苏科版八年级上勾股定理期末复习评估试卷及答案
- 格式:doc
- 大小:53.00 KB
- 文档页数:2
苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、下列数据中,哪一组能构成直角三角形()A.3 ,4、6B.9 , 12 ,13C.7,24,,25D.6 , 8, 122、下列说法错误的是( )A.Rt△ABC中,AB=3,BC=4,则AC=5B.极差能反映一组数据的变化范围 C.经过点A(2,3)的双曲线一定经过点B(-3,-2) D.连接菱形各边中点所得的四边形是矩形3、如图,这是一块农家菜地的平面图,其中BD=4m,CD=3m,AB=13m,AC=12m,∠BDC=90°,则这块地的面积为()A.24m 2B.30m 2C.36m 2D.42m 24、下列三角形中,不是直角三角形的是()A.三个内角之比为5:6:1B.一边上的中线等于这一边的一半C.三边之长为20、21、29D.三边之比为1.5:2:35、下列条件中,不能判断一个三角形是直角三角形的是()A.三条边的比为2∶3∶4B.三条边满足关系a2=b2﹣c2C.三条边的比为1∶1∶D.三个角满足关系∠B+∠C=∠A6、如图,在中,,是高,若,则的值为()A. B. C.2 D.7、把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是()A.2B.2.5C.3D.48、如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是().A.7B.8C.9D.109、如图,数轴上的点A表示的数是-1,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.2.8B. -C.D.10、将一根24cm的筷子置于底面直径为15cm,高为8cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤1611、已知等边三角形一边上的高为,则它的边长为A.2B.3C.4D.12、在直角坐标系中,点P(﹣2,3)到原点的距离是()A. B.3 C.2 D.13、如图,在中,,,,则的值是()A. B. C. D.14、如图,将一根长为22cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.9cm≤h≤10cmB.10cm≤h≤11cmC.12cm≤h≤13cmD.8cm≤h≤9cm15、如图,在Rt△ABC中,∠A=90°,BC=.以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则的长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=5,DA=5 ,则BD的长为________.17、如图,在正方形ABCD中,E是AB上一点,BE=2,AB=8,P是AC上一动点,则PB+PE的最小值________.18、如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.19、如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为________.20、如图,菱形OABC的顶点A的坐标是(-5,0),点B,C在x轴上方,反比例函数y= (k>0,x>0)的图象分别与边OC、BC交于点D、点E,射线BD交y 轴子点H,交反比例函数图象于点F,交x轴于点G,BD:DF:FG=2:3:1,若记△ODH的面积为S1,△CDE的面积为S2,则的值是________21、如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离________cm.22、如图,等腰三角形ABC的底边BC长为2,面积是4,腰AC的垂直平分线EF分别交AC,AB边于E,F 点,若点D 为BC边的中点,点M 为线段EF上一动点,则△CDM 周长的最小值为________。
苏科版八年级数学上册(勾股定理的简单应用)期末易错题练习-附带有答案学校:班级:姓名:考号:一、单选题1.已知直角三角形的两条直角边长为6、8,那么它的最长边上的高为( )A.6 B.8 C.245D.1252.小明家需购买一张大圆桌面(不能折叠,不考虑木板厚度),若入户门的高为2.1米,宽为1.1米,则尽可能大的圆桌的直径可以是()A.2.45米B.2.40米C.2.35米D.2.30米3.如图∠AOB=30°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.3 B.23C.43D.64.如图,边长是6的等边△ABC,BD为∠ABC的平分线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当线段CQ+PQ的长度最短时,BP的长度为().A.1 B.2 C.3 D.45.如图,一根垂直于地面的旗杆在离地面5m的B处撕裂折断,旗杆顶部落在离旗杆底部12m的A处,则旗杆折断部分AB的高度是()A.5m B.12m C.13m D.18m6.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.137.如图,梯子AB靠在墙上,梯子底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′()A.小于1 m B.大于1 mC.等于1 m D.小于或等于1 m8.如图,圆柱形容器中,高为1.2 m,底面周长为1m,在容器内壁离容器底部0.3 m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3 m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为()m(容器厚度忽略不计).A.1.8 B.1.5 C.1.2 D.1.3二、填空题9.有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为尺.10.《九章算术》中有一道题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”大致意思是:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,那么折断处离地面的高度为尺.(1丈=10尺)11.如图,将矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上点P处,已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.12.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是dm.13.如图,在平面直角坐标系中,直线l是一、三象限的角平分线,点P是直线l上的一个动点A(3,0),B(6,0)是x轴上的两个点,则PA+PB的最小值为.三、解答题14.如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500 √2米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?15.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?16.《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.17.如图,某小区有两个喷泉A,B,一条小路AC,已知两个喷泉间的距离AB的长为250m.现要为喷泉铺设供水管道AM,BM供水点M在小路AC上,供水点M到AB的距离MN的长为120m,BM的长为150m.求:(1)供水点M到喷泉A,B需要铺设的管道总长;(2)喷泉B到小路AC的最短距离.18.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于种种原因,由C 到A的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H(A,H,B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是不是从村庄C到河边的最近路,请通过计算加以说明;(2)求原来的路线AC的长.答案1.C2.C3.A4.C5.C6.B7.A8.D9.1310.4.55(或9120)11.12.2513.3√5 14.解:如图,过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥AE 于点F ,∵∠B=45°,∴△ABE 是等腰直角三角形,∴AE=BE ,∠BAE=∠B=45°.∵AB=500 √2 米,∴AE=BE=500 √2 × √22 =500米.∵∠A=75°,∴∠DAF=75°﹣45°=30°.∵AD=200米,∴DF= 12 AD=100米,AF=200× √32=100 √3 米.∵BC ⊥CD ,∴四边形CDFE 是矩形,∴CD=EF=AE ﹣AF=(500﹣100 √3 )米,CE=DF=100米,∴AB+BC+AD+CD=500 √2 +(500+100)+200+(500﹣100 √3 )=(1300+500 √2 ﹣100 √3 )米.答:围墙的长度是(1300+500 √2 ﹣100 √3 )米.15.解:∵AC ⊥BC ,∴∠ACB=90°;根据勾股定理,得BC= √AB 2−AC 2 = √152−92 =12,∴BD=12+2=14(米);答:发生火灾的住户窗口距离地面14米.16.解:设OA=OB=x 尺∵EC=BD=5尺,AC=1尺∴EA=EC-AC=5-1=4(尺),OE=OA-AE=(x-4)尺在Rt △OEB 中,OE=(x-4)尺,OB=x 尺,EB=10尺根据勾股定理得:x2=(x-4)2+102整理得:8x=116,即2x=29解得:x=14.5.则秋千绳索的长度为14.5尺.17.(1)解:由题意可知MN⊥AB在Rt△MNB中∴AN=AB−BN=250−90=160(m).在Rt△AMN中AM+BN=200+150=350(m)∴供水点M到喷泉A,B需要铺设的管道总长为350m;(2)解:∵AB=250m,AM=200m,BM=150m∴AB2=BM2+AM2∴∠AMB=90°∴BM⊥AC喷泉B到小路AC的最短距离是BM=150m.18.(1)解:∵1.82+2.42=32,即BH2+CH2=BC2∴Rt△CHB是直角三角形,即CH⊥BH∴CH是从村庄C到河边的最近路(点到直线的距离中,垂线段最短);(2)解:设AC=AB=x,则AH=x-1.8∵在Rt△ACH∴CH2+AH2=AC2,即2.42+(x−1.8)2=x2,解得x=2.5∴原来的路线AC的长为2.5米。
江苏省无锡市2024-2025学年苏科版数学八年级上册期末摸底测评卷A(满分100分,时间90分钟)一、选择题(本题共8小题,每题3分,共24分)1.下列图形中,不是轴对称图形的是( )A. B. C. D.2.在平面直角坐标系中,点(-1, 2)所在的象限是 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列为勾股数的是( )A. 1,1B. 2,2,4C. 6,8,10D. 9,12,204.如图,要测出池塘A 、B 两端的距离,可在平地上取一点C ,连接、,并分别延长到点D 、E ,使、,连接,那么.此时,量出DE的长就是A 、B 两端的距离,在这个过程中,证明的依据是( )A. B. C.D. 5.已知,的两条直角边的长分别为2、3,则它的斜边的长为( )B. 4 C. 6.已知一次函数的图象如图所示,则不等式的解集是( )A. B. C. D. AC BC CD CA =CE CB =DE ACB DCE ≌ ACB DCE ≌ SAS ASA AAS SSS Rt ABC △AC BC 、AB 72()0y kx b k =+≠0kx b +≤2x ≤2x <2x ≥2x >7.如图,在等腰中,,,边在轴上,将绕原点逆时针旋转,得到,若的对应点的坐标为( )A. B. C. D. 8.,两地相距80km ,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km )与时间(单位:h )之间的关系如图所示.下列说法错误的是( )A. 乙比甲提前出发1hB. 甲行驶的速度为40km/h C. 3h 时,甲、乙两人相距80km D. 0.75h 或1.125h 时,乙比甲多行驶10km二、填空题(本题共8小题,每题3分,共24分)9.比较大小:(填“>”“=”或“<”).10. 将的图像向下平移4个单位长度,所得图像对应的函数表达式是______.11.已知点A (x 1,y 1),B (x 2,y 2)是一次函数y =﹣2x+1图象上的两点,当x 1>x 2时,y 1_____y 2(填“>”“=”或“<”)12.如图,在中,的垂直平分线分别交、于点、,连接,若,,则的周长为________.13.在平面直角坐标系中,线段经过平移后得到线段,已知点的对应点为.若点的对应点为,则点的坐标为 .AOB OA AB =120OAB ∠=︒OA x AOB O 120︒A OB ''△OB =A A '(-()1,1-()1,2-(-A B A B A s t 23y x =+ABC AB AB BC D E AE 8BC =5AC =ACE △AB CD (3,2)A -(1,2)C -B (0,1)D B14.如图,一次函数y 1=ax+b (a ,b 为常数)与y 2=kx (k 为常数)的图象交于点P (﹣4,﹣2),则关于x 的不等式ax ≥kx ﹣b 的解集是 .15.如图,在中,和的平分线,相交于点O ,交于E ,交于F ,过点O 作于D ,若,,则的面积为 __.16. 如图,在四边形中,,,平分,过点作,交于点.若,,则_____.三、解答题(本题共8小题,共52分)17.(本题6分)(1)计算:;(2)求x 的值:25(x+1)2=4.ABC BAC ∠ABC ∠AE BF AE BC BF AC OD BC ⊥8AB =1OD =AOB ABCD 90A ∠=︒135C ∠=︒BD ABC ∠D DE BC ∥AB E 7BC=CD =DE =18.(本题6分)如图,点D 在AB 上,点E 在AC 上,∠B =∠C .求证BD =CE .19.(本题6分)如图,当秋千OA 静止时,最低点A 离地面的距离AB 为0.7m ,点A ′与点B 的距离A ′B 为2.5m ,点A ′水平移动的距离A ′C 为2m .求秋千OA 的长.20.(本题6分)如图,已知直线与x 轴交于点B ,与y 轴交于点C ,与直线交于点,直线与x 轴交于点A .(1)求直线的解析式;(2)求四边形的面积.1:2l y kx =+2:28l y x =+()2,P a -2l 1l OAPC21.(本题6分)如图,已知在平面内市政府所在位置的坐标为,文化宫所在位置的坐标为.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、医院、市场、火车站所在位置的坐标;(3)在平面内找一个点,使得该点到市政府、体育馆、医院三者之间的距离相等,请你利用网格画出该点并写出它的坐标.22.(本题6分)如图,在中,,是斜边的中点,作,垂足为.(1)求证:E 是的中点;(2)将直角边沿点、确定的直线翻折,得到对应线段.当时,判断的形状,并说明理由.(0,3)(1,0)-Rt ABC △90A ∠=︒D BC DE AC ⊥E AC AC A D AC 'AC BC '⊥ABD △23.(本题8分)为弘扬雷锋精神,重温革命先烈的艰苦奋斗历史,某校组织九年级全体师生前往雷锋纪念馆参观,需要租用甲、乙两种客车共6辆(每种车至少租一辆).已知甲、乙两种客车的租金分别为450元/辆和300元/辆,设租用乙种客车x 辆,租车费用为y 元.(1)求y 与x 之间的函数关系式,并写出自变量的取值范围;(2)若租用乙种客车的数量少于甲种客车的数量,租用乙种客车多少辆时,租车费用最少?最少费用是多少元?24.(本题8分)如图1,平面直角坐标系中,一次函数的图像分别交轴、轴于点,一次函数的图像经过点,并与轴交于点,点是直线上的一个动点.图1 图2(1)___________,___________;(2)如图2,当点在第一象限时,过点作轴的垂线,垂足为点,交直线于点.若,求点的坐标;(3)是否存在点,使以为顶点的三角形是等腰三角形?若存在,请直接写出点的横坐标;若不存在,请说明理由.1y x =+x y A B 、y kx b =+B x ()3,0C D AB k =b =D D y E BC F 12DF AC =D D A C D 、、D答案解析一、选择题(本题共8小题,每题3分,共24分)1.【答案】D2.【答案】B3.【答案】C4.【答案】A5.【答案】D6.【答案】A7.【答案】A8.【答案】C二、填空题(本题共8小题,每题3分,共24分)9.【答案】10.【答案】11.【答案】<12.【答案】1313.【答案】14.【答案】x ≤﹣415.【答案】416.【答案】三、解答题(本题共8小题,共52分)17.【答案】解:(1)原式=2﹣(3﹣)+2=2﹣4++2=+1;(2)原方程变形得:(x+1)8=,则x+1=±,>21y x =-(4,5)-16924解得:x =﹣或x =﹣.18.【答案】证明:在△ADC 和△AEB 中,,∴△ADC ≌△AEB (AAS ),∴AC =AB ,∵AE =AD ,∴DB =CE .19.【答案】解:由题意可知,∠A'CO =∠A'CB =90°,∴BC ===1.5(m ),∴AC =BC ﹣AB =1.5﹣6.7=0.4(m ),设OA =OA'=x m ,则OC =(x ﹣0.8)m ,在Rt △A'OC 中,由勾股定理得:(x ﹣8.8)2+32=x 2,解得:x =8.9,答:秋千OA 的长为2.4m .20.【答案】(1)(2)1021.【答案】(1)平面直角坐标系如图所示:(2)体育馆、医院、市场、火车站.2y x =-+(5,3)-(4,5)-(2,4)(2,3)-(3)如图所示,点即为所求;该点的坐标为.22.【答案】(1)证明:连接.,是斜边的中点,.为等腰三角形.,是的中点.(2)是等边三角形.理由:设交于点,由翻折可得.,..P ( 2.5,3)-AD 90BAC ∠=︒ D BC ∴12AD BC DB DC ===ACD ∴DE AC ⊥ E ∴AC ABD △AC 'BC F DAC DAC '∠=∠AD DC = DAC ACD ∴∠=∠DAC DAC ACD '∴∠=∠=∠,,,,..,是等边三角形.23.【答案】(1)y =﹣150x+2700(0<x <6);(2)租用乙种客车2辆时,租车费用最少,为2400元24.【答案】(1),(2) (3)存在,或或或AC BC '⊥ 90AFC ∴∠=︒90DAC DAC ACD '∴∠+∠+∠=︒390DAC '∴∠=︒30DAC '∴∠=︒9060ADB DAC '∴∠=︒-∠=︒AD DB = ABD ∴ 13-113(,2211-1-3。
3.1 勾股定理一.选择题(共14小题)1.(2019•荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10第1题第2题2.(2019•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个3.(2019•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.44.(2019•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 5.(2019•济南)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°第5题第6题6.(2019•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1697.(2019•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()78.(2019•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣59.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab第9题第10题10.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°二.填空题(共8小题)11.(2019•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=___度.12.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=______.第11题第12题第13题13.(2019•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=______(提示:可过点A作BD的垂线)14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为______.第13题第15题第16题15.如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是______ cm2.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是______.17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积为S1;再以AC1为斜边作△AC1C2,使∠C1AC2=30°,Rt △AC1C2的面积记为S2,…,以此类推,则S n=______(用含n的式子表示)18.如图,△ABC和△DEF是两个全等的等腰直角三角形,点G在直角边BC上,BG=5,CG=1,将△DEF的顶点D放在直角边AC上,直角边DF经过点G,斜边DE经过点B,则CD=______.三.解答题(共6小题)19.(2019•益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.20.作图题:如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为5;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,请画出所有满足条件的点C.21.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上______;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为______.22.一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.23.在Rt△ABC中,∠C=90°,以三边为边分别向外作正方形,如图所示,过C作CH⊥AB于H,延长CH交MN于点I.(1)如图(1)若AC=3,BC=2,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积.(2)请利用图(2)证明直角三角形勾股定理:AC2+BC2=AB2.参考答案与解析一.选择题(共14小题)1.(2019•荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.【点评】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.2.(2019•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴点D的个数共有3个,故选:C.【点评】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.3.(2019•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握.4.(2019•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.5.(2019•济南)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠1=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.6.(2019•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【点评】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.7.(2019•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.8.(2019•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.9.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab【分析】先求出AE即DE的长,再根据三角形的面积公式求解即可.【解答】解:∵DE=b﹣a,AE=b,∴S四边形ABCD=4S△ADE+a2=4××(b﹣a)•b=b2+(b﹣a)2.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.10.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】在直角三角形ABC中,由∠ACB与∠A的度数,利用三角形的内角和定理求出∠B的度数,再由折叠的性质得到∠CA′D=∠A,而∠CA′D为三角形A′BD的外角,利用三角形的外角性质即可求出∠A′DB的度数.【解答】解:在Rt△ABC中,∠ACB=90°,∠A=55°,∴∠B=180°﹣90°﹣55°=35°,由折叠可得:∠CA′D=∠A=55°,又∵∠CA′D为△A′BD的外角,∴∠CA′D=∠B+∠A′DB,则∠A′DB=55°﹣35°=20°.故选:C.【点评】此题考查了直角三角形的性质,三角形的外角性质,以及折叠的性质,熟练掌握性质是解本题的关键.二.填空题(共8小题)11.(2019•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=45度.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.12.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=50°.【分析】由“直角三角形的两个锐角互余”得到∠A=50°.根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【解答】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.【点评】本题考查了直角三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半.13.(2019•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)【分析】过A作AF⊥BD,交BD于点F,由三角形ABD为等腰直角三角形,利用三线合一得到AF为中线,利用直角三角形斜边上的中线等于斜边的一半求出AF的长,在直角三角形AEF中,利用30度角所对的直角边等于斜边的一半求出AE的长即可.【解答】解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AEF中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:2【点评】此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为25.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.【解答】解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.故答案是:25.【点评】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.15.如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是5cm2.【分析】根据正方形的面积公式,勾股定理求得a2=c2+b2=25,据此可以求得a=5.又由Rt△ABC的周长为可以求得b+c=3,所以△ABC的面积=bc= [(c+b)2﹣(c2+b2)].【解答】解:如图,a2=c2+b2=25,则a=5.又∵Rt△ABC的周长为,∴a+b+c=5+3,∴b+c=3(cm).∴△ABC的面积=bc= [(c+b)2﹣(c2+b2)]÷2= [(3)2﹣25]÷2=5(cm2).故答案是:5.【点评】本题考查了勾股定理的应用.解答此题时,巧妙地运用了完全平方公式的变形来求△ABC的面积.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是 1.5.【分析】连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出CE=DE,由线段垂直平分线的性质得出CF=DF,由SSS证明△ADF≌△ACF,得出∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【解答】解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故答案为:1.5.【点评】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解决问题的关键.17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积为S1;再以AC1为斜边作△AC1C2,使∠C1AC2=30°,Rt△AC1C2的面积记为S2,…,以此类推,则S n=(用含n的式子表示)【分析】首先计算得出△ABC1的面积,进一步利用含30°角的直角三角形的特性以及勾股定理求得Rt△AC1C2和Rt△AC2C3的面积,找出规律得出结论.【解答】解:∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=AB=2,∴AC=BC=2,∴S△ABC=•BC•AC=2,在△ABC1中,∵∠CAC1=30°,∴CC1═AC=,∵∠BAC=∠CAC1,∠ACB=∠AC1C=90°,∴△ACB∽△AC1C,∴=()2=()2=,∴S1=•S△ABC,同理可得,S2=•S1=()2•S△ABC,S3=()3•S△ABC,…根据此规律可得,S n=()n•S△ABC=,故答案为.【点评】此题考查勾股定理、含30°角直角三角形的性质以及三角形的面积等知识点,规律型题目,解题的关键是学会从特殊到一般的探究方法,学会找规律,利用规律解决问题,属于中考常考题型.18.如图,△ABC和△DEF是两个全等的等腰直角三角形,点G在直角边BC上,BG=5,CG=1,将△DEF的顶点D放在直角边AC上,直角边DF经过点G,斜边DE经过点B,则CD=2或3.【分析】作DM⊥AB于M,设CD=x,由等腰直角三角形的性质得出AC=BC=6,∠A=∠EDF=45°,∠C=90°,AB=BC=6,AD=6﹣x,证出△ADM是等腰直角三角形,得出AM=AD=(6﹣x),因此BM=6﹣(6﹣x),证明△CDG∽△MBD,得出对应边成比例,得出方程,解方程即可.【解答】解:作DM⊥AB于M,如图所示:设CD=x,∵△ABC和△DEF是两个全等的等腰直角三角形,BG=5,CG=1,∴AC=BC=6,∠A=∠EDF=45°,∠C=90°,∴AB=BC=6,AD=6﹣x,△ADM是等腰直角三角形,∴AM=AD=(6﹣x),∴BM=6﹣(6﹣x),∵∠BDC=∠CDG+∠EDF=∠A+∠MBD,∴∠CDG=∠MBD,又∵∠DMB=90°=∠C,∴△CDG∽△MBD,∴,即=,解得:x=2,或x=3,∴CD=2或3;故答案为:2或3.【点评】本题考查了等腰直角三角形的性质与判定、勾股定理、相似三角形的判定与性质;熟练掌握等腰直角三角形的判定与性质,证明三角形相似是解决问题的关键.三.解答题(共6小题)19.(2019•益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【分析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.∴S△ABC=BC•AD=×14×12=84.【点评】此题主要考查了勾股定理,根据题意正确表示出AD2的值是解题关键.20.作图题:如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为5;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,请画出所有满足条件的点C.【分析】(1)每个小正方形的边长都为1,容易得出结果;(2)分两种情况:①当AB为等腰三角形的一腰时,分两种情况:a:以A为圆心,AB 长为半径画弧,交网络有两个格点;b:以B为圆心,AB长为半径画弧,交网络有两个格点;②当AB为等腰三角形的底边时,顶角顶点在AB的垂直平分线上,交点不在格点处,不合题意;即可得出结果.【解答】解:(1)如图1所示:由勾股定理得:AB==5,即AB即为所求的线段;(2)分两种情况:①当AB为等腰三角形的一腰时,分两种情况:a:以A为圆心,AB长为半径画弧,交网络有3个格点;b:以B为圆心,AB长为半径画弧,交网络有2个格点;②当AB为等腰三角形的底边时,顶角顶点C在AB的垂直平分线上,交点不在格点处,不合题意;综上所述:满足条件的点C有5个,如图2所示.【点评】本题考查了正方形的性质、勾股定理、等腰三角形的判定;熟练掌握勾股定理,并能进行推理作图是解决问题的关键.21.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为5mn.【分析】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【解答】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【点评】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.22.一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.23.在Rt△ABC中,∠C=90°,以三边为边分别向外作正方形,如图所示,过C作CH⊥AB于H,延长CH交MN于点I.(1)如图(1)若AC=3,BC=2,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积.(2)请利用图(2)证明直角三角形勾股定理:AC2+BC2=AB2.【分析】(1)利用勾股定理求出AB,根据△ABC面积的两种算法求出CH,再求出AH,即可得到四边形AHIN的面积、正方形AEFC的面积,即可解答;(2)根据四边形AHIN的面积等于正方形AEFC的面积,所以AC2=AH•AB,同理可得:BC2=BH•AB,所以AC2+BC2=AH•AB+BH•AB=AB2.【解答】解:(1)∵在Rt△ABC中,∠C=90°,AC=3,BC=2,∴AB==,∴,即,∴CH=,∴AH=,∴S四边形AHIN=AH•AN=18,,∴四边形AHIN的面积等于正方形AEFC的面积.(2)∵四边形AHIN的面积等于正方形AEFC的面积.∴AC2=AH•AB,同理可得:BC2=BH•AB,∴AC2+BC2=AH•AB+BH•AB=AB2.【点评】本题考查勾股定理,解决本题的关键是应用勾股定理求边的长度.。
2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(1)1.如图,四边形ABCD中,AC⊥AD,作CE⊥AB于点E,设BD分别与AC、CE交于点F、G.若BD平分∠ABC,且∠2=∠3,求证:∠CFG=∠CGF.完成下面的证明过程:证明:∵AC⊥AD(已知),∴∠CAD=90°(垂直的定义),∵BD平分∠ABC(已知),∴∠1=∠2(),∵∠2=∠3(已知),∴∠1=(等量代换),∴AD∥BC(),∴=∠CAD=90°(两直线平行,内错角相等),∴∠1+∠CFG=90°(直角三角形两个锐角互余),同理由CE⊥AB,可得∠2+∠BGE=90°∴∠CFG=∠BGE(),又∵∠BGE=∠CGF(对顶角相等),∴∠CFG=∠CGF(等量代换).2.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么以a,b,c为长度的线段首尾顺次相接形成的是什么样的三角形?请说明理由.3.如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.4.如图,在四边形ABCD中,AB=1,AD=√3,BD=2,∠ABC+∠ADC=180°,CD=√2.(1)判断△ABD的形状,并说明理由;(2)求BC的长.5.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE﹣∠DBC的度数.6.如图,在△ABC中,∠ABC=∠ACB,AC=3,D是CA延长线上一点,AD=5,BD=4.求证:AB⊥BD.7.八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);①根据手中剩余线的长度计算出风筝线BC的长为25米;①牵线放风筝的小明身高1.6米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH、DH.8.如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米.(1)若拉索AB⊥AC,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.9.把三根长为3cm 、4cm 和5cm 的细木棒首尾相连,能搭成一个直角三角形.(1)如果把这三根细木棒的长度分别扩大为原来的a 倍(a >1),那么所得的三根细木棒能不能搭成一个直角三角形,为什么?(2)如果把这三根细木棒的长度分别延长xcm (x >0),那么所得的三根细木棒还能搭成一个三角形吗?为什么?如果能,请判断这个三角形的形状(锐角三角形、直角三角形还是钝角三角形),并说明理由.10.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,求CD 的长.11.如图,在Rt △ABC 中,∠C =90°,BD 是△ABC 的一条角平分线.点O 、E 、F 分别在BD 、BC 、AC上,且四边形OECF 是正方形.(1)求证:点O 在∠BAC 的平分线上;(2)若AC =5,BC =12,且正方形OECF 的面积为4,求△ABO 的面积.12.如图,在四边形ABCD 中,∠ABC =90°,AB =BC =2,CD =1,DA =3.求∠BCD 的度数.13.(1)在Rt △ABC 中,∠ACB =90°,∠A =30°(如图1),BC 与AB 有怎样的数量关系?试证明你的结论.(2)如图2,在四边形ABCD 中,AC ,BD 相交于点E ,∠DAB =∠CDB =90°,∠ABD =45°,∠DCA =30°,AB =√6,求AE 长.14.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角板的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角板绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第秒时,∠COM与∠CON互补.15.如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.16.如图,在△ABC中,AD⊥BC于点D,且AC+AD=32,BD=5,CD=16,试确定AB的长.17.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=a+a−a2(2)小亮也发现了另一种求正方形边长的方法:利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.18.如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.19.如图,车高4m(AC=4m),货车卸货时后面支架AB弯折落在地面A1处,经过测量A1C=2m,求弯折点B与地面的距离.20.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(1)参考答案与试题解析一.解答题(共20小题)1.【答案】角平分线的定义;∠3;内错角相等,两直线平行;∠ACB ;等角的余角相等.【解答】证明:∵AC ⊥AD (已知),∴∠CAD =90°(垂直的定义),∵BD 平分∠ABC (已知),∴∠1=∠2(角平分线的定义),∵∠2=∠3(已知),∴∠1=∠3(等量代换),∴AD ∥BC (内错角相等,两直线平行),∴∠ACB =∠CAD =90°(两直线平行,内错角相等),∴∠1+∠CFG =90°(直角三角形两个锐角互余),同理由CE ⊥AB ,可得∠2+∠BGE =90°∴∠CFG =∠BGE (等角的余角相等),又∵∠BGE =∠CGF (对顶角相等),∴∠CFG =∠CGF (等量代换).故答案为:角平分线的定义;∠3;内错角相等,两直线平行;∠ACB ;等角的余角相等.2.【答案】见试题解答内容【解答】解:以a ,b ,c 为长度的线段首尾顺次相接形成的是直角三角形,理由:∵m 表示大于1的整数,a =2m ,b =m 2﹣1,c =m 2+1,∴c >a ,∵a 2+b 2=(2m )2+(m 2﹣1)2=4m 2+m 4﹣2m 2+1=(m 2+1)2,c 2=(m 2+1)2,∴a 2+b 2=c 2,∴以a ,b ,c 为长度的线段首尾顺次相接形成的是直角三角形.3.【答案】见试题解答内容【解答】解:(1)如图1,P A =PB ,在Rt △ACB 中,aa =√aa −aa =√102−62=8设AP =t ,则PC =8﹣t ,在Rt △PCB 中,依勾股定理得:(8﹣t )2+62=t 2,解得a =254, 即此时t 的值为254;(2)分两种情况:①点P 在BC 上时,如图2所示:过点P 作PE ⊥AB ,则PC =t ﹣8,PB =14﹣t ,∵AP 平分∠BAC且PC ⊥AC∴PE =PC在△ACP 与△AEP 中,{∠a =∠aaaaaaa =aaaa aa =aa,∴△ACP ≌△AEP (AAS ),∴AE =AC =8,∴BE =2,在Rt △PEB 中,依勾股定理得:PE 2+EB 2=PB 2即:(t ﹣8)2+22=(14﹣t )2解得:a =323; ①点P 又回到A 点时,∵AC +BC +AB =8+6+10=24,∴t =24;综上所述,点P 在∠BAC 的平分线上时,t 的值为323秒或24秒.4.【答案】见试题解答内容【解答】解:(1)△ABD 是直角三角形.理由如下:在△ABD 中,∵AB 2+AD 2=12+(√3)2=4,BD 2=22=4,∴AB 2+AD 2=BD 2,∴△ABD 是直角三角形.(2)在四边形ABCD 中,∵∠ABC +∠ADC =180°,∴∠A +∠C =180°,由(1)得∠A =90°,∴∠C =90°,在Rt △BCD 中,∠C =90°,BC 2=BD 2﹣CD 2=22﹣(√2)2=2,∴BC =√2.5.【答案】见试题解答内容【解答】解:(1)如图1,∵∠ABC =60°、∠DBE =90°,∴∠EBC =∠ABC +∠DBE =150°,故答案为150°;(2)如图2,∵∠ABC =60°、∠DBE =90°,∴∠ABC +∠DBE =150°,∵∠EBC =170°,∴∠α=∠EBC ﹣(∠ABC +∠DBE )=170°﹣150°=20°,故答案为20°.(3)如图3,∵∠ABC =60°、∠DBE =90°,∴∠ABC +∠DBE =150°,∵∠DBC =∠ABC ﹣α,∵∠EBC =118°,∴∠DBE +∠DBC =90°+(60°﹣α)=118°,∴α=32°;(4)如图3,∵∠ABE =90°﹣α,∠DBC =60°﹣α,∴∠ABE ﹣∠DBC =90°﹣α﹣(60°﹣α)=30°.6.【答案】见试题解答内容【解答】证明:∵∠ABC =∠ACB ,AC =3,∴AB =AC =3,又∵AD =5,BD =4,∴AB 2+BD 2=25=AD 2,∴△ABD 是直角三角形,且∠ABD =90°,∴AB ⊥BD .7.【答案】见试题解答内容【解答】解:(1)在Rt △CDB 中,由勾股定理,得aa =√aa 2−aa 2=√252−152=20(米). 所以CE =CD +DE =20+1.6=21.6(米);(2)由12aa ×aa =12aa ×aa 得aa =15×2025=12, 在Rt △BHD 中,aa =√aa 2−aa 2=9.8.【答案】见试题解答内容【解答】解:(1)∵AB ⊥AC ,∴∠BAC =90°,∵AB 、AC 长分别为13米、20米,∴BC =√aa 2+aa 2=√132+202=√569m ,答:固定点B 、C 之间的距离为√569m ;(2)∵BC =21,∴BD =21﹣CD ,∵AD ⊥BC ,∴AB 2﹣BD 2=AC 2﹣CD 2,∴132﹣BD 2=202﹣(21﹣BD )2,∴BD =5,∴AD =√aa 2−aa 2=√132−52=12.9.【答案】见试题解答内容【解答】解:(1)可以搭成一个直角三角形.理由:∵(3a )2+(4a )2=9a 2+16a 2=25a 2,(5a )2=25a 2,∴(3a )2+(4a )2=(5a )2,∴这个三角形是直角三角形.(2)∵3+x +4+x >5+x ,∴三根细木棒还能搭成一个三角形.∵(3+x )2+(4+x )2=2x 2+14x +25,(5+x )2=x 2+10x +25,∴(3+x )2+(4+x )2>(5+x )2,∴这个三角形是锐角三角形.10.【答案】见试题解答内容【解答】解:连接AD .∵PQ 垂直平分线段AB ,∴DA =DB ,设DA =DB =x ,在Rt △ACD 中,∠C =90°,AD 2=AC 2+CD 2,∴x 2=32+(5﹣x )2,解得x =175, ∴CD =BC ﹣DB =5−175=85, 故答案为85.11.【答案】见试题解答内容【解答】解:(1)证明:过点O 作OM ⊥AB ,∵BD 是∠ABC 的一条角平分线,OM ⊥AB ,OE ⊥BC ,∴OE =OM ,∵四边形OECF 是正方形,∴OE =OF ,OF ⊥AC ,∴OM =OF ,∴点O 在∠BAC 的平分线上;(2)∵在Rt △ABC 中,∠C =90°,AC =5,BC =12,∴AB =√aa 2+aa 2=√5+12=13,∵正方形OECF 的面积为4,∴OE =2,∵BD 是△ABC 的一条角平分线,∴OM =2,∴△ABO 的面积是13×2÷2=13.12.【答案】见试题解答内容【解答】解:连接AC ,∵∠ABC =90°,AB =BC =2,∴∠ACB =45°,AC 2=AB 2+BC 2=8,在△ACD 中,∵AC 2+CD 2=8+1=9=DA 2,AD 2=32=9,∴AD 2=AC 2+CD 2,∴∠ACD =90°,∴∠BCD =∠ACB +∠ACD =135°.13.【答案】见试题解答内容【解答】解:(1)∵在Rt △ABC 中,∠ACB =90°,∠A =30°,∴AB =2BC ;(2)过A 作AF ⊥BD ,交BD 于点F ,∵AD =AB ,∠DAB =90°,∴AF 为BD 边上的中线,∴AF =12BD ,∵AB =AD =√6,∴根据勾股定理得:BD =√6+6=2√3,∴AF =√3,∵∠CDB =∠AFD =90°,∴CD ∥AF∴在Rt △AFE 中,∠EAF =∠DCA =30°,∴EF =12AE , 设EF =x ,则有AE =2x ,根据勾股定理得:x 2+3=4x 2,解得:x =1,则AE =2.14.【答案】见试题解答内容【解答】解:(1)如图2,∠BOM =90°,OM 平分∠CON .理由如下:∵∠BOC =135°,∴∠MOC =135°﹣90°=45°,而∠MON =45°,∴∠MOC =∠MON ;故答案为90°;(2)∠AOM =∠CON .理由如下:如图3,∵∠MON =45°,∴∠AOM =45°﹣∠AON ,∵∠AOC =45°,∴∠NOC =45°﹣∠AON ,∴∠AOM =∠CON ;(3)在旋转的过程中,∠COM 与∠CON 互补,则ON 旋转67.5°或247.5°, ∴67.5°4.5=15,或247.5°4.5°=55,故答案为:15或55.15.【答案】见试题解答内容【解答】解:(1)∠ADC是直角.理由是:∵DE是△ADC的高,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=42+22=20,同理:CD2=5,∴AD2+CD2=25,∵AC=AE+CE=4+1=5,∴AC2=25,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC是直角;(2)∵AD是△ABC的中线,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=5,在Rt△ADB中,∠ADB=90°,∵点F是边AB的中点,∴DF=12aa=52.16.【答案】见试题解答内容【解答】解:设AD=x,则AC=32﹣x,∵AD⊥BC于点D,∴△ADC和△ADB是直角三角形,∵CD=16,∴x2+162=(32﹣x)2,解得:x=12,∴AD=12,在直角三角形ABD中,AB=√52+122=13.17.【答案】见试题解答内容【解答】解:(2)因为S△ABC=S△ABI+S△BIC+S△AIC1 2aa=12cx+12ax+12bx所以x=aaa+a+a.答:x与a、b、c的关系为x=aaa+a+a.(3)根据(1)和(2)得:x=a+a−a2=aaa+a+a.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.18.【答案】见试题解答内容【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BH,CM为△ABC的高,∴∠BMC=∠CHB=90°.∴∠ABC+∠BCM=90°,∠ACB+∠CBH=90°.∴∠BCM=∠CBH.∴PB=PC.(2)解:∵PB =PC ,PB =5,∴PC =5.∵PH =3,∠CHB =90°,∴CH =4.设AB =x ,则AH =x ﹣4.在Rt △ABH 中,∵AH 2+BH 2=AB 2,∴(x ﹣4) 2+(5+3) 2=x 2.∴x =10.即AB =10.19.【答案】见试题解答内容【解答】解:由题意得,AB =A 1B ,∠BCA =90°, 设BC =xm ,则AB =A 1B =(4﹣x )m ,在Rt △A 1BC 中,A 1C 2+BC 2=A 1B 2,即:22+x 2=(4﹣x )2,解得:x =32, 答:弯折点B 与地面的距离为32米.20.【答案】见试题解答内容【解答】解:设旗杆高xm ,则绳子长为(x +2)m , ∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x 2+82=(x +2)2,解得x =15m , ∴旗杆的高度为15米.。
苏科新版八年级上册数学《第3章勾股定理》单元学习评价卷一.选择题1.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4B.5C.6D.102.一个三角形三个内角之比为1:2:1,其相对应三边之比为()A.1:2:1B.1::1C.1:4:1D.12:1:23.已知四个三角形分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3:4:5;③三边长分别为7,24,25;④三边之比为5:12:13.其中能判定是直角三角形的有()A.1个B.2个C.3个D.4个4.下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.,,5.两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm,另一只朝东面挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.100cm B.50cm C.140cm D.80cm6.在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°7.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为()A.1B.2C.3D.48.如图,△ABC中∠ACB=90°,且CD∥AB.∠B=60°,则∠1等于()A.30°B.40°C.50°D.60°9.下列几组数中,能作为直角三角形三边长度的是()A.a=2,b=3.c=4B.a=5,b=6,c=8C.a=5,b=12,c=13D.a=7,b=15,c=1210.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°二.填空题11.如图所示的图案是我国汉代数学家赵爽在注解《周髀算经》中“赵爽弦图”经修饰后的图形,四边形ABCD与四边形EFGH均为正方形,点H是DE的中点,阴影部分的面积为24,则AD的长为.12.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.13.如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯米.14.如图,每个小正方形的边长为1,则∠ABC的度数为°.15.在Rt△ABC中,∠C=90°,∠A=65°,则∠B=.16.在Rt△ABC中,∠C=90°,∠A=70°,则∠B=.17.在直角三角形中,一个锐角是另一个锐角的4倍,则较小锐角的度数为度.18.把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A,另外三角板的锐角顶点B,C,D在同一直线上,若AB=,则BD=.19.已知直角三角形的直角边长为a、b,斜边长为c,将满足a2+b2=c2的一组正整数称为“勾股数组”,记为(a,b,c),其中a≤b<c.事实上,早在公元前十一世纪,中国古代数学家商高就发现了“勾三、股四、弦五”,我们将其简记为(3,4,5).类似的勾股数组还有很多….例如:(5,12,13),(7,24,25),(9,40,41),(11,60,61),(13,84,85),….如果a=2n+1(n为正整数),那么b+c=.(用含n的代数式表示)20.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为cm2.三.解答题21.如图,∠ACB=90°,CD⊥AB,垂足为D.求证:∠ACD=∠B.22.已知:如图,在Rt△ABC中,∠BAC=90°,D是BC延长线上一点,AD=AB,求证:∠BAD=2∠ACB.23.在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.24.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.25.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.26.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.27.定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.参考答案与试题解析一.选择题1.解:由勾股定理得:斜边长为:=5.故选:B.2.解:设三个角的度数分别为x,2x,x,∴根据三角形内角和定理可求出三个角分别为45°,45°,90°,∴这个三角形是等腰直角三角形,∴斜边等于直角边的倍,∴相对应三边之比为1::1.故选:B.3.解:①设两个较小的角为x,则2x+2x=180°,则三角分别为45°,45°,90°,故是直角三角形;②设较小的角为3x,则其于两角为4x,5x,则三个角分别为45°,60°,75°,故不是直角三角形;③因为三边符合勾股定理的逆定理,故是直角三角形;④因为52+122=132符合勾股定理的逆定理,故是直角三角形.所以有三个直角三角形,故选:C.4.解:A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、1.52+22=2.52,能构成直角三角形,不是正整数,故不是勾股数;C、(32)2+(42)2≠(52)2,不能构成直角三角形,故不是勾股数;D、()2+()2=()2,不能构成直角三角形,不是正整数,故不是勾股数.故选:A.5.解:两只鼹鼠10分钟所走的路程分别为80cm,60cm,∵正北方向和正东方向构成直角,∴由勾股定理得=100,∴其距离为100cm.故选:A.6.解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.7.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=52,∴(a﹣b)2=25﹣16=9,∵正方形的边长a﹣b>0,∴a﹣b=3,故选:C.8.解:∵△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵CD∥AB,∴∠1=∠A,∴∠1=30°,故选:A.9.解:A、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;B、∵52+62≠82,∴能构成直角三角形,故本选项不符合题意;C、∵52+122=132,∴能构成直角三角形,故本选项符合题意;D、∵72+122≠152,∴不能构成直角三角形,故本选项不符合题意.故选:C.10.解:∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∴∠ABC=40°,∵∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣40°=50°,∵CD∥AB,∴∠ACD=∠A=50°,故选:D.二.填空题11.解:由四边形ABCD 与四边形EFGH 均为正方形,点H 是DE 的中点,可知E 、F 、G 分别为AF 、BG 、CH 的中点,且AE =EH =DH =HG =CG =FG =BF =EF =BE , ∴S △AEH =S △DHG =S △CGF =S △BFE =,∴S 阴影=3×S 正方形EFGH =24, ∴S 正方形EFGH =8, ∴EH =DH =, ∴DE =2EH =4,又∠AED =90°, ∴===.故答案为:2.12.解:设三边分别为5x ,12x ,13x , 则5x +12x +13x =60, ∴x =2,∴三边分别为10cm ,24cm ,26cm , ∵102+242=262, ∴三角形为直角三角形, ∴S =10×24÷2=120cm 2. 故答案为:120.13.解:根据勾股定理,楼梯水平长度为=12米,则红地毯至少要12+5=17米长, 故答案为:17. 14.解:连接AC ,由勾股定理得:AC 2=22+12=5, BC 2=22+12=5, AB 2=12+32=10,∴AC 2+BC 2=5+5=10=BA 2,∴△ABC 是等腰直角三角形,∠ACB =90°, ∴∠ABC =45°,故答案为:45.15.解:∵∠C=90°,∠A=65°,∴∠B=90°﹣65°=25°.故答案为:25°.16.解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.17.解:设较小锐角为x度.由题意:4x+x=90,解得x=18,故答案为18.18.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴△ABC是等腰直角三角形,∴BC=AB=2,BF=AF=BC=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴BD=BF+DF=1+,故答案为:1+.19.解:方法1:观察“勾股数组”(a,b,c),当a为奇数时,c=b+1,又a=2n+1(n为正整数),由勾股定理可得:c2﹣b2=(2n+1)2,即(b+1)2﹣b2=(2n+1)2,解得b=2n2+2n,∴c=2n2+2n+1,∴b+c=4n2+4n+1,故答案为:4n2+4n+1.方法2:观察“勾股数组”(a,b,c),当a为大于1的正奇数时,有如下规律:32=4+5,52=12+13,72=24+25,…,a2=b+c,∴当a=2n+1时,b+c=(2n+1)2.20.解:设直角三角形ABC的两直角边是a和b,斜边是c,则由勾股定理得:a2+b2=c2,则分别以ab为边长的两个正方形的面积之和是a2+b2=7cm2+8cm2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2=15cm2,故答案为:15.三.解答题21.证明:∵CD⊥AB,∠ACB=90°,∴∠ADC=90°=∠ACB.∵∠A+∠ACD+∠ADC=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠B.22.证明:∵AD=AB,∴∠B=∠D,设∠B=∠D=α,∴∠BAD=180°﹣∠B﹣∠D=180°﹣2α=2(90°﹣α),∵∠BAC=90°,∴∠ACB=90°﹣∠B=90°﹣α,∴∠BAD=2∠ACB.23.解:∵∠B=30°,CD⊥AB于D,∴∠DCB=90°﹣∠B=60°.∵CE平分∠ACB,∠ACB=90°,∴∠ECB=∠ACB=45°,∴∠DCE=∠DCB﹣∠ECB=60°﹣45°=15°;(2)∵∠CEF=135°,∠ECB=∠ACB=45°,∴∠CEF+∠ECB=180°,∴EF∥BC.24.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+6=2x,解得:x=6,即当M、N运动6秒时,点N追上点M;(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵∠A=60°,当AM=AN时,△AMN是等边三角形∴t=6﹣2t,解得t=2,∴点M、N运动2秒后,可得到等边三角形△AMN.②当点N在AB上运动时,如图3,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得t=;如图3,若∠ANM=90°,由2AN=AM得2(6﹣2t)=t,解得t=.综上所述,当t为或s时,△AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.25.解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为3;②结论:S1+S2=S3.∵S1+S2=()2+()2+S3﹣()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.(3)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.故答案为:m2;b=c,a+d=m.26.解:(1)点O到△ABC的三个顶点A、B、C的距离的关系是OA=OB=OC;(2)△OMN的形状是等腰直角三角形,证明:∵△ABC中,AB=AC,∠BAC=90°,O为BC中点,∴OA=OB=OC,AO平分∠BAC,AO⊥BC,∴∠AOB=90°,∠B=∠C=45°,∠BAO=∠CAO=45°,∴∠CAO=∠B,在△BOM和△AON中∵,∴△BOM≌△AON(SAS),∴OM=ON,∠AON=∠BOM,∵∠AOB=∠BOM+∠AOM=90°,∴∠AON+∠AOM=90°,即∠MON=90°,∴△OMN是等腰直角三角形.27.解:(1)是.理由:∵AM2+BN2=22+(2)2=16,MN2=42=16,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形.故点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(7﹣x)2=x2+25,解得x=;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=25+(7﹣x)2,解得x=.综上所述BN的长为或.。
C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为m,则正方形A ,B ,C ,D 的面积之和为___________cm 2.C三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)一.选择题1.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4B.7,24,25C.8,12,20D.5,13,15 2.在平面直角坐标系中,点P(3,4)到原点的距离是()A.3B.4C.5D.±53.一直角三角形的两边长分别为3和4.则第三边的长为()A.5B.C.D.5或4.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)5.已知,如图,一轮船以20海里/时的速度从港口A出发向东北方向航行,另一轮船以15海里/时的速度同时从港口A出发向东南方向航行,则2小时后,两船相距()A.35海里B.40海里C.45海里D.50海里6.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE 的长是()A.3B.4C.5D.67.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.28.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤139.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6二.填空题11.在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校六号楼前有一块长方形花圃(如图所示),有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,请你计算,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.13.如图,已知在Rt△ABC中,∠ACB=90°,AB=8,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.15.如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是.16.某小区楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为20元,楼梯宽为2m,则购买这种地毯至少需要元.17.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.三.解答题18.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=16km,CB=11km,现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?19.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?20.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为500米,与公路上另一停靠站B的距离为1200米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.22.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.23.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上(墙与地面垂直),这时梯子下端B与墙角C距离为1.5米.(1)求梯子顶端A与地面的距离AC的长;(2)若梯子滑动后停在DE位置上,如图(2)所示,测得BD=0.5米,求梯子顶端A 下滑了多少米?24.如图,正方形网格中有△ABC.若每个小方格边长均为1,请你根据所学的知识解答下列问题:(1)判断△ABC的形状,并说明理由;(2)求△ABC中BC边上的高.25.我国大部分东部地区属于亚热带季风气候,夏季炎热多雨.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?参考答案一.选择题1.解:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选:B.2.解:∵点P(3,4),∴点P到原点的距离是=5.故选:C.3.解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.4.解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.5.解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了20×2=40海里,15×2=30海里,根据勾股定理得:=50(海里).故选:D.6.解:根据翻折的性质得,AE=CE,设BE=x,∵长方形ABCD的长为8,∴AE=CE=8﹣x,在Rt△ABE中,根据勾股定理,AE2=AB2+BE2,即(8﹣x)2=42+x2,解得x=3,所以,BE的长为3.故选:A.7.解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.8.解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.9.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选:B.10.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.二.填空题11.解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.12.解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.13.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=8π.故答案为:8π.14.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.15.解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=15,AD为底面半圆弧长,AD=40=20,所以AC===25,故答案为:25cm.16.解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×20=280(元).17.解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三.解答题18.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得x2+162=112+(25﹣x)2,解得x=9.8,∴E站应建在离A站9.8 km处.19.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.20.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.21.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=1200米,AC=500米,所以,根据勾股定理有AB==1300(米).因为S△ABC=AB•CD=BC•AC所以CD===(米).由于400米<米,故没有危险,因此AB段公路不需要暂时封锁.22.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.23.解:(1)在Rt△ABC中,∠C=90°根据勾股定理,得:AC===2(米)∴梯子顶端A与地面的距离AC为2米;(2)依题意,得:CD=BC+BD=1.5+0.5=2(米)在Rt△CDE中,∠C=90°,根据勾股定理,得:∴AE=AC﹣CE=2﹣1.5=0.5(米)∴梯子顶端A下滑了0.5米.24.解:(1)∵由勾股定理得:AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC是直角三角形;(2)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB=,AC=2,BC=5,设△ABC的边BC上的高为h,则AB×AC=×h,∴×2=5h,h=2,即△ABC中BC边上的高是2.25.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,G,使AD=AG=200千米,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,∴CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120(千米),则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).。
勾股定理一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.两个边长分别为a,b,c的直角三角形和一个两条直角边都是c 的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为()A.(a+b)2=c2 B.(a﹣b)2=c2 C.a2﹣b2=c2 D.a2+b2=c22.如图,在Rt△ABC中,∠ACB=90°,AE为△ABC的角平分线,且ED⊥AB,若AC=6,BC=8,则BD的长()A.2 B.3 C.4 D.53.如图,△ABC中,∠ABC=90°,AC=9,BC=4,则正方形ABDE 的面积为()A.18 B.36 C.65 D.72 4.在直角三角形中,若直角边为6和8,则斜边为()A.7 B.8 C.9 D.10 5.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中的阴影部分的面积()A.9 B.C.D.36.如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF 平分∠ACD,且EF∥BC交AC、CF于M、F,若EM=3,则CE2+CF2的值为()A.36 B.9 C.6 D.18 7.若直角三角形的两边长分别为a,b,且满足a2﹣6a+9+|b﹣4|=0,则该直角三角形的第三边长的平方为()A.25 B.7 C.25或7 D.25或16 8.2002年国际数学家大会在北京召开,大会选用了赵爽弦图作为会标的中心图案.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形.如果大正方形的面积是25,直角三角形较长的直角边长是a,较短的直角边长是b,且(a+b)2的值为49,那么小正方形的面积是()A.2 B.0.5 C.13 D.1二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=53°,则∠2的度数为.10.在△ABC中,∠C=90°,BC=12,AB=13,AC=.11.如图,在△ABC中,∠ACB=90°,分别以AC、AB为边长向外作正方形,且它们的面积分别为9和25,则Rt△ABC的面积为.12.如图,在△ABC中,∠BAC=90°,AC=16,BC=20,AD⊥BC,垂足为D,则AD的长为.13.如图,Rt△ABC中,∠C=90°,AB=5,AC=4,分别以Rt△ABC 三边为直径作半圆,则阴影部分面积为.14.如图,以Rt△ABC的两条直角边为边长向外作正方形S1,S2,若AB=2,则正方形S1,S2的面积和为.15.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a,较短直角边为b,若ab=8,大正方形的面积为25,则小正方形的边长为.16.△ABC中,AB=AC=10,BC=16,则BC边上的高长为.三、解答题(本大题共6题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.如图,已知△ABC和△BDE是等腰直角三角形,∠ABC=∠DBE =90°,点D在AC上.(1)求证:△ABD≌△CBE;(2)若DB=1,求AD2+CD2的值.18.如图,四边形ABCD中,∠BAD=90°,∠DCB=90°,E、F分别是BD、AC的中点.(1)请你猜想EF与AC的位置关系,并给予证明;(2)当AC=16,BD=20时,求EF的长.19.阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积从而得数学等式:;(用含字母a、b、c的式子表示)化简证得勾股定理:a2+b2=c2【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积=;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6此时空白部分的面积为;【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.知识补充:如图4,含60°的直角三角形,对边y:斜边x=定值k.20.(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4ab+(a﹣b)2,所以4ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.21.【知识生成】我们已经知道,通过不同的方法表示同一图形的面积,可以探求相应的等式,2002年8月在北京召开了国际数学大会,大会会标如图1所示,它是由四个形状大小完全相同的直角三角形与中间的小正方形拼成的一个大正方形,四个直角三角形的两条直角边长均分别为a、b,斜边长为c.(1)图中阴影部分小正方形的边长可表示为;(2)图中阴影部分小正方形的面积用两种方法可分别表示为、(3)你能得出的a,b,c之间的数量关系是(等号两边需化为最简形式);(4)一直角三角形的两条直角边长为5和12,则其斜边长为【知识迁移】通过不同的方法表示同一几何体的体积,也可以探求相应的等式.如图2是边长为a+b的正方体,被如图所示的分割线分成8块.(5)用不同方法计算这个正方体体积,就可以得到一个等式,这个等式可以为(6)已知a+b=4,ab=2,利用上面的规律求a3+b3的值.22.如图,已知在△ABC中,CD⊥AB,垂足为点D,AC=20,BC =15,DB=9.(1)求CD的长;(2)求△ABC的面积.答案与解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•江苏省沛县期中)两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为()A.(a+b)2=c2 B.(a﹣b)2=c2 C.a2﹣b2=c2 D.a2+b2=c2【分析】用两种方法求图形面积,一是直接利用梯形面积公式来求;一是利用三个三角形面积之和来求.【解析】根据题意得:S(a+b)(a+b),S ab ab c2,(a+b)(a+b)ab ab c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.故选:D.2.(2019秋•江苏省邳州市期中)如图,在Rt△ABC中,∠ACB=90°,AE为△ABC的角平分线,且ED⊥AB,若AC=6,BC=8,则BD 的长()A.2 B.3 C.4 D.5【分析】根据勾股定理和角平分线的性质解答即可.【解析】∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB,AB=10∵AE为△ABC的角平分线,ED⊥AB,∴CE=ED,∴△ACE≌△ADE(AAS),∴AD=AC=6,∴BD=10﹣6=4,故选:C.3.(2019秋•江苏省常州期中)如图,△ABC中,∠ABC=90°,AC =9,BC=4,则正方形ABDE的面积为()A.18 B.36 C.65 D.72【分析】首先利用勾股定理求出AB的长,再利用正方形面积求法得出即可.【解析】∵在Rt△ABC中,∠C=90°,AC=9,BC=4,∴AB,则正方形ABDE的面积为:AB=65.故选:C.4.(2019秋•江苏省新吴区期中)在直角三角形中,若直角边为6和8,则斜边为()A.7 B.8 C.9 D.10【分析】在直角三角形中,已知两直角边为6、8,则根据勾股定理即可计算斜边的长度.【解析】在直角三角形中,根据勾股定理:两直角边的平方和为斜边的平方,设斜边为c∴c²10²,c=1故选:D.5.(2019秋•江苏省沭阳县期中)如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中的阴影部分的面积()A.9 B.C.D.3【分析】先用直角三角形的边长表示出阴影部分的面积,再根据勾股定理可得:AB2=AC2+BC2,进而可将阴影部分的面积求出.【解析】在Rt△ABC中,AB2=AC2+BC2,AB=3,设AE=EC=a,CF=BC=b,AD=BD=c,则AC²=2a²,BC²=2b²,AB²=2c²,S阴影=S△AEC+S△BFC+S△ADB22c2(AC2+BC2+AB2)AB232.故选:B.6.(2019秋•江苏省建湖县期中)如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC交AC、CF于M、F,若EM=3,则CE2+CF2的值为()A.36 B.9 C.6 D.18【分析】根据角平分线的定义可以证明出△CEF是直角三角形,再根据平行线的性质以及角平分线的定义证明得到EM=CM=MF 然后求出EF的长度,然后利用勾股定理列式计算即可求解.【解析】∵CE平分∠ACB交AB于E,CF平分∠ACD,∴∠1=∠2∠ACB,∠3=∠4∠ACD,∴∠2+∠3(∠ACB+∠ACD)=90°,∴△CEF是直角三角形,∵EF∥BC,∴∠1=∠5,∠4=∠F,∴∠2=∠5,∠3=∠F,∴EM=CM,CM=MF,∵EM=3,∴EF=3+3=6,在Rt△CEF中,CE2+CF2=EF2=62=36.故选:A.7.(2019秋•江苏省金台区校级期中)若直角三角形的两边长分别为a,b,且满足a2﹣6a+9+|b﹣4|=0,则该直角三角形的第三边长的平方为()A.25 B.7 C.25或7 D.25或16 【分析】根据非负数的性质列出方程求出a、b的值,根据勾股定理即可得到结论.【解析】∵a2﹣6a+9+|b﹣4|=0,∴(a﹣3)2=0,b﹣4=0,∴a=3,b=4,∴直角三角形的第三边长的平方5,或直角三角形的第三边长的平方,∴直角三角形的第三平方为25或7,故选:C.8.(2019秋•江苏省吴中区期中)2002年国际数学家大会在北京召开,大会选用了赵爽弦图作为会标的中心图案.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形.如果大正方形的面积是25,直角三角形较长的直角边长是a,较短的直角边长是b,且(a+b)2的值为49,那么小正方形的面积是()A.2 B.0.5 C.13 D.1【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=49,大正方形的面积为25,可以得出直角三角形的面积,进而求出答案.【解析】∵(a+b)2=49,∴a2+2ab+b2=49,∵大正方形的面积为25,∴2ab=49﹣25=24,∴小正方形的面积为25﹣24=1.故选:D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.(2020春•泰兴市校级期中)一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=53°,则∠2的度数为98°.【分析】根据邻补角得出∠3,进而利用等腰直角三角形得出∠4,应用平行线的性质和四边形的内角和解答即可.【解析】如图所示:由题意可得:∠4=45°,∵∠1=53°,∴∠3=127°,∴∠5=360°﹣90°﹣45°﹣127°=98°,∵AB∥CD,∴∠2=∠5=98°,故答案为:98°10.(2019秋•江苏省宿豫区期中)在△ABC中,∠C=90°,BC=12,AB=13,AC= 5 .【分析】在△ABC中,∠C=90°,则AB2=AC2+BC2,根据题目给出的BC=12,AB=13,根据勾股定理可以求AC的长.【解析】∵在△ABC中,∠C=90°,BC=12,AB=13,∴AC5.AC=5故答案为:5.11.(2019秋•江苏省宿豫区期中)如图,在△ABC中,∠ACB=90°,分别以AC、AB为边长向外作正方形,且它们的面积分别为9和25,则Rt△ABC的面积为 6 .【分析】由正方形的面积和勾股定理得出AC2+BC2=AB2,可求BC的长,再根据三角形面积公式即可求解.【解析】∵∠ACB=90°,∴AC2+BC2=AB2,∴9+BC2=25,∴BC2=25﹣9=16,∴BC=4,∴Rt△ABC的面积=42=6.故答案为:6.12.(2019秋•江苏省宿豫区期中)如图,在△ABC中,∠BAC=90°,AC=16,BC=20,AD⊥BC,垂足为D,则AD的长为.【分析】先根据勾股定理求出AB的长,再利用三角形面积公式得出AB•AC BC•AD,即可求出AD.【解析】∵∠BAC=90°,AC=16,BC=20,∴AB144,AB=12∵S△ABC AB•AC BC•AD,∴12×1620AD,∴AD.故答案为:.13.(2019秋•江苏省亭湖区校级期中)如图,Rt△ABC中,∠C=90°,AB=5,AC=4,分别以Rt△ABC三边为直径作半圆,则阴影部分面积为 6 .【分析】设别BC,AC,AB三边为直径的三个半圆面积分别表示为S1、S2、S3,证明S1+S2=S3;推出S阴影=S1+S2+S△ABC﹣S3=S△ABC,由此即可解决问题.【解析】设别BC,AC,AB三边为直径的三个半圆面积分别表示为S1、S2、S3,则有:S1π()2,同理,S2,S3,∵BC2+AC2=AB2,∴S1+S2=S3;∴S阴影=S1+S2+S△ABC﹣S3=S△ABC,在直角△ABC中,BC9,BC=3则S阴影=S△ABC AC•BC4×3=6.故答案为6.14.(2019秋•江苏省苏州期中)如图,以Rt△ABC的两条直角边为边长向外作正方形S1,S2,若AB=2,则正方形S1,S2的面积和为 4 .【分析】根据正方形的面积公式和勾股定理得到正方形S1,S2的面积和是斜边AB的平方.【解析】∵以Rt△ABC的两条直角边为边长向外作正方形S1,S2,∴正方形S1的面积是AC2,正方形S2的面积是BC2,AC2+BC2=AB2,∴正方形S1,S2的面积和为:AC2+BC2=AB2=22=4.故答案是:4.15.(2019秋•江苏省邳州市期中)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a,较短直角边为b,若ab=8,大正方形的面积为25,则小正方形的边长为 3 .【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解析】由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab8=4,∴4ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故答案是:316.(2019秋•江苏省常州期中)△ABC中,AB=AC=10,BC=16,则BC边上的高长为 6 .【分析】过A作AD⊥BC于D,由等腰三角形的性质求出BD的长,根据勾股定理求出AD的长即可.【解析】过A作AD⊥BC于D,则BD=8,在Rt△ABD中,AB=10,BD=8,则AD6.AD=6所以BC边上高的长的高为6.故答案为:6.三、解答题(本大题共6题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2019秋•江苏省海陵区校级期中)如图,已知△ABC和△BDE 是等腰直角三角形,∠ABC=∠DBE=90°,点D在AC上.(1)求证:△ABD≌△CBE;(2)若DB=1,求AD2+CD2的值.【分析】(1)根据SAS证明△ABD≌△CBE(SAS)即可.(2)证明∠DCE=90°,求出DE,利用勾股定理计算即可.【解析】(1)∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∠A=∠ACB=45°,同理可得:DB=BE,∠DBE=90°,∠BDE=∠BED=45°,∴∠ABD=∠CBE,在△ABD与△CBE中,AB=BC,∠ABD=∠CBE,DB=BE,∴△ABD≌△CBE(SAS).(2)∵△BDE是等腰直角三角形,∴DE BD,∵△ABD≌△CBE,∴∠A=∠BCE=45°,AD=CE,∴∠DCE=∠ACB+∠BCE=90°,∴DE2=DC2+CE2=AD2+CD2,∴AD2+CD2=2.18.(2019秋•江苏省新北区期中)如图,四边形ABCD中,∠BAD =90°,∠DCB=90°,E、F分别是BD、AC的中点.(1)请你猜想EF与AC的位置关系,并给予证明;(2)当AC=16,BD=20时,求EF的长.【分析】(1)结论:EF⊥AC.利用直角三角形斜边中线以及等腰三角形的性质即可解决问题.(2)在Rt△ECF中,利用勾股定理即可解决问题.【解析】(1)EF⊥AC.理由如下:连接AE、CE,∵∠BAD=90°,E为BD中点,∴AE DB,∵∠DCB=90°,∴CE BD,∴AE=CE,∵F是AC中点,∴EF⊥AC;(2)∵AC=16,BD=20,E、F分别是边AC、BD的中点,∴AE=CE=10,CF=8,∵EF⊥AC.∴EF6.EF=619.(2019秋•江苏省大丰区期中)阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积从而得数学等式:(a+b)2=c2+4ab ;(用含字母a、b、c的式子表示)化简证得勾股定理:a2+b2=c2【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积=5:9 ;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6此时空白部分的面积为28 ;【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.知识补充:如图4,含60°的直角三角形,对边y:斜边x=定值k.【分析】【探索新知】根据大正方形的面积=小正方形的面积+4个直角三角形的面积,构建关系式即可解决问题.【初步运用】(1)如图1,求出小正方形的面积,大正方形的面积即可.(2)根据空白部分的面积=小正方形的面积﹣2个直角三角形的面积计算即可.【迁移运用】根据大正三角形面积=三个全等三角形面积+小正三角形面积,构建关系式即可.【解析】[探索新知]由题意:大正方形的面积=(a+b)2=c2+4ab,∴a2+2ab+b2=c2+2ab,∴a2+b2=c2【初步运用】(1)由题意:b=2a,c a,∴小正方形面积:大正方形面积=5a2:9a2=5:9,故故答案为5:9.(2)空白部分的面积为=52﹣24×6=28.故答案为28.[迁移运用]结论:a2+b2﹣ab=c2.理由:由题意:大正三角形面积=三个全等三角形面积+小正三角形面积可得:(a+b)×k(a+b)=3b×ka c×ck,∴(a+b)2=3ab+c2∴a2+b2﹣ab=c2.20.(2020春•无锡期中)(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4ab+(a﹣b)2,所以4ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.【分析】(1)梯形的面积可以由梯形的面积公式求出,也利用三个直角三角形面积求出,两次求出的面积相等列出关系式,化简即可得证;(2)由两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高;(3)已知图形面积的表达式,即可根据表达式得出图形的边长的表达式,即可画出图形.【解析】(1)梯形ABCD的面积为(a+b)(a+b)a2+ab b2,也利用表示为ab c2ab,∴a2+ab b2ab c2ab,即a2+b2=c2;(2)∵直角三角形的两直角边分别为3,4,∴斜边为5,∵设斜边上的高为h,直角三角形的面积为3×45×h,∴h,故答案为;(3)∵图形面积为:(a﹣2b)2=a2﹣4ab+4b2,∴边长为a﹣2b,由此可画出的图形为:21.(2020春•江阴市期中)【知识生成】我们已经知道,通过不同的方法表示同一图形的面积,可以探求相应的等式,2002年8月在北京召开了国际数学大会,大会会标如图1所示,它是由四个形状大小完全相同的直角三角形与中间的小正方形拼成的一个大正方形,四个直角三角形的两条直角边长均分别为a、b,斜边长为c.(1)图中阴影部分小正方形的边长可表示为(b﹣a);(2)图中阴影部分小正方形的面积用两种方法可分别表示为c2﹣2ab 、(b﹣a)2(3)你能得出的a,b,c之间的数量关系是a2+b2=c2 (等号两边需化为最简形式);(4)一直角三角形的两条直角边长为5和12,则其斜边长为13 【知识迁移】通过不同的方法表示同一几何体的体积,也可以探求相应的等式.如图2是边长为a+b的正方体,被如图所示的分割线分成8块.(5)用不同方法计算这个正方体体积,就可以得到一个等式,这个等式可以为(a+b)3=a3+b3+3a2b+3ab2(6)已知a+b=4,ab=2,利用上面的规律求a3+b3的值.【分析】(1)根据直角三角形的两边长即可得到结论;(2)求出图形的各个部分的面积,即可得出答案;(3)根据(1)的结果,即可得出答案;(4)代入求出即可;(5)求出大正方体的条件和各个部分的体积,即可得出答案;(6)代入(5)中的等式求出即可.【解析】(1)图中阴影部分小正方形的边长可表示为(b﹣a),故答案为:(b﹣a);(2)图中阴影部分的面积为c2﹣2ab或(b﹣a)2,故答案为:c2﹣2ab,(b﹣a)2;(3)由(1)知:c2﹣2ab=(b﹣a)2,即a2+b2=c2,故答案为:a2+b2=c2;(4)∵a2+b2=c2,a=5,b=12,∴c=13,故答案为:13;(5)图形的体积为(a+b)3或a3+b3+a2b+a2b+a2b+ab2+ab2+ab2,即(a+b)3=a3+b3+3a2b+3ab2,故答案为:(a+b)3=a3+b3+3a2b+3ab2;(6)∵a+b=4,ab=2,(a+b)3=a3+b3+3a2b+3ab2,=a3+b3+3ab(a+b)∴43=a3+b3+3×2×4,解得:a3+b3=40.22.(2019秋•江苏省宜兴市期中)如图,已知在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长;(2)求△ABC的面积.【分析】(1)由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长即可;(2)有(1)的数据和勾股定理求出AD的长,进而求出AB的长,继而求出△ABC的面积.【解析】(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BDC中,CD2+BD2=BC2,即CD2+92=152,解得CD=12;(2)在Rt△ADC中,AD2+CD2=AC2,∴AD2+122=202,解得AD=16,∴AB=AD+BD=16+9=25.∴S△ABC AB•CD25×12=150.。
勾股定理评估试卷(3)班级________________姓名_____得分_____一、选择题( 本大题共8小题, 每小题3分,共24分)1. 如图:a ,b ,c 表示以直角三角形三边为边长的正方形的面积 则下列结论正确的是 ( )A. a 2 + b 2=c 2B. ab=cC. a+b=cD. a+ b=c 22. 下列各组数中以a ,b ,c 为边的三角形不是Rt △的是 ( A 、a=2,b=3,c=4 B 、a=7,b=24,c=25 C 、a=6,b=8,c=10 D 、a=3,b=4,c=5 3.小强量得家里新购置的彩电荧光屏的长为58厘米,宽为46厘米,则这台电视机的尺寸最有可能是 ( )A. 9英寸(23厘米)B. 21英寸(54厘米)C. 29英寸(74厘米)D. 34英寸(87厘米) 4. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A. 25 B. 12.5 C. 9 D. 8.55.已知,如图长方形ABCD ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE A 、3cm 2 B 、4cm 2 C 、6cm 2 D 、12cm 2 6.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里B 、30海里C 、35海里D 、40海里7.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( ) A. 2m; B. 2.5m; C. 2.25m; D. 3m.8. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( ) \ A. ab=h 2 B. a 2+b 2=2h 2C. a 1+b 1=h1 D.21a +21b=21h二、填空题(8小题,每小题3分,共24分)9.在Rt △ABC 中,∠C=90°,若a=6,b=8,则c=___________; 10.直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
勾股定理评估试卷(2)
(时间:40分钟)
班级 姓名 得分
选择题答案:
一、 选择题(共25分)
1、已知直角三角形两直角边的长为A和B,则该直角三角形的斜边的长度为( ) A、A+B B、2AB C、B -A D、
22B A + 2、三角形的三条边分别为22b a +、22b a -、2ab (a 、b 都为整数),则这个直角三角形
是( )
A 、钝角三角形
B 、锐角三角形
C 、直角三角形
D 、不能确定
3、分别有下列几组数据:①6、8、10 ②12、13、5 ③ 17、8 、15 ④4、11、9其中能构成直角三形的有:( )
A、4组 B、3组 C、2组 D、1组
4、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )
A 、6厘米
B 、8厘米
C 、
1380厘米 D 、1360厘米 5、如图1,在直角三角形中,∠C =o 90,AC=3,将其绕B 点顺时针旋转一周,则分别
以BA ,BC 为半径的圆形成一环,该圆环的面积为( )
A、3π B、3π C、9π D、6π
二、 填空题(20) 1、已知任意三角形的三条边的长度分别为a 、b 、c,其中c>a>b,如果这个三角形为直角
三角形,那么a 、b 、c 一定满足条件:
2、三条线段的长分别为Q 、P、R,而且有2
22R P Q =-,那么这个三角形一定为 ,如果在这三个数据中P>Q>R ,假设P对应的角为∠P1,Q对应
的角为∠Q1,R对应的角为∠R1,可以断定 角为直角。
3、有以下几组数据①3、4、5②17、15、8③10、6、14④12、5、13 ⑤300、 A B C
图1
160、340,⑥0.3, 0.4,0.5.其中可以构成勾股数有
4、已知三角形ABC 中,BC=41,AC=40,AB=9,则此三角形为 三角形, 为最大角,最大角等于 度。
5、如图2,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有 米。
三、 计算题(第一、第二题各8分,第三题10分,第四题10,共
1、 一同学先向东直线走了150米,由于其它原因,他接着向南直线走了80米,这
时该同学距离他出发的地点有多远?(要求作图分析)
2、 在图3中,BC 长为3,AB 长为4,AF 长为12,求正方形的面积。
(其中∠FAC 和∠ABC 都为直角。
) 3、 一架梯子的长度为25米,如图4斜靠在墙上,梯子顶端离墙底端为7米。
(1)这个梯子顶端离地面有多高? (2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米?
4、有一个圆柱体放在水平面上,如图5,在距离地面h 2
1的B 处有一食物,在A 处的蚂蚁为了很快吃到B 处的食物,请问在最短时间内能吃到食物,蚂蚁爬的距离是多远?已知:h=8m , 底面圆在半径r =3m ,圆周率
=3
四、证明题(共19分) 1、 如图6,是由4理的正确性。
2、 咖菲尔德(Garfeild ,1881年任美国第二十届总统)利用图7年4月1日,发表在《新英格兰教育日志》上)∠B 和∠D 为直角。
C B A F
E
D 图3 图 4 图 a
图 6
A B C
D E
a b c a b
c 图 7。