数值分析第三章林成森
- 格式:pdf
- 大小:105.86 KB
- 文档页数:5
毕业论文文献综述信息与计算科学定积分的数值计算方法一、 前言部分在科学与工程计算中,经常要计算定积分()()().baI f f x dx a b =-∞≤≤≤∞⎰ (1.1)这个积分的计算似乎很简单,只要求出f 的原函数F 就可以得出积分(1.1)的值,即()()().I f F b F a =- (1.2)如果原函数F 非常简单又便于使用,那么式(1.2)就提供了计算起来最快的积分法.但是,积分过程往往将导出新的超越函数,例如,简单积分1dx x ⎰可引出对数函数,它已不是代数函数了;而积分2x edx -⎰,将引出一个无法用有限个代数运算、对数运算或指数运算组合表示的函数.有些积分虽然容易求解,并且原函数仍然是一个初等函数,但可能过于复杂,以致于人们采用(1.2)来计算之前还得三思而行[1].例如411dx C x =++⎰, (1.3) 采用式(1.3)这种“精确”表达式时,所需运算次数是个根本问题.由式(1.3)看出,需计算对数和反正切,因此只能计算到一定的近似程度.因此可以看出,这类表面上是“精确”的方法,实际上也是近似的.因此,我们常常需要探讨一些近似计算定积分的数值方法[2].通过人们的研究和发现,得出了很多数值计算的方法,比如利用牛顿-科茨求积公式,复合求积公式,龙贝格积分法,高斯求积公式,切比雪夫求积法等来解决定积分的数值计算问题.构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-柯茨公式,例如梯形公式与抛物线公式就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式.当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分[3].二、 主题部分2.1 牛顿-科茨求积公式[4]2.1.1 公式的一般形式[4]将积分(1.1)中的积分区间[],a b 分成n 等分,其节点k x 为1,()k x a kh h b a n=+=- (0,1,,)k n =L . 对于给定的函数f ,在节点k x (0,1,,)k n =L 上的值()k f x 为已知.那么f 在n+1个节点01,,,n x x x L 上的n 次代数插值多项式为00()().n nj n kk j k j j k x x p x f x x x ==≠⎡⎤-⎢⎥=⎢⎥-⎢⎥⎣⎦∑∏ 如果记x a th =+,则上式可以写为00()().n nn kk j j k t j p x f x k j ==≠⎡⎤-⎢⎥=⎢⎥-⎢⎥⎣⎦∑∏ (2.1) 在积分(1.1)中的被积函数f 用其n+1个节点的代数插值多项式()n p x 来代替,可 得 ()()()()bbn n aaI f f x dx I f p x dx =≈=⎰⎰.多项式的积分是容易求出的,因此把上式写为()()()nn n k k I f I f A f x =≈=∑, (2.2)其中 ()00(),n n n k k j j kb a t j A dt b ac n k j=≠--==--∏⎰ (2.3) ()00(1)().!()!n kn n n kj j kct j dt k n k n -=≠-=--∏⎰ (2.4) 公式(2.2)称为牛顿-科茨求积公式或称为等距节点求积公式,k A 称为求积公式系数,()n k c 称为科茨求积系数.牛顿-科茨求积公式的误差估计()n E f ()()n I f I f =-,由下面定理给出 定理2.1 (1) 如果n 为偶数,(2)n f +在[],a b 上连续,则有[]3(2)()(),,n n n n E f c hf a b ηη++=∈, (2.5)其中 201(1)(2)()(2)!n n c t t t t n dt n =---+⎰L . (2) 如果n 为奇数,(1)n f+在[],a b 上连续,则有[]2(1)()(),,n n n n E f c h f a b ηη++=∈, (2.6)其中 01(1)(2)()(1)!n n c t t t t n dt n =---+⎰L . 定义2.1 如果求积公式()()nbk k ak f x dx A f x =≈∑⎰对所有次数不高于n 的代数多项式等式精确成立,但存在n+1次的代数多项式使等式不成立,则称上式求积公式具有n 次代数精度.由定理2.1可知,牛顿-科茨求积公式(2.2)的代数精度至少是n 次,而当n 是偶数时,(2.2)的代数精度可达n+1次.2.1.2 梯形公式[5]在牛顿-科茨公式(2.2)中,取n=1时(1)(1)011,2c c ==所以有 []1()()()().2b aI f I f f a f b -≈=+ (2.7) 公式(2.7)称为梯形公式,如果用连接(),()a f a 和(),()b f b 的直线来逼近f ,并对这线性函数进行积分可得到1()I f .再用1()I f 来逼近()I f . 定理 2.2 若[]2,f Ca b ∈,则梯形公式(2.7)的误差为[]3111()()()()''(),,.12E f I f I f b a f a b ηη=-=--∈ 2.1.3 辛普森公式[6]在牛顿-科茨公式(2.2)中,取n=2,则有220011(1)(2),46c t t dt =--=⎰221014(2),26c t t dt =--=⎰ 222011(1),46c t t dt =-=⎰有此得到2()()()4()().32h a b I f I f f a f f b +⎡⎤≈=++⎢⎥⎣⎦(2.8) 其中1()2h b a =-.式(2.8)称为辛普森公式. 定理2.3 若[]4,f Ca b ∈,则辛普森公式(2.8)的误差为[]5(4)221()()()(),,.90E f I f I f h f a b ηη=-=-∈2.2 复化求积公式[7]上面已经给出了计算积分()()baI f f x dx =⎰的3个基本的求积公式:梯形公式,辛普森公式,牛顿-科茨公式,并给出了它们误差的表达式.由这些表达式可知其截断误差依赖于求积区间的长度.若积分区间的长度是小量的话,则这些求积公式的截断误差是该长度的高阶小量.但若积分区间的长度比较大,直接使用这些公式,则精度难以保证.为了提高计算积分的精度,可把积分区间分为若干个小区间,()I f 等于这些小区间上的积分和,然后对每个小区间上的积分应用上述求积公式,并把每个小区间上的结果累加,所得到的求积公式称为复化求积公式.将积分区间[],a b 作n 等分,并记,,0,1,,k b ah x a kh k n n-==+=L ,于是 11()()k kn x x k I f f x dx +-==∑⎰.2.2.1 复化梯形求积公式[8]如果需要求出一个已知函数()f x 在一个很大区间[],a b 上的积分,那么我们可以把区间分成n 个长度为x h ∆=的小区间,对每一个小区间用梯形法则,然后再把这些小区间上的积分值相加.于是就得到了计算定积分的复化梯形公式:1101210()()(222)22n bi i n n ai h hf x dx f f f f f f f -+-=≈+=+++++∑⎰L (2.9)整体积分误差等于n 个小区间上的积分误差之和:整体误差= []312''()''()''()12n h f f f ξξξ-+++L ,其中i ξ是第i 个小区间上的某一点.如果''()f x 在区间[],a b 上连续,那么由连续函数的性质可知,在区间[],a b 上存在点ξ使得''()i f ξ的平均值等于()f ξ.于是由于nh b a =-,有整体误差= 322''()''()()1212nh b a f h f O h ξξ--=-=, 局部误差是3()O h ,整体误差是2()O h .2.2.2 复化辛普森求积公式[9]对于积分()baf x dx ⎰,将[],a b 等分,每个小区间长度b ah n-=,节点记为 (0,1,2,,)k x a kh k n =+=L ,第k 个小区间记为[]1,(1,2,,)k k x x k n -=L .记[]1,k k x x -的中点为1121()2k k k xx x --=+,则复化辛普森公式为 1112()()()4()()6n bk k ak k h f x dx S h f x f x f x --=⎡⎤≈=++⎢⎥⎣⎦∑⎰.2.3 龙贝格积分[10]现在要介绍用龙贝格(Romberg )命名的一个算法,龙贝格首先给出了这种算法的递推形式,假设需要积分()baI f x dx =⎰ (2.10)的近似值.在讨论过程中函数()f x 和区间[],a b 将保持不变.2.3.1 递推梯形法则[10]设()T n 表示在长度是()/h b a n =-的n 个子区间上积分I 的梯形法则.根据()''()nbai f x dx h f a ih =≈+∑⎰,我们有 00()()''()''()nn n i i b a b a T h f a ih f a i n n ==--=+=+∑∑, (2.11) 这里求和符号中的两撇表示和式中第一项和最后一项减半. 2.3.2 龙贝格算法[10]在龙贝格算法中使用上述公式.设(,0)R n 表示具有2n个子区间的梯形估计,我们有[]1211(0,0)()()()21(,0)(1,0)((21))2n n n i R b a f a f b R n R n hf a i h -=⎧=-+⎪⎪⎨⎪=-++-⎪⎩∑ , (2.12) 对于一个适度的M 值,计算(0,0),(1,0),(2,0),,(,0)R R R R M L ,并且其中没有重复的函数值的计算.在龙贝格算法的其余部分中,还要计算附加值(,)R n m .所有这些都可以被理解为积分I 的估计.计算出(,0)R M 后,不再需要被积函数f 值的计算.根据公式[]1(,)(,1)(,1)(1,1)41m R n m R n m R n m R n m =-+-----, (2.13)对于1n ≥和1m ≥构造R 阵列的各列.定理 2.4(龙贝格算法收敛性定理)[10]若[],f C a b ∈,则龙贝格阵列中每一列都收敛于f 的积分.因此,对每个m ,lim (,)()baR n m f x dx =⎰.2.4高斯求积[11]前面研究的求积公式都是事先确定了n 个节点,然后按使求积公式阶数达到最大的原 则选取最佳权.由于自由参数为n 个,所以阶数一般为n-1,但如果节点的位置也自由选择,则自由参数的个数将变为2n ,因此求积公式的阶数可达到2n-1.高斯求积公式就是通过选择最佳的节点和权,使求积公式的阶数最大化.一般地,对每个n ,n 点高斯公式都是唯一的,而且阶数为2n-1.因而,对一定的节点个数,高斯求积公式的精度是最高的.但它的求得比牛顿—柯特斯公式要困难得多.虽然它的节点和权也可由待定系数法确定,但得到的方程是非线性的.2.4.1 高斯求积公式[11]为说明高斯求积公式,推导区间[]1,1-上的两点公式1112221()()()()()I f f x dx w f x w f x G f -=≈+=⎰,其中的节点1x 、2x 及权1w 、2w 按使求积公式阶数最大化的原则选取.令公式对前四个单项式精确成立,得力矩方程组112111122112221122113331122112,0,2,30.w w dx w x w x xdx w x w x x dx w x w x x dx ----⎧+==⎪⎪+==⎪⎪⎨⎪+==⎪⎪+==⎪⎩⎰⎰⎰⎰这个非线性方程组的一个解为12121,1,x x w w =-===另一个解可通过改变1x ,2x 的符号而得到.这样,两点高斯求积公式为2()(G f f f =-+,阶数为3.另外,高斯求积公式的节点也可以由正交多项式得到.若p 是n 次多项式,且满足()0,0,,1,bk ap x x dx k n ==-⎰L 则p 与[],a b 区间上所有次数小于n 的多项式正交,容易证明:1. p 的n 个零点都是实的、单的,且位于开区间(,)a b .2. 区间[],a b 上以p 的零点为节点的n 点插值型求积公式的阶数为2n-1,是唯一的n 点高斯公式.定义2.2[12] 如果1n +个节点的求积公式()()()nbk k ak x f x dx A f x ρ=≈∑⎰(2.14)的代数精度达到21n +,则称式(2.14)为高斯型求积公式,此时称节点k x 为高斯点,系数k A 称为高斯系数.定理2.5[12] 以01,,,n x x x L 为高斯点的插值型求积公式具有21n +次代数精确度的充要条件是以这些节点为零点的多项式101()()()()n n x x x x x x x ω+=---L与任意次数不超过n 的多项式()p x 带权()x ρ均在区间[],a b 上正交,即1()()()0bn ax p x x dx ρω+=⎰. (2.14)定理2.6 高斯公式()()nbi i ai f x dx A f x =≈∑⎰(2.15)的求积系数k A 全为正,且 2()(),0,1,,bbk k k aaA l x dx l x dx k n ===⎰⎰L . (2.16)定理2.7 对于高斯公式(2.14),其余项为 (22)211()()()()(22)!b n n a R f f x x dx n ξρω++=+⎰ , (2.17) 其中[]101,,()()()().n n a b x x x x x x x ξω+∈=---L2.4.2 高斯—勒让德(Gauss-Legendre )公式[13] 对于任意求积区间[],a b ,通过变换22a b b ax t +-=+,可化为区间[]1,1-,这时11()()222bab a a b b af x dx f t dt --+-=+⎰⎰. 因此,不失一般性,可取1,1a b =-=,考查区间[]1,1-上的高斯公式 11()()ni i i f x dx A f x -==∑⎰. (4.5)我们知道,勒让德多项式1211111()(1)2(1)!n n n n n d L x x n dx+++++⎡⎤=-⎣⎦+, (4.6) 是区间[]1,1-上的正交多项式,因此,1()n L x +的n+1个零点就是高斯公式(4.5)的n+1个节点.特别地,称1()n L x +的零点为高斯点,形如(4.5)的高斯公式称为高斯—勒让德公式.以上这些公式中的节点和求积系数可查表得到. 2.4.3 高斯—哈米特求积公式(Gauss-Hermite )[14] Gauss-Hermite 求积公式2()0()()nx n k k k ef x dx f x ω∞--∞=≈∑⎰, (4.7)其余项为(22)1(().2(22)!n n n n R f f n ξ+++=+ (4.8)2.4.4 高斯—切比雪夫(Gauss-Chebyshev )求积公式[15] 区间为[]1,1-,权函数()x ρ=Gauss 型求积公式,其节点k x 是Chebyshev多项式1()n T x +的零点,即21cos (0,1,,)2(1)k k x k n n π⎡⎤+==⎢⎥+⎣⎦L ,而(0,1,,)1k A k n n π==+L于是得到1021cos 12(1)nk k f n n ππ-=⎡⎤+≈⎢⎥++⎣⎦∑⎰(4.9) 称为Gauss-Chebyshev 求积公式,公式的余项为 (22)2(1)2()(),(1,1)2(22)!n n n R f f n πηη++=∈-+ , (4.10) 这种求积公式可用于计算奇异积分.2.5 递推型高斯求积[10]高斯求积公式不具有递推性:当节点个数一定时,如果自由选择所有的节点和权以达到最高的阶数,则节点个数不同的公式一般没有公共节点,这意味着与一组节点对应的积分值,在用另外一组节点计算积分值时不能被利用.Kronrod 求积公式避免了这种工作量的增加,这类公式是对称的,n 点高斯公式n G 与2n+1个点Kronrod 公式21n K +对应.21n K +节点的约束条件为:以n G 的节点作为21n K +的节点,按求积公式达到最高阶数的要求确定21n K +中剩下的n+1个节点及2n+1个权(其中包括n G 的节点的权).这样,求积公式的阶数可达到3n+1,而真正2n+1个点高斯公式应该是4n+1阶的,所以精度和效率是一对矛盾.使用两个节点个数不同的求积公式的主要原因是可以用它们的差估计积分近似值的误差.使用Gauss-Kronrod 公式对时,若以21n K +的值作为积分的近似值,则一半基于理论,一半基于经验,可以得到关于误差的保守估计: 1.521(200)n n G K +-.Gauss-Kronrod 公式不仅有效地提供了较高的精度,还给出了可靠误差估计,所以它被认为是最有效的求积公式之一,并且构成了主要软件库中求积程序的基础,特别地,公式715(,)G K 已被普遍使用.三、 总结部分因为一些定积分的求解比较复杂,所以数值积分的理论与方法一直是计算数学研究的基本课题.各种定积分的数值计算方法的出现和发展,加快和简化了求解定积分的效率和步骤.以上主要介绍了各种数值积分的方法——牛顿-科茨求积公式,复合求积公式,龙贝格积分法,高斯求积公式等.每种方法都有各自的优缺点,针对不同的积分函数采用不同的方法,所以在实际计算时,要做适当的采取.相信随着理论分析和研究的日益深入,求定积分的数值计算方法将更加简单和完善,为我们的计算带来前所未有的方便,在数学领域也将会更上一层楼.四、参考文献[1] 孙志忠,吴宏伟,袁慰平,闻震初.计算方法与实习(第4版)[M].南京:东南大学出版社,2009,(2): 128~129.[2]Micheal T .Heath . 张威,贺华,冷爱萍译.科学计算导论(第2版)[M].北京:清华大学出版社,2005,(10): 396~297.[3]李桂成.计算方法[M].北京:电子工业出版社,2005,(10):186.[4] 现代应用数学手册编委会. 现代应用数学手册——计算与数值分析卷[M]. 北京:清华大学出版社,2005,(1): 163~168.[5] 林成森. 数值计算方法(上)[M]. 北京:科学出版社,2004,(5): 220~221.[6]冯康.数值计算方法[M].北京:国防工业出版社,1978,(12): 45~47.[7]孙志忠,袁慰平,闻震初.数值分析(第2版)[M].南京:东南大学出版社,2002,(1): 191~194.[8] (美)柯蒂斯F .杰拉尔德 帕特里克O .惠特莱. 应用数值分析(第7版)[M].北京:机械工业出版社,2006,(8): 222~225.[9]夏爱生,胡宝安,孙利民,夏凌辉.复化Simpson 数值求积公式的外推算法[J].军事交通学院学报.2006,第8卷(第1期): 66~68.[10](美)David Kincaid, Ward Cheney .王国荣,俞耀明,徐兆亮译.数值分析(原书第三版)[M].北京:机械工业出版社,2005,(9): 400~403.[11]M.T.Heath. Scientific Computing:An Introductory Survey, Sscond Edition[M].清华大学出版社.英文影印版. 2001,(10): 351~355.[12]封建湖,车刚明,聂玉.数值分析原理[M].北京:科学出版社,2001,(9): 111~114.[13]杨大地,涂光裕.数值分析[M].重庆:重庆大学出版社,,2006,(9): 139~142.[14] 黄明游,刘播,徐涛.数值计算方法[M].北京:科学出版社,2005,(8):137~138.[15]Jeffery J.Leader. Numerical Analysis and Scientific Computation[M].英文影印本.北京:清华大学出版社,2005,(8): 342~349。
《数值分析B》课程简介课程编号:08014020课程名称:数值分析B(Numerical Analysis)学分:2学时:32 (课内实验(践):上机:课外实践:)适用专业:机械设计制造及其自动化建议修读学期:4开课单位:数理科学与工程学院先修课程:高等数学、线性代数、数学软件与数学实验或C++等考核方式与成绩评定标准:卷面考试;平时成绩30%,考试成绩70%教材与主要参考书目:教材:数值分析(第五版),李庆扬,王能超,易大义,清华大学出版社,2008年参考书目:1.Numerical Analysis (Seventh Edition),Richard L. Burden, J. Douglas Faires,Thomson Lerning, Inc.,20012、数值分析及实验(第二版),杜廷松等,科学出版社,2012年内容概述:《数值分析B》是一门应用性很强的基础课,它以数学问题为对象,研究适用于科学与工程计算的数值计算方法及相关理论,是用计算机解决数学问题的重要方法。
数值分析既有数学类课程中理论上的抽象性和严谨性,又有实用性和实验性的技术特征。
现在数值分析几乎成为所有理工科学生的必修课程。
数值分析的研究对象是科学和工程中常见的数学问题,包括:插值和拟合、数值微分和数值积分、求解线性方程组的直接法和迭代法、非线性方程求根以及常微分方程数值解等问题。
对机械设计制造及其自动化专业的学生,教学内容侧重方法的实用性,适当讲授方法原理;本课程的宗旨既不以严谨理论为主导,也不是以全篇数据为数值计算,而是两者兼顾,兼授方法的基本理论和实用性。
通过本门课的学习使学生正确理解相关基本概念,掌握常用的基本数值方法,培养和提高应用计算机进行科学与工程计算的能力,为以后的学习及应用打下良好的数学基础。
Numerical Analysis B is an important elementary course with extensive applicability. Its object is mathematical problem. It researches numerical computation methods and correlation theories, which are the main ways to solve mathematical problems with computer. Numerical Analysis B not only has the abstract and strictness of the theory, but also has the technical feature of practicability and experiment. It almost is thecompulsory course of all science and engineering students.The course includes: numerical approximation, numerical integration, numerical solution of the linear system, solution of Non-linear Equation and numerical solution of ordinary differential equation etc.The course teaching focuses on the applicability for the students of machine design manufacture and automation specialty. Calculation and theory are all paid attention to.Students can understand conception correctly, master the base methods by learning the course, and enhance the ability of computing the science and engineer problem. Good mathematical foundation is obtained by Numerical Analysis B for the later study and application.《数值分析B》教学大纲课程编号:08014020课程名称:数值计算(Numerical Analysis)学分:2学时:32 (实验:上机:课外实践:)适用专业:机械设计与制造专业建议修读学期:4开课单位:数理科学与工程学院/信息与计算科学系先修课程:高等数学、线性代数一、课程性质、目的与任务数值分析B是理工类本科公共基础课,是一门数学与计算机技术紧密结合的学科,主要任务是研究利用计算机技术解决科学与工程中常见数学问题的数值算法。
数值分析课程教学大纲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《数值分析》课程教学大纲适用专业信息与计算科学总学时 72学分 4一、编写说明(一)本课程的性质、地位和作用随着计算机的迅速发展,在科学、技术、工程、生产、医学、经济和人文等领域中抽象出来的许多数学问题可以应用计算机计算、求解,本课程详细、系统地介绍了计算机中常用的数值计算方法及有关理论。
通过学习使学生掌握数值分析的基本知识,学会使用数值分析方法解决实际问题的技能技巧,并为后继应用型课程奠定基础。
本课程是信息与计算科学专业的一门重要的专业课程。
(二)本大纲制定的依据数值分析是一门内容丰富,研究方法深刻,有自身体系的课程,既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程。
因此学习本课程时,要注意掌握方法的基本原理和思想,要注意方法处理的技巧及与计算机的结合,重视误差分析、收敛性及稳定性的基本理论。
(三)大纲内容选编原则与要求1.要学好计算方法课程必须掌握高数、线性代数和算法语言的基本内容,还需能熟练应用计算机。
任课教师在讲授每章之前,可用少量时间把涉及到的学过的内容复习一下。
2.为掌握好本课内容,学生应做一定数量的理论分析与计算练习。
3.各章的上机时间可调整,也可讲完几章后再上机,任课教师可灵活掌握。
(四)实践环节1.实践环节主要分为习题课、上机、问题讨论、课后辅导和课后作业几部分。
其中习题课12学时,上机16学时,问题讨论可在辅导课或课后完成,课后辅导每周2学时(不占总学时)。
2.上机主要内容与要求:插值法、函数逼近、数值积分与数值微分、常微分方程初值问题的数值解法、方程求根、解线性方程组的直接方法、解线性方程组的迭代法、矩阵的特征值与特征向量计算。
要求把以上章节学过的主要算法编程,上机求解问题,其中每章2学时。
(六)考核方法与要求1.平时成绩:包括作业、出勤、课堂提问、讨论情况及期中成绩。
数值分析》考试大纲一、考试标准(命题原则)1、考察学生对数值分析的基础知识(包括基本概念、基本内容、基本定理)的掌握程度以及运用已掌握的知识分析和解决问题的能力,衡量学生的数值分析及计算的能力。
2、题型比例客观题(判断题、填空题与选择题)约30--40%解答题(包括证明题)约60--70%3、难易适度,难中易比例:容易:40%,中等:50%,偏难10%。
4、考试知识点复盖率达80%以上。
二、考试时间:120分钟(2个小时)三、考试对象:数学与应用数学专业本科生四、考核知识点第一章引论(一)、知识点§1 数值分析的研究对象§2 数值计算的误差§3 病态问题、数值稳定性与避免误差危害§4 矩阵、向量和连续函数的范数(二)、基本要求1、了解向量和矩阵范数的定义和计算2、了解误差分析第二章插值法(一)、知识点§1 Lagrange插值§2 均差与Newton插值公式§3 插值余项的Peano估计§4 差分与等距节点插值公式§5 Hermite插值§6 分段低次插值§7 三次样条插值的计算方法§8 三次样条插值函数的性质与误差估计§9 B-样条函数§10 二元插值(二)、基本要求1、理解插值概念和插值问题的提法2、熟练掌握插值基函数、拉格朗日插值公式,会用余项定理估计误差3、掌握差商的概念及其性质,熟练掌握用差商表示的牛顿插值公式4、掌握埃米尔特插值、分段插值的定义和特点第三章函数逼近(一)、知识点§1 正交多项式§2 函数的最佳平方逼近§3 最小二乘法§4 周期函数的最佳平方逼近§5 快速Fourier变换§6 函数的最佳一致逼近§7 近似最佳一致逼近多项式§8 Chebyshev节约化(二)、基本要求1.了解正交多项式定义2.理解函数的最佳平方逼近3.掌握最小二乘法4.掌握周期函数的最佳平方逼近5.了解快速Fourier变换6.理解函数的最佳一致逼近7.了解近似最佳一致逼近多项式8.掌握Chebyshev节约化第四章数值积分和数值微分(一)、知识点§1 Newton-Cotes求积公式§2 复合求积公式§3 Peano的误差表示§4 Gauss求积公式§5 Romberg求积公式§6 奇异积分与振荡函数的积分§7 二维近似求积(二)、基本要求1、理解数值求积的基本思想,代数精度的概念2、熟练掌握梯形、辛普生等低价牛顿-柯特斯求积公式3、掌握复化求积公式:复化梯形求积公式、复化辛普生求积公式4、掌握龙贝格求积公式5、掌握高斯求积公式的定义和特点6、掌握几个数值微分公式第五章解线性代数方程组的直接方法(一)、知识点§1 Gauss消去法§2 主元素消去法§3 直接三角分解方法§4 矩阵的奇异值和条件数,直接方法的误差分析§5 解的迭代改进§6 稀疏矩阵技术介绍(二)、基本要求1、了解向量和矩阵范数的定义和计算2、掌握高斯消去法、按列选主元的高斯消去法、三角分解法3、了解求解特殊方程组的追赶法和Cholesky平方根法第六章解线性代数方程组的迭代方法(一)、知识点§1 迭代法的基本概念§2 Jacobi迭代法和Gauss-Seidel迭代法§3 超松弛(SOR)迭代法§4 共轭梯度法(二)、基本要求1、掌握Jacobi迭代法、Gauss-Seidel迭代法和SOR迭代法2、了解方程组右端项和系数矩阵的扰动对解的影响、方程组解法的误差分析第七章非线性方程和方程组的数值解法(一)、知识点§1 单个方程的迭代法§2 迭代加速收敛的方法§3 Newton迭代法§4 割线法与Muller方法§5 非线性方程组的不动点迭代法§6 非线性方程组的Newton法和拟Newton法(二)、基本要求1.掌握单个方程的迭代法2.了解迭代加速收敛的方法3.掌握Newton迭代法4.掌握割线法与Muller方法第八章代数特征值问题计算方法(一)、知识点§1 特征值问题的性质和估计§2 正交变换及矩阵分解§3 幂迭代法和逆幂迭代法§4 正交相似变换化矩阵为Hessenberg形式§5 QR方法§6 对称矩阵特征值问题的计算(二)、基本要求1.了解特征值问题的性质和估计2.理解正交变换及矩阵分解3.掌握幂迭代法和逆幂迭代法4.了解正交相似变换化矩阵为Hessenberg形式5.掌QR方法6.掌握对称矩阵特征值问题的计算第九章常微分方程初值问题的数值解法(一)、知识点§1 基本概念、Euler方法和有关的方法§2 Runge-Kutta方法§3 单步法的收敛性、相容性与绝对稳定性§4 线性多步法§5 线性差分方程§6 线性多步法的收敛性与稳定性§7 一阶方程组与刚性方程组(二)、基本要求1、了解一阶常微分方程初值问题数值解法的一些基本概念:步长、差分格式、单步法、多步法、显式法、隐式法、局部截断误差、整体截断误差、方法的阶数2、掌握欧拉法、改进欧拉法、梯形格式3、掌握龙格--库塔法的定义和特点4、了解亚当姆斯线性多步法5、了解差分法的收敛性和稳定性概念6、了解常微分方程边值问题五、考试要求书面答卷,闭卷考试,自带计算器。