则AF² =。
第6题图)A。
8-4√3B。
2015年浙江省杭州市中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1、(2015年浙江杭州3分)统计显示,2013年底杭州市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为【 】A. 11.4×104B. 1.14×104C. 1.14×105D. 0.114×106【答案】C.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵11.4万=114 000一共6位,∴11.4万=114 000=1.14×105.故选C.2、(2015年浙江杭州3分)下列计算正确的是【 】A. 347222+=B. 341222--=C. 347222⨯=D. 341222÷=【答案】C.【考点】有理数的计算.【分析】根据有理数的运算法则逐一计算作出判断:A. 34722816242+=+=≠,选项错误;B. 34122162482--=-=-≠,选项错误;C. 343472222+⨯==,选项正确;D. 34341122222--÷==≠,选项错误.故选C.3、(2015年浙江杭州3分)下列图形是中心对称图形的是【 】 A.B. C. D.【答案】A . 【考点】中心对称图形.【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形;B 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;C 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;D 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形. 故选A .4、(2015年浙江杭州3分)下列各式的变形中,正确的是【 】A. 22()()x y x y x y ---+=-B.11x x x x--= C. 22(4321)x x x -+=-+ D. ()211x x x x ÷+=+ 【答案】A .【考点】代数式的变形.【分析】根据代数式的运算法则逐一计算作出判断:A. 22()()()()x y x y x y x y x y ---+=+-=-,选项正确;B. 2111x x x x x x---=≠,选项错误; C. 222243441(2)1(2)1x x x x x x -+=-+-=--≠-+,选项错误;D. ()221111x x x x x x x x ÷+==≠+++,选项错误. 故选A .5、(2015年浙江杭州3分)圆内接四边形ABCD 中,已知∠A =70°,则∠C =【 】A. 20°B. 30°C. 70°D. 110°【答案】D .【考点】圆内接四边形的性质.【分析】∵圆内接四边形ABCD 中,已知∠A =70°,∴根据圆内接四边形互补的性质,得∠C =110°.故选D .6、(2015年浙江杭州3分)若901k k <<+ (k 是整数),则k =【 】A. 6B. 7C.8D. 9【答案】D .【考点】估计无理数的大小.【分析】∵81<90<10081<90<1009<90<10⇒⇒,∴k =9.故选D .7、(2015年浙江杭州3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使。
2015年浙江省杭州市中考数学试卷一、仔细选一选(每小题3分,共30分)1.(3分)(2015•杭州)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为( )2.(3分)(2015•杭州)下列计算正确的是( )3.(3分)(2015•杭州)下列图形是中心对称图形的是( ) ..4.(3分)(2015•杭州)下列各式的变形中,正确的是( )﹣x=+15.(3分)(2015•杭州)圆内接四边形ABCD 中,已知∠A=70°,则∠C=( )6.(3分)(2015•杭州)若k <<k+1(k 是整数),则k=( )7.(3分)(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )8.(3分)(2015•杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI 的统计图(当AQI 不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m 3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI 与PM2.5浓度有关.其中正确的是( )9.(3分)(2015•杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()..10.(3分)(2015•杭州)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()二、认真填一填(每小题4分,共24分)11.(4分)(2015•杭州)数据1,2,3,5,5的众数是,平均数是.12.(4分)(2015•杭州)分解因式:m3n﹣4mn=.13.(4分)(2015•杭州)函数y=x2+2x+1,当y=0时,x=;当1<x<2时,y 随x的增大而(填写“增大”或“减小”).14.(4分)(2015•杭州)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).15.(4分)(2015•杭州)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=.16.(4分)(2015•杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=.三、全面答一答(共66分)17.(6分)(2015•杭州)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(8分)(2015•杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(8分)(2015•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B 关于⊙O的反演点,求A′B′的长.20.(10分)(2015•杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.21.(10分)(2015•杭州)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(12分)(2015•杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.23.(12分)(2015•杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇;….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?2015年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(每小题3分,共30分)1.(3分)(2015•杭州)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为()2.(3分)(2015•杭州)下列计算正确的是()3.(3分)(2015•杭州)下列图形是中心对称图形的是()..4.(3分)(2015•杭州)下列各式的变形中,正确的是()﹣x=+1、,错误;,错误;5.(3分)(2015•杭州)圆内接四边形ABCD中,已知∠A=70°,则∠C=()6.(3分)(2015•杭州)若k<<k+1(k是整数),则k=()=9=10<<题考查了估算无理数的大小,解题关键是估算7.(3分)(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()8.(3分)(2015•杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()浓度的中位数是=79.5ug/m9.(3分)(2015•杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()..AN=,同理可得:AC=的线段的概率为:10.(3分)(2015•杭州)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()=a=a=a二、认真填一填(每小题4分,共24分)11.(4分)(2015•杭州)数据1,2,3,5,5的众数是5,平均数是.平均数是(.;12.(4分)(2015•杭州)分解因式:m3n﹣4mn=mn(m﹣2)(m+2).13.(4分)(2015•杭州)函数y=x2+2x+1,当y=0时,x=﹣1;当1<x<2时,y随x 的增大而增大(填写“增大”或“减小”).14.(4分)(2015•杭州)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为90﹣度(用关于α的代数式表示).(DCB=(.15.(4分)(2015•杭州)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=2+2或2﹣2.y=的图象上,t==2OP==,,,y=k=2+2或216.(4分)(2015•杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=2+或4+2.=AN=2+AD=DC=4+2;AE=AD=2+2+4+2或4+2三、全面答一答(共66分)17.(6分)(2015•杭州)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(8分)(2015•杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(8分)(2015•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B 关于⊙O的反演点,求A′B′的长.=,.20.(10分)(2015•杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k 取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.21.(10分)(2015•杭州)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(12分)(2015•杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.23.(12分)(2015•杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇;….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?)的图象交点的横坐标为,所以丙出发(解得:)解得:,解得:解得:.t=时,的图象交点的横坐标为所以丙出发h。
2015年浙江省杭州市中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、仔细选一选(10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的. 1、统计显示,2013年底杭州市各类高中在校学生人数约是11.4万人,将11。
4万用科学记数法表示应为【 】A 。
11。
4×104B 。
1.14×104C 。
1.14×105 D. 0.114×106 【答案】C.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
因此,∵11.4万=114 000一共6位,∴11。
4万=114 000=1。
14×105.故选C 。
2、下列计算正确的是【 】A 。
347222+= B. 341222--= C. 347222⨯= D 。
341222÷= 【答案】C 。
【考点】有理数的计算.【分析】根据有理数的运算法则逐一计算作出判断:A. 34722816242+=+=≠,选项错误;B. 34122162482--=-=-≠,选项错误;C. 343472222+⨯==,选项正确; D 。
34341122222--÷==≠,选项错误。
故选C.3、下列图形是中心对称图形的是【 】A. B 。
C 。
D.【答案】A .【考点】中心对称图形.【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形;B 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;C 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;D 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形. 故选A .4、下列各式的变形中,正确的是【 】A 。
2015年浙江省杭州市中考数学试卷一、仔细选一选(每小题3分,共30分)1.统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×102B.1.14×103C.1.14×104D.1.14×1052.下列计算正确的是()A.23+26=29B.23﹣24=2﹣1C.23×23=29D.24÷22=223.下列图形是中心对称图形的是()A.B.C.D.4.下列各式的变形,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1 D.x÷(x2+x)=+15.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°6.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.97.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)8.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112 μg/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()A.①②③B.①②④C.①③④D.②③④9.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A.B.C.D.10.设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图像与一次函数y2=dx+e(d≠0)的图像交于点(x1,0),若函数y=y1+y2的图像与x轴仅有一个交点,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=d C.a(x1﹣x2)2=d D.a(x1+x2)2=d二、认真填一填(每小题4分,共24分)11.数据1,2,3,5,5的众数是,平均数是.12.分解因式:m3n﹣4mn=.13.函数y=x2+2x+1,当y=0时,x=;当1<x<2时,y随x的增大而(填写“增大”或“减小”).14.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).15.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图像上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图像经过点Q,则k=.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=.三、全面答一答(共66分)17.(6分)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(8分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC 边上,AM=2MB,AN=2NC.求证:DM=DN.19.(8分)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B 关于⊙O的反演点,求A′B′的长.20.(10分)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图像如图,请你在同一直角坐标系中画出当k取0时的函数的图像;(2)根据图像,写出你发现的一条结论;(3)将函数y2的图像向左平移4个单位,再向下平移2个单位,得到的函数y3的图像,求函数y3的最小值.21.(10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(12分)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长.(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.23.(12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲、乙两人之间的距离为y(km),y与t的函数关系如图1.方成思考后发现了如图1的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇.请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式.(2)当20<y<30时,求t的取值范围.(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图像.(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多长时间与甲相遇?2015年浙江省杭州市中考数学试卷参考答案与解析一、1.D 解析:将11.4万用科学记数法表示为1.14×105.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D 解析:A.23与26不能合并,故此选项错误;B.23与24不能合并,故此选项错误;C.23×23=26,故此选项错误;D.24÷22=22,故此选项正确.故选D.点评:此题考查同类项、同底数幂的乘法和同底数幂的除法,关键是根据法则进行计算.3.A 解析:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则只有选项A是中心对称图形.故选A.点评:此题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4.A 解析:A.(﹣x﹣y)(﹣x+y)=x2﹣y2,故此选项正确;B.,故此选项错误;C.x2﹣4x+3=(x﹣2)2﹣1,故此选项错误;D.x÷(x2+x)=,故此选项错误.故选A.点评:此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.5.D 解析:∵四边形ABCD为圆的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣70°=110°.故选D.点评:此题考查了圆内接四边形的性质:圆内接四边形的对角互补.6.D 解析:∵k<<k+1(k是整数),9<<10,∴k=9.故选D.点评:此题考查了估算无理数的大小,解题的关键是估算的取值范围,从而解决问题.7.B 解析:设把x公顷旱地改为林地.根据题意可得方程54﹣x=20%(108+x).故选B.点评:此题考查一元一次方程的应用,关键是设出未知数以改造后的旱地与林地的关系为等量关系列出方程.8.C 解析:由图1可知,18日的PM2.5浓度为25 μg/m3,浓度最低,故①正确.这六天中PM2.5浓度的中位数是=79.5(μg/m3),故②错误.∵当AQI不大于100时称空气质量为“优良”,∴18日、19日、20日、23日空气质量为优,故③正确.空气质量指数AQI 与PM2.5浓度有关,故④正确.故选C.点评:此题考查了折线统计图,解决此题的关键是从折线统计图中获取相关信息,注意中位数的确定,要先把数据进行排序.9.B 解析:连接AF,EF,AE,过点F作FN⊥AE于点N.∵点A,B,C,D,E,F是边长为1的正六边形的顶点,∴AF=EF=1,∠AFE=120°,∴∠FAE=30°,∴AN=,∴AE=.同理可得,AC=,故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段取到长度为的线段有6种情况,则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为.故选B.点评:此题主要考查了正多边形和圆,正确利用正六边形的性质得出AE的长是解题的关键.10.B 解析:∵一次函数y2=dx+e(d≠0)的图像经过点(x1,0),∴dx1+e=0,∴y2=d(x ﹣x1).∴y=y1+y2=a(x﹣x1)(x﹣x2)+d(x﹣x1)=ax2﹣axx2﹣ax1x+ax1x2+dx﹣dx1=ax2+ (﹣ax2﹣ax1)x+ax1x2﹣dx1.∵当x=x1时,y1=0,y2=0,∴当x=x1时,y=y1+y2=0.∵y=ax2+(d﹣ax2﹣ax1)x+ax1x2﹣dx1与x轴仅有一个交点,∴y=y1+y2的图像与x轴的交点为(x1,0),∴=x1.化简,得a(x2﹣x1)=d.故选B.点评:此题主要考查了抛物线与x轴的交点问题以及曲线上点的坐标与方程的关系,要熟练掌握,解答此题的关键是判断出:函数y=y1+y2与x轴的交点为(x1,0).二、11.5 解析:数据1,2,3,5,5的众数是5;平均数是(1+2+3+5+5)=.点评:此题考查了众数和平均数的概念,掌握各知识点的概念是解答此题的关键.12.mn(m﹣2)(m+2)解析:m3n﹣4mn=mn(m2﹣4)=mn(m﹣2)(m+2).点评:此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式是解题的关键.13.﹣1 增大解析:把y=0代入y=x2+2x+1,得x2+2x+1=0,解得x=﹣1.当x>﹣1时,y随x的增大而增大;当1<x<2时,y随x的增大而增大.点评:此题考查了二次函数的性质,重点掌握对称轴两侧的增减性问题,解此题的关键是利用数形结合思想.14.90﹣解析:∵点A,C,F,B在同一直线上,∠ECA为α,∴∠ECB=180°﹣α.∵CD平分∠ECB,∴∠DCB=(180°﹣α).∵FG∥CD,∴∠GFB=∠DCB=90°﹣.点评:此题考查平行线的性质,关键是根据平行线得出∠GFB=∠DCF和利用角平分线解答.15.2+2或2﹣2解析:∵点P(1,t)在反比例函数y=的图像上,∴t==2,∴P (1,2).∴OP==.∵过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.∴Q(1+,2)或(1﹣,2).∵反比例函数y=的图像经过点Q,∴2=或2=,解得k=2+2或2﹣2.点评:此题考查了反比例函数图像上点的坐标特征,勾股定理的应用,求得Q点的坐标是解题的关键.16.2+或4+2解析:如图1,作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC 于点T.当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形.∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°.∴∠AND=90°.∵四边形ABCE的面积为2,∴设BT=x,则BC=EC=2x,故2x×x=2.解得x=1(负数舍去),则AE=EC=2,EN==.故AN=2+,则AD=DC=4+2.如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形.∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y.∵四边形BEDF的面积为2,∴AB×DE=2y2=2,解得y=1.故AE=,DE=2,则AD=2+.综上所述,CD的长为2+或4+2.点评:此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题的关键.三、17.解:(1)m%=1﹣22.39%﹣0.9%﹣7.55%﹣0.15%=69.01%,m=69.01.(2)其中混杂着的玻璃类垃圾的吨数约等于200×0.9%=1.8(吨).点评:此题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN.∵AD平分∠BAC,∴∠MAD=∠NAD.在△AMD与△AND中,,∴△AMD≌△AND(SAS),∴DM=DN.点评:此题考查了全等三角形的判定和性质,关键是根据等腰三角形的性质进行证明.19.解:设OA交⊙O于点C,连接B′C,如图2.∵OA′•OA=42,而r=4,OA=8,∴OA′=2.∵OB′•OB=42,∴OB′=4,即点B和点B′重合.∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC.在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.点评:此题考查了点与圆的位置关系:点的位置可以确定该点到圆心的距离与半径的关系,反过来已知点到圆心的距离与半径的关系可以确定该点与圆的位置关系.也考查了阅读理解能力.20.解:(1)当k=0时,y=﹣(x﹣1)(x+3),所画函数图像如图.(2)①k取0和2时的函数图像关于点(0,2)中心对称.②函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数)的图像都经过(1,0)和(﹣1,4).(3)由题意可得y2=(x﹣1)[(2﹣1)x+(2﹣3)]=(x﹣1)2,平移后的函数y3的表达式为y3=(x﹣1+4)2﹣2=(x+3)2﹣2.所以当x=﹣3时,函数y3的最小值是﹣2.点评:此题考查了抛物线与x轴的交点坐标,二次函数图像,二次函数图像与几何变换以及二次函数的最值.熟练掌握函数图像的性质和学会读图是解题的关键.21.解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如图的△ABC即为满足条件的三角形.点评:此题考查了三角形的三边关系,作图﹣应用与设计作图.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC,∴.∵,AE=2,∴EC=6.(2)①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,∠CFG=∠ECD,∴∠CGF=∠PCG,∴CP=PG.∵∠CFG=∠ECD,∴CP=FP,∴PF=PG=CP.∴线段CP是△CFG的FG边上的中线.②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.证明:∵DE⊥AC,∴∠EDC+∠ECD=90°.∵∠CFG=∠EDC,∴∠CFG+∠ECD=90°,∴∠CPF=90°,∴线段CP为△CFG的FG边上的高线.③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.点评:此题主要考查了平行线分线段成比例定理、等腰三角形的判定、三角形的有关概念,分类讨论,能全面的思考问题是解决问题的关键.23.解:(1)直线BC的解析式为y=kt+b.把(1.5,0),()分别代入上式,得,解得.∴直线BC的解析式为y=40t﹣60.设直线CD的函数解析式为y1=k1t+b1,把(),(4,0)分别代入上式,得,解得.∴直线CD的解析式为y=﹣20t+80.(2)设甲的速度为a km/h,乙的速度为b km/h.根据题意,得,解得.∴甲的速度为60 km/h,乙的速度为20 km/h,∴OA的解析式为:y=20t(0≤t≤1),所以点A的纵坐标为20.当20<y<30时,即20<40t﹣60<30或20<﹣20t+80<30,解得或.(3)根据题意,得S甲=60t﹣60(),S乙=20t(0≤t≤4),所画图像如图2.(4)当t=时,,丙距M地的路程S丙与时间t的函数表达式为S丙=﹣40t+80(0≤t≤2).如图3.S丙=﹣40t+80与S甲=60t﹣60的图像的交点的横坐标为,所以丙出发h与甲相遇.点评:此题考查了一次函数的应用,解决此题的关键是根据图像获取相关信息,利用待定系数法求函数解析式.。
杭州市2015年初中毕业升学文化考试数学(本试卷满分120分,考试时间100分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.统计显示,2013年底杭州市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104B.1.14×104C.1.14×105D.0.114×106答案:C 【解析】本题考查科学记数法,难度较小.11.4万=114000是六位数,∴11.4万=114000=1.14×105,故选C.【易错提醒】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数.2.下列计算正确的是()A.23+26=29B.23-26=2-3C.26×23=29D.26÷23=22答案:C 【解析】本题考查有理数的计算,难度较小.根据有理数的运算法则逐一做出判断.23+26=8+64=72≠29,A选项错误;23-26=8-64=-56≠2-3,B选项错误;23×26=23+6=29,C选项正确;26÷23=26-3=23≠22,D选项错误,故选C.3.下列图形是中心对称图形的是()A B C D答案:A 【解析】本题考查中心对称图形的概念,难度较小.根据中心对称图形的概念判断,中心对称图形沿对称中心旋转180度后与原图重合,因此,对于A,∵该图形旋转180度后能与原图形重合,∴该图形是中心对称图形;B,C,D旋转180度后不能与原图形重合,其均不是中心对称图形,故选A.4.下列各式的变形中,正确的是()A.(-x-y)(-x+y)=x2-y2B.C.x2-4x+3=(x-2)2+1 D.答案:A 【解析】本题考查代数式的变形,难度较小.根据代数式的运算法则逐一计算做出判断.(-x—y)(-x+y)=x2-y2,A选项正确;,B选项错误;x2-4x+3=(x-2)2-1,C选项错误;,D选项错误,故选A.5.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°答案:D 【解析】本题考查圆内接四边形的性质,难度较小.∵在圆内接四边形ABCD 中,∠A=70°,∴根据圆内接四边形的对角互补得∠C=110°,故选D.6.若(k是整数),则k=()A.6 B.7 C.8 D.9答案:D 【解析】本题考查估计无理数的大小,难度较小.∵92=81<90<100=102,∴k=9,故选D.7.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54-x=20%×108 B.54-x=20%(108+x)C.54+x=20%×162 D.108-x=20%(54+x)答案:B 【解析】本题考查由实际问题列方程,难度中等.根据题意,旱地改为林地后,旱地面积为54-x公顷,林地面积为108+x公顷,等量关系为“旱地占林地面积的20%”,即54-x=20%(108+x),故选B.8.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112 μg/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的说法是()A.①②③B.①②④C.①③④D.②③④答案:C 【解析】本题考查折线统计图、中位数,难度中等.根据两个折线统计图给出的图形对每个说法作出判断,对于①,18日的PM2.5浓度最低,①正确;对于②,这六天中PM2.5浓度按从小到大排列为25,66,67,92,144,158,中位数是第三、四个数的平均数,为,②错误;对于③,这六天中有4天空气质量为“优良”,③正确;对于④,空气质量指数AQI与PM2.5浓度有关,④正确,所以正确的说法是①③④,故选C.9.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A.B.C.D.答案:B 【解析】本题考查正六边形的性质及概率的求法,难度较大.根据概率的求法,找准两点:①全部可能情况的总数;②符合条件情况的数目,两者的比值就是其发生的概率.如图,连接正六边形的六个顶点中的任意两点可得15条线段,其中6条的线段长度为,∴所求概率为,故选B.10.设二次函数y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0).若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1-x2)=d B.a(x2-x1)=dC.a(x1-x2)2=d D.a(x1+x2)2=d答案:B 【解析】本题考查一次函数与二次函数的综合问题、曲线上点的坐标与方程的关系,难度较大.∴一次函数y2=dx+e(d≠0)的图象经过点(x1,0),∴0=dx1+e e=-dx1,∴y2=dx-dx1=d(x-x1),∴y=y2+y1=a(x-x1)(x-x2)+d(x-x1)=(x-x1)[a(x-x2)+d].又∵y=y1+y2的图象与x轴仅有一个交点,∴函数y=y2+y1是二次函数,且它的顶点在x轴上,即y=y2+y1=a(x-x1)2.∴(x-x1)[a(x-x2)+d]=a(x-x1)2a(x-x2)+d=a(x-x1).令x=x1得a(x1-x2)+d=a(x1-x1),即a(x1-x2)+d=0a(x2-x1)=d,故选B.第Ⅱ卷(非选择题共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上)11.数据1,2,3,5,5的众数是_________,平均数是_________.答案:5 【解析】本题考查众数、平均数,难度较小.众数是一组数据中出现次数最多的数,这组数据中5出现两次,出现的次数最多,故这组数据的众数是5.平均数是指在一组数据中所有数据之和再除以数据的个数,故这组数据的平均数是.12.分解因式:m3n-4mn=_________.答案:mn(m+2)(m-2) 【解析】本题考查提公因式法和公式法因式分解,难度较小.要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有则把它提取出来,之后再观察是否是完全平方公式或者平方差公式的展开式,若是就考虑用公式法继续分解因式.m3n-4mn=mn(m2-4)=mn(m+2)(m-2).13.函数y=x2+2x+1,当y=0时,x=_________;当1<x<2时,y随x的增大而_________(填写“增大”或“减少”).答案:-1 增大【解析】本题考查二次函数的性质,难度较小.函数y=x2+2x+1,当y=0时,即x2+2x+1=(x+1)2=0,解得x=-1.因为抛物线y=x2+2x+1的开口向上,且对称轴为,在对称轴右侧,y随x的增大而增大,所以当1<x<2时,y随x的增大而增大.14.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为_________度(用关于α的代数式表示).答案:【解析】本题考查角平分线的定义、平行线的性质,难度中等.因为∠ECA=α度,所以∠ECB=(180-α)度,又因为CD平分∠ECB,所以度,又因为FG∥CD,所以度.15.在平面直角坐标系中,O为坐标原点,设点P(1,t),在反比例函数的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数的图象经过点Q,则k=_________.答案:或【解析】本题考查反比例函数的性质、勾股定理、分类讨论思想,难度较大.因为点P(1,t)在反比例函数的图象上,所以,所以点P的坐标为P(1,2),所以.因为点Q在过点P与x轴平行的直线上,且QP=OP,所以点Q的坐标为,又因为反比例函数的图象经过点Q,所以当点Q的坐标为时,;当点Q的坐标为时,.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.答案:或【解析】本题考查多边形的内角和定理、轴对称图形、菱形、矩形的性质、相似三角形的判定和性质,考查分类讨论思想的应用,难度较大.当剪痕为图1中的线段BM,BN时,过点N作NH⊥BM于点H,易得四边形BMDN是菱形,且∠MBN =∠D=30°,设BN=DN=x,则,则由题意得,解得x=2,即BN=DN=2,NH=1,易得四边形BHNC为矩形,所以BC=NH,所以在Rt△BCN中,,所以;当剪痕为图2中的线段AE,CE时,过点B作BH⊥CE于点H,易得四边形BAEC是菱形,且∠BCH=30°,设BC=CE=x,则,则由题意得,解得x=2,即BC=CE=2,BH=1,所以在Rt△BCH中,,所以.易得△BCD∽△EHB,所以,即.综上所述,CD的长为或.三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分6分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州市某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.答案:本题考查扇形统计图、用样本估计总体,难度较小.解:(1)m=100-(22.39+0.9+7.55+0.15)=69.01.(3分)(2)其中混杂着的玻璃类垃圾的吨数约等于200×0.9%=1.8(吨).(6分)18.(本小题满分8分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC,求证:DM=DN.答案:本题考查全等三角形的判定和性质,难度较小.证明:因为AM=2MB,所以,同理,又因为AB=AC,所以AM=AN.因为AD平分∠BAC,所以∠MAD=∠NAD.(4分)在△AMD和△AND中,所以△AMD≌△AND,所以DM=DN.(8分)19.(本小题满分8分)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′·OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8.若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.答案:本题考查对新定义的理解及应用、等边三角形的判定和性质、勾股定理,难度中等.解:因为OA′·OA=16,且OA=8,所以OA′=2.同理可知,OB′=4,即B点的反演点B′与B重合.(4分)设OA交⊙O于点M,连接B′M,A′B′,因为∠BOA=60°,OM=OB′,所以△OB′M为正三角形,又因为点A′为OM的中点,所以A′B′⊥OM,根据勾股定理,得OB′2=OA′2+A′B′2,即16=4+A′B′2,解得.(8分)20.(本小题满分10分)设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.答案:本题考查二次函数的图象和性质、图象的平移、数形结合思想的应用,难度中等.解:(1)当k=0时,y=-(x-1)(x+3),所画函数图象如图:(5分)(2)①图象都经过点(1,0)和点(-1,4);②图象总交x轴于点(1,0);③k取0和2时的函数图象关于点(0,2)中心对称;④函数y=(x-1)[(k-1)x+(k-3)]的图象都经过点(1,0)和(-1,4);等等.(7分)(其他正确结论同样给分)(3)平移后的函数y3的表达式为y3=(x+3)2-2,所以当x=-3时,函数y3的最小值等于-2.(10分)21.(本小题满分10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).答案:本题考查三角形的三边关系、列举法的应用、尺规作图,难度中等.解:(1)共九种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(5分)(2)只有a=2,b=3,c=4的一个三角形.如图的△ABC即为满足条件的三角形.(10分)22.(本小题满分12分)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.答案:本题考查平行线分线段成比例、直角三角形的性质、等腰三角形的判定、分类讨论思想的应用,难度较大.解:(1)因为∠ACB=90°,DE⊥AC,所以DE∥BC,所以.因为,AE=2,所以,解得EC=6.(4分)(2)①若∠CFG1=∠ECD,此时线段CP1为Rt△CFG1的FG1,边上的中线.理由如下:因为∠CFG1=∠ECD,所以∠CFG1=∠FCP1,又因为∠CFG1+∠CG1F=90°,∠FCP1+∠P1CG1=90°,所以∠CG1F=∠P1CG1.所以CP1=G1P1,又因为∠CFG1=∠FCP1,所以CP1=FP1,所以CP1=FP1=G1P1,所以线段CP1为Rt△CFG1的FG1边上的中线.②若∠CFG2=∠EDC,此时线段CP2为Rt△CFG2的FG2边上的高线.理由如下:因为DE⊥AC,所以∠DEC=90°,所以∠EDC+∠ECD=90°,因为∠CFG2=∠EDC,所以∠ECD+∠CFG2=∠ECD+∠EDC=90°,所以∠CP2F=90°,CP2⊥FG2,即CP2为Rt△CFG2的FG2边上的高线.③当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.(12分)23.(本小题满分12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了图1的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程s甲,s乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地.若丙经过h与乙相遇.问丙出发后多少时间与甲相遇?答案:本题考查一次函数的图象和性质、待定系数法的应用、解二元次一方程组、分类讨论思想的应用,难度较大.解:(1)直线BC的函数表达式为y=40t-60;直线CD的函数表达式为y=-20t+80.(4分)(2)OA的函数表达式为y=20t(0≤t≤1),所以点A的纵坐标为20.当20<y<30时,即20<40t-60<30或20<-20t+80<30,解得或.(7分)(3);s乙=20t(0≤t≤4);所画图象如图:(10分)(4)当时,.丙距M地的路程s丙与时间t的函数表达式为s丙=-40t+80(0≤t≤2).遇.(12分)综评:本套试卷难度中等,全面覆盖了初中数学的数与式、空间与图形、概率与统计等主要内容.突出考查考生基础知识和基本能力的同时,重点考查了考生数学分类思想和探索能力的应用,如第22,23题等.试题有层次感,有较好的区分度,有利于高一级学校的选拔.。
2015年中考模拟(二) 数学试卷考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号. 所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-) 圆锥的侧面积公式:S =πr l (其中S 是侧面积,r 是底面半径,l 是母线长)一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列各几何体中,主视图是圆的是( )2.如图,已知Rt △ABC 边长分别为1,2,3,则下列三角函数表示正确的是( )A .sinA =23B .cosA =36C .tanA =2D .tanA =223.已知圆的面积为7π,估计该圆的半径r 所在范围正确的是( )A .1<r <2B .2<r <3C .3<r <4D .4<r <54.若反比例函数图象经过二次函数742+-=x x y 的顶点,则这个反比例函数的解析式为( )A .x y 6=B .xy 6-= C .x y 14= D .x y 2-= 5.如图,已知直线a ∥b ,同时与∠POQ 的两边相交,则下列结论中错误的是( )A .∠3+∠4=180°B .∠2+∠5>180°C .∠1+∠6<180°D .∠2+∠7=180°6.在一次演讲比赛中,某班派出的5名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了3号同学的成绩,但得知5名同学的平均成绩是21分,那么5名同学成绩的方差是( )A .2.4B .6C .6.8D .7.57.若不等式组⎪⎩⎪⎨⎧-+≤+<+132211x x a x 的解是x <a -1,则实数a 的取值范围是( ) A .a ≤-6 B .a ≤-5 C .a ≤-4 D .a <-48.如图是某市11月1日至10日的空气质量指数折线图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月7日中的某一天到达该市旅游,到达的当天作为第一天连续停留4天.则此人在该市停留期间恰好有两天空气质量优良的概率是( )A .72B .73C .52D .94 9.已知关于x 的一元二次方程02)(2=-+++c a bx x c a ,其中a 、b 、c 分别为△ABC 三边的长. 下列关于这个方程的解和△ABC 形状判断的结论错误的是( )A .如果x =-1是方程的根,则△ABC 是等腰三角形;B .如果方程有两个相等的实数根,则△ABC 是直角三角形;C .如果△ABC 是等边三角形,方程的解是x =0或 x =-1;D .如果方程无实数解,则△ABC 是锐角三角形.10.已知□ABCD 中,AD =2AB ,F 是BC 的中点,作AE ⊥CD ,垂足E 在线段CD 上,连结EF 、AF ,下列结论:①2∠BAF =∠BAD ;②EF=AF ;③S △ABF ≤S △AEF ;④∠BFE =3∠CEF.中一定成立的是( )A .①②④B .①③C .②③④D .①②③④二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(1)用科学记数法表示0.000 048为 ;(2)计算+-2)3(3)2(-= .12.(1)已知53=b a ,则=+bb a ; (2)若两个相似三角形面积之比为1︰2,则它们的周长之比为 .13.已知五月某一天,7个区(市)的日平均气温(单位℃)是20.1, 19.5, 20.2, 19.8,20.1,21.3,18.9 ,则这7个区(市)气温的众数是 ;中位数是 .14.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A 、B 、C 、D 分别是“芒果”与坐标轴的交点,AB 是半圆的直径,抛物线的解析式为23232-=x y ,则图中CD 的长为 . 15.若函数k x k x k y ++++=)1()2(2的图象与x 轴只有一个交点,那么k的值为 .16.如图,PQ 为⊙O 的直径,点B 在线段PQ 的延长线上,OQ =QB =1,动点A 在⊙O 的上半圆运动(含P 、Q 两点),连结AB ,设∠AOB =α.有以下结论:①当线段AB 所在的直线与⊙O 相切时,AB =3;②当线段AB 与⊙O 只有一个公共点A 点时,α的范围是0°≤α≤60°;③当△OAB 是等腰三角形时,tan α=215; ④当线段AB 与⊙O 有两个公共点A 、M 时,若AO ⊥PM ,则AB =6.其中正确结论的编号是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题6分)如图是某企业近五年的产值年增长率折线统计图和年产值条形统计图(不完整).(1)员工甲看了统计图说2013年的产值比2012年少,请你判断他的说法是否正确(不必说理);(2)补全条形统计图(条形图和数字都要补上);(3)求这5年平均年产值是多少万元.18.(本小题8分)填空和计算:(1)给出下列代数式:21,xx 212+,21+x ,5-x ,122-x ,22+-x x ,其中有 个是分式; 请你从上述代数式中取出一个分式为 ,对于所取的分式:①当x 时分式有意义;②当x =2时,分式的值为 .(2)已知223-=x ,223+=y ,求代数式226y xy x ++的值.19.(本小题8分)(1)尺规作图:以线段a 为斜边,b 为直角边作直角三角形(不写画法,保留痕迹);(2)将所作直角三角形绕一条直角边所在直线旋转一周,设a =5,b =3,求所得几何体的表面积.20.(本小题10分)如图,已知点A (1,4),点B (6,32)是一次函数b kx y +=图象与反比例函数)0(>=m xm y 图象的交点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数的值小于反比例函数的值?(2)求一次函数解析式及m 的值;(3)设P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB面积相等,求点P 坐标.21.(本小题10分)如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,AB =AD =6,∠BAD =60°:(1)证明:BC =CD ;并求BC 的长;(2)设点E 、F 分别是AB 、AD 边上的中点,连结EF 、EC 、FC ,求△CEF 三边的长和cos ∠ECF 的值.22.(本小题12分)如图,面积为8cm 2的正方形OABC 的边OA ,OC 在坐标轴上,点P 从点O 出发,以每秒1个单位长度的速度沿x 轴向点C 运动;同时点Q 从C 点出发以相同的速度沿x 轴的正方向运动,规定P 点到达点C 时,点Q 也停止运动,过点Q 作平行于y 轴的直线l .连结AP ,过P 作AP 的垂线交l 于点D ,连结AD ,AD 交BC 于点E.设点P 运动的时间为t 秒.(1)计算和推理得出以下结论(直接填空):①点B 的坐标为 ;②在点P 的运动过程中,总与△AOP 全等的三角形是 ; ③用含t 的代数式表示点D 的坐标为 ;④∠PAD = 度;(2)当△APD 面积为5 cm 2时,求t 的值;(3)当AP =AE 时,求t 的值(可省略证明过程,写出必要的数量关系列式求解).23.(本小题12分)如图,直线42+=x y 与x 轴、y 轴相交于B 、C 两点,抛物线c ax ax y +-=32过点B 、C ,且与x 轴另一个交点为A ,过点C 作x 轴的平行线l ,交抛物线于点G .(1)求抛物线的解析式以及点A 、点G 的坐标;(2)设直线m x =交x 轴于点E (m >0),且同时交直线AC 于点M ,交l 于点F ,交抛物线于点P ,请用含m 的代数式表示FM 的长、PF 的长;(3)当以P 、C 、F 为顶点的三角形与△MEA 相似时,求出m 的值.2015中考二模数学答案一.选择题(每小题3分) CCBAD CCBDD二.填空题 (每小题4分) 11.(1)4.8×10-5 ;(2)1 ; 12.(1)58;(2)1︰2; 13.20.1;20.1 ;14.25; 15.3323±-或-2; 16.①②④17.(6分) (1)不正确--------------------------------------------1分(2)补全条形统计图、数字500、 900---------3分(3)784(万元)------------------------------------2分18.(8分)(1) 3 ;取出一个分式为(xx 212+,122-x ,22+-x x 之一),①分别(对应)x ≠0;x ≠±1;x ≠-2时分式有意义;②当x =2时,分式的值为(对应)45;32;0 (共4分,每空1分)(2)原式=xy y x 4)(2++=(+-223223+)2+4(⨯-223223+)=3+4 ×41=4-------4分,直接代值硬算不扣分;如果算错了,但能化为 xy y x 4)(2++或xy y x 8)(2+-得1分19.(8分)(1)尺规作图(略)---------------------------------------------------4分(2) 分类,分别绕不同的直角边:① 24π;②36π ---------4分(各2分)20.(10分)(1)一次函数的值小于反比例函数的值时x 取范围是0<x <1或6<x <7--------------------2分(2)待定系数法得到:31432+-=x y --------------------------2分, m =4 ----------------------2分 (3)设P (x ,31432+-x ), S △PCA =)314324(121-+⨯⨯x ----1分,S △PDB =)6(3221x -⨯⨯-----1分 解得P (37,27)-------------------------------------------------------------------------------------2分 21.(10分)(1) 连结AC ,在△ABC 和△ADC 中,∠B =∠D =90°,AB =AD ,AC =AC ,∴△ABC ≌△ADC (HL )-------------2分 ;∴BC =CD , -----------------1分∵△ABC ≌△ADC ,∴∠CAB =30°,AB =6,∴BC =32 -----------2分(2) ∵∠BAD =60°,AE =AF =3,∴EF =3,--------------------------------1分EC =FC ==+22)32(321 ---------------------------------------------------2分作EG ⊥CF ,设CG =x ,则 212-x 2=EG 2=32-2)21(x - 解得x =142111------------1分∴cos ∠ECF =142111/21=1411------------------------------------------------------------------------1分22.(12分)(1)①点B (22 ,22), 写(8,8)不扣分; ②与△AOP 全等的三角形是△PDQ ;③点D (22+t , t );④∠PAD =45度;-------------------------4分(每空1分)(2)∵PD =22QD PQ +=28t +,S △APD =21PD 2 =5, -----------2分∴8+t 2=10,∴t =2-------------------------------------------------2分(3)解法1:过D 作DG ⊥y 轴,则由三角形相似得GD AB EG BE = EG =t 222---------------1分;t 22222t =-t-----------1分; 解得t =4―22----------2分 解法2:当AP =AE 时,△AOP ≌△ABE (HL );连结PE ,作AG ⊥PE ,可得5个三角形全等,PC =EC =22―t ,∴PE =2OP ,∴PE =2PC =2(22―t )=4―2t -----------1分又PE =2OP =2 t--------------------------------------------1分∴4―2t =2 t ,解得t =4―22-----------------------2分(解题过程不必分析证明,只要数量关系正确即可。
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前浙江省杭州市2015年初中毕业升学文化考试数学 .............................................................. 1 浙江省杭州2015年初中毕业升学文化考试数学答案解析 .. (5)浙江省杭州市2015年初中毕业升学文化考试数学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为( ) A .411.410⨯B .41.1410⨯C .51.1410⨯D .60.11410⨯ 2.下列计算正确的是( ) A .369222+=B .363222--=C .639222⨯=D .632222÷= 3.下列图形是中心对称图形的是( )AB C D4.下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11xx x x--= C .2243(2)1x x x -+=-+D .21()1x x x x÷+=+ 5.圆内接四边形ABCD 中,已知°70A ∠=,则C ∠= ( ) A .°20B .°30C .°70D .°110 6.若1k k +(k 是整数),则k =( ) A .6B .7C .8D .97.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )A .5420108x -=⨯%B .5420(108)x x -=+%C .5420162x -=⨯%D .10820(54)x x -=+%8.如图是某地2月18日到23日 2.5PM 浓度和空气质量指数AQI 的统计图(当AQI 不大于100时称空气质量为“优良”),由图可得下列说法:①18日的 2.5PM 浓度最低;②这六天中 2.5PM 浓度的中位数是3112μg/m ; ③这六天中有4天空气质量为“优良”;④空气质量指数AQI 与 2.5PM 浓度有关. 其中正确的是( )A .①②③B .①②④C .①③④D .②③④9.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,( )A .14 B .25 C .23 D .59毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)10.设二次函数112()()y a x x x x =--12(0,)a x x ≠≠的图象与一次函数2(y dx e d =+≠0)的图象交于点1(,0)x ,若函数12y y y =+的图象与x 轴仅有一个交点,则( ) A .12()a x x d -=B .21()a x x d -=C .212()a x x d -=D .212()a x x d +=第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.数据1,2,3,5,5的众数是 ,平均数是 . 12.分解因式:34m n mn -= .13.函数221y x x =++,当0y =时,x = ;当12x <<时,y 随x 的增大而 (填写“增大”或“减小”).14.如图,点A ,C ,F ,B 在同一直线上,CD 平分ECB ∠,FG CD ∥.若ECA ∠为α度,则GFB ∠为 度(用关于α的代数式表示).15.在平面直角坐标系中,O 为坐标原点,设点(1,)P t 在反比例函数2y x=的图象上,过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP OP =.若反比例函数ky x=的图象经过点Q ,则k = .16.如图,在四边形纸片ABCD 中,AB AC =,AD CD =,90A C ∠=∠=,150B ∠=.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD = .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州市某一天收到的厨余垃圾的统计图.厨余垃圾统计图(1)试求出m 的值;(2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(本小题满分8分)如图,在ABC △中,已知AB AC =,AD 平分BAC ∠,点M ,N 分别在AB ,AC 边上,2AM MB =,2AN NC =.求证:DM DN =.19.(本小题满分8分)如图1,O 的半径为(0)r r >,若点P '在射线OP 上,满足2OP OP r '=,则称点P '是点P 关于O 的“反演点”.如图2,O 的半径为4,点B 在O 上,60BOA ∠=,8OA =,若点A ',B '分别是点A ,B 关于O 的反演点,求A B ''的长.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)20.(本小题满分10分)设函数(1)[(1)(3)]y x k x k =--+-(k 是常数).(1)当k 取1和2时的函数1y 和2y 的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数2y 的图象向左平移4个单位,再向下平移2个单位,得到的函数3y 的图象,求函数3y 的最小值.21.(本小题满分10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(,,)a b c ()a b c ≤≤表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a b c <<的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(本小题满分12分)如图,在ABC △中()BC AC >,90ABC ∠=,点D 在AB 边上,DE AC ⊥于点E .(1)若13AD DB =,2AE =,求EC 的长; (2)设点F 在线段EC 上,点G 在射线CB 上,以F ,C ,G 为顶点的三角形与EDC △有一个锐角相等,FG 交CD 于点P .问:线段CP 可能是CFG △的高线还是中线?或两者都有可能?请说明理由.23.(本小题满分12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地.设乙行驶的时间为(h)t ,甲乙两人之间的距离为(km)y ,y 与t 的函数关系如图1所示.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2015年杭州市初中学业水平抽测卷
数学
考生须知:
1.本试卷分试题卷和答题卷两部分.满分100分,考试时间90分钟.
2.答题前,在答题纸上写姓名和准考证号.
3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上
的说明.
4.考试结束后,试题卷和答题纸一并上交.
试题卷
一.选择题(本题有10个小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的,请把代表正确选项的字母涂黑.
1.-3×(-3)=()
A.1
9
B.-9 C.9 D.-
1
9
2.在下列各几何图形中,有对称中心但没有对称轴的是()
A.圆B.正方形C.平行四边形D.等边三角形
3.下列各等式中,错误
..的是()
A.x+1
x
=
2
1x
x
B.(x-3)2=x2-9
C.x2-x=x(x-1) D.| x-1 |2=(x-1)2
4.给出下列各命题,其中不正确的是()
A.在大量的随机试验中,事件A出现的频率可作为事件A出现的概率的估计值
B.随机抽样就是使得总体中每一个个体都有同样的可能性被选入样本的一种抽样方法C.如果两个三角形全等,那么这两个三角形的对应边成比例
D.如果两个三角形相似,那么这两个三角形中不可能存在相等的边
5.如图是2015年3月份其中某连续7天气温的统计图,
其中实线表示最高气温,虚线表示最低气温,在下列结
论中(某天中最高气温与最低气温的差值叫做温差):
①这7天中温差最大的达13℃;
②这7天中各天最高气温与最低气温成正比关系;
③最高气温的中位数是17;
④该7天杭城气温变化较大.你认为正确的是()
A .①②③④
B .①②
C .①③
D .③④
6.在矩形ABCD 中,点A 关于角B 的角平分线的对称点为E ,点E 关于角C 的角平分线的对称点为F .若AD
AF 2=( )
A .8-
B .10-
C .8+
D .10+
7.设某代数式为A ,若存在实数x 0使得代数式A 的值为负数,则代数式A 可以是( )
A .|3-x |
B .x 2+x
C
D .x 2-2x +1
8.若把函数
y =(x -3)2-2的图象向左平移a 个单位,再向下平移b (b >0)个单位,所得
图象的函数表达式是y =(x +3)2+2,则( ) A .a =6,b =4 B .a =-6,b =4 C .a =6,b =-4
D .a =-6,b =-4
9.若某简单几何体的三视图如图所示,则这个几何体的侧面积为( )
A
B
π C .5π
D .4π
10.设口袋中有5个完全相同的小球,它们的标号分别为1,2,3,4,5.现从中随机摸出(同时摸出)二个小球并记下标号,则标号之和大于5的概率是( )
A .
3
10 B .
35 C .4
5
D .710
二.填空题 (本题有8个小题, 每小题4分, 共32分)
11.若某个多边形的内角和等于外角和,则这个多边形是 ▲ 边形.
12.计算:8
9
3443⎛⎫
⎛⎫
-⋅- ⎪
⎪⎝⎭
⎝⎭
= ▲ . 13.如图,直线l 1//l 2,直线AB 交直线l 1,l 2于D ,B 两点,AC ⊥AB 交直线l 1于C .若∠1=40°40′,则∠2= ▲ .
14.在Rt △ABC 中,∠C =90°,∠A =60°.若AB =1,则sin ∠B = ▲ ;BC = ▲ . 15.在半径为3的圆O 中,弦AB =2,CD =4,且AB //CD .设平行线AB 与CD 间的距离为d ,则d = ▲ .
E
(第6题图)
俯视图
A
B
C
D
l 1
l 2
(第13题图)
1 2
16.李老师到超市买了x kg 香蕉,花费m 元钱;y kg 苹果,花费n 元钱.若李老师要买2 kg 香蕉和3 kg 苹果共需花费 ▲ 元.
17.若方程组21,25ax y x by -=⎧⎨+=⎩的解是1x y a =⎧⎨=⎩
,
,则b = ▲ .
18.已知A 1,A 2,A 3,…,A n ,A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3
=…=A n A n +1=1,分别过点A 1,A 2,A 3,…,A n ,A n +1作x 轴的垂线交直线y =2x 于点B 1,B 2,B 3,…,B n ,B n +1,连接A 1B 2,B 1A 2,A 2 B 3,…,A n B n +1,B n A n +1,依次相交于点P 1,P 2,P 3,…,P n .若△A 1B 1P 1,△A 2B 2P 2,△A 3B 3P 3,…,△A n B n P n 的面积依次记为S 1,S 2,S 3,…,S n ,则S n 为 ▲ . 三.解答题 (本题有4个小题, 共38分) 解答应写出文字说明, 证明过程或推演步骤. 19.(本小题满分6分)
先化简,再求值:(2a +3b )2-(2a -3b )2,其中a =16b
.
20.(本小题满分8分
)
某初中要调查学校学生(学生总数
2000人)双休日的学习状况,采用下列调查方式:
① 从一个年级里选取200名学生; ② 从不同年级里随机选取
200名学生;
③ 选取学校里200名女学生. ④ 按照一定比例在三个不同年级里随机选取200名学生.
(1)上述调查方式中合理的有 ;(填写序号即可)
(2)李老师将他调查得到的数据制成频数直方图(如图1)和扇形统计图(如图2),在这个调查中,200名学生双休日在家学习的有 人;
(3)请估计该学校2000学生双休日学习时间不少于4小时的人数.
21.(本小题满分12分)
已知在矩形ABCD 中,点E 为边AD 上一点,点A 关于BE 的对称点G 位于对角线BD 上,EG 的延长线交边BC 于点F .
(第16题)
(1)求证:AE ≠ED ;
(2)求证:△BEF 是等腰三角形;
(3)若△BEF 是正三角形,且AB =1,求EF 的长.
22. (本小题满分12分)
设函数y 1=(x -k )2+k 和y 2=(x +k )2-k 的图象相交于点A ,函数y 1,y 2的图象的顶点分别为B 和C .
(1)画出当k =0,1时,函数y 1,y 2在直角坐标系中图象;
(2)观察(1)中所画函数图象的顶点位置,发现它们均分布在某个函数的图象上,请写出这个函数的解析式,并说明理由;
(3)设A (x ,y ),求证:x 是与k 无关的常数,并求y 的最小值;
(4)设直线l :y =ax +1的图象分别与函数y 1,y 2的图象交于A ,B 和C ,D .若AB =CD ,写出所有实数a .(直接写出a 的值即可,不要求写理由)
2015年杭州市初中学业水平抽测卷
数学荅案及评分标准
一.选择题 (本题有10个小题, 每小题3分, 共30分) 1.C 2.C 3.B 4.D 5.D 6.B 7.B
8.A 9.A
10.B
A
C
B
F
D
E
(第21题图)
G
(22题图)
二.填空题 (本题有8个小题, 每小题4分, 共32分) 11.四 12.43
-
13.130︒40′ 14.
12
15
. 16.
23m n
x y
+ 17.-3 18.2
21
n n +
三.解答题 (本题有4个小题, 共38分) 19.(本小题满分6分)
解:原式=4a ×6b =24ab ,
当a =
1
6b
,即ab =16时,原式=24ab =4.
20.(本小题满分8分)
解:(1)②或④;
(2)在家学习的所占的比例是60%,所以在家学习的人数是:200×60%=120(人);
(3)学习时间不少于4小时的频率是:
.71.0200
10
636165024=+++++
则该学校2000名学生双休日学习时间不少于4小时的人数是约:2000×0.71=1420(人). 21.(本小题满分12分)
(1)证明:因为点A 与点G 关于BE 对称, 所以 BE 垂直平分AG ,∠BAD =∠BGE . 所以 AE =EG . 在Rt △EGD 中,ED >EG , 所以 ED >AE ,即AE ≠ED ;
(2)证明:由(1)知∠AEB =∠BEG . 又因为 AD //BC , 所以 ∠AEB =∠EBF . 所以 ∠BEG =∠EBF . 所以 △BEF 是等腰三角形;
(3)因为△BEF 是正三角形,则∠AEB =60°, 所以 ∠ABE =∠EBG =30°, 所以 ∠DBC =30°, 所以 BG ⊥EF ,EG =GF , 所以 BG =GD .
又因为 BD
EF =2x ,则 BG
.
所以
=2,所以2x
EF
. 22. (本小题满分12分)
解:(1)如图所示;
(2)直线y =x 的图象上;
(3)联立y 1=(x -k )2+k 和y 2=(x +k )2-k ,解得
(22题图)
x=1
2
,所以x是与k无关的常数;
y=k2+1
4
≥
1
4
,即y的最小值为
1
4
.
(4)1.。