【高考调研】2016届高三理科数学一轮复习配套题组层级快练64
- 格式:doc
- 大小:128.50 KB
- 文档页数:8
题组层级快练(六)1.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先减后增D .先增后减答案 C解析 对称轴为x =3,函数在(2,3]上为减函数,在[3,4)上为增函数.2.下列函数中,在区间(-∞,0)上是减函数的是( )A .y =1-x 2B .y =x 2+xC .y =--xD .y =x x -1 答案 D3.(2014·陕西)下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( )A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x 答案 D解析 根据各选项知,选项C ,D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x 是增函数,所以D 正确.4.函数f (x )=1-1x -1( ) A .在(-1,+∞)上单调递增B .在(1,+∞)上单调递增C .在(-1,+∞)上单调递减D .在(1,+∞)上单调递减答案 B解析 f (x )可由-1x 沿x 轴向右平移一个单位,再向上平移一个单位得,如图所示.5.函数f (x )=log 0.5(x +1)+log 0.5(x -3)的单调递减区间是( )A .(3,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,-1)答案 A解析 由已知易得⎩⎪⎨⎪⎧x +1>0,x -3>0,即x >3,又0<0.5<1, ∴f (x )在(3,+∞)上单调递减.6.若函数y =log a (x 2+2x -3),当x =2时,y >0,则此函数的单调递减区间是( )A .(-∞,-3)B .(1,+∞)C .(-∞,-1)D .(-1,+∞) 答案 A解析 当x =2时,y =log a (22+2·2-3)=log a 5,∴y =log a 5>0,∴a >1.由复合函数单调性知,单减区间需满足⎩⎪⎨⎪⎧x 2+2x -3>0,x <-1,解之得x <-3. 7.若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a <-3B .a ≤-3C .a >-3D .a ≥-3答案 B解析 对称轴x =1-a ≥4,∴a ≤-3.8.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 2)-f (x 1)x 2-x 1<0”的是( ) A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1) 答案 A解析 满足f (x 2)-f (x 1)x 2-x 1<0其实就是f (x )在(0,+∞)上为减函数,故选A. 9.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 若函数f (x )=a x 在R 上为减函数,则有0<a <1.若函数g (x )=(2-a )x 3在R 上为增函数,则有2-a >0,即a <2,所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件,选A.10.已知函数f (x )=x 2-2ax +a 在区间(0,+∞)上有最小值,则函数g (x )=f (x )x在区间(0,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数答案 A 解析 ∵f (x )=x 2-2ax +a 在(0,+∞)上有最小值,∴a >0.∴g (x )=f (x )x =x +a x-2a 在(0,a )上单调递减,在(a ,+∞)上单调递增. ∴g (x )在(0,+∞)上一定有最小值.11.若奇函数f (x )在(-∞,0]上单调递减,则不等式f (lg x )+f (1)>0的解集是________.答案 (0,110) 解析 因为f (x )为奇函数,所以f (-x )=-f (x ).又因为f (x )在(-∞,0]上单调递减,所以f (x )在[0,+∞)上也为单调递减函数,所以函数f (x )在R 上为单调递减函数.不等式f (lg x )+f (1)>0可化为f (lg x )>-f (1)=f (-1),所以lg x <-1,解得0<x <110. 12.若函数y =-|x |在[a ,+∞)上是减函数,则实数a 的取值范围是________.答案 a ≥0解析 y =-|x |在[0,+∞)上单调递减,∴a ≥0.13.函数f (x )=|log a x |(0<a <1)的单调递增区间是________.答案 [1,+∞)解析 函数图像如图. 14.在给出的下列4个条件中,①⎩⎪⎨⎪⎧ 0<a <1,x ∈(-∞,0), ②⎩⎪⎨⎪⎧ 0<a <1,x ∈(0,+∞), ③⎩⎪⎨⎪⎧ a >1,x ∈(-∞,0), ④⎩⎪⎨⎪⎧a >1,x ∈(0,+∞) 能使函数y =log a 1x 2为单调递减函数的是________. (把你认为正确的条件编号都填上).答案 ①④解析 利用复合函数的性质,①④正确.15.函数f (x )=x x +1的最大值为________. 答案 12解析 当x =0时,y =0.当x ≠0时,f (x )=1x +1x ,∵x +1x ≥2,当且仅当x =1x,即x =1时成立,故0<f (x )≤12,∴0≤f (x )≤12. 16.给出下列命题 ①y =1x在定义域内为减函数; ②y =(x -1)2在(0,+∞)上是增函数; ③y =-1x在(-∞,0)上为增函数; ④y =kx 不是增函数就是减函数.其中错误命题的个数有________.答案 3解析 ①②④错误,其中④中若k =0,则命题不成立.17.已知函数f (x )的定义域为A ,若其值域也为A ,则称区间A 为f (x )的保值区间.若g (x )=-x +m +e x 的保值区间为[0,+∞),则m 的值为________.答案 -1解析 由定义知,g (x )=-x +m +e x 保值区间[0,+∞),又∵g ′(x )=-1+e x ≥0,∴g (x )为在[0,+∞)上的增函数.∴当x =0时,g (0)=0,即m +1=0,∴m =-1.18.试判断函数f (x )=x 2-1x在(0,+∞)上的单调性,并加以证明. 答案 单调递增,证明略解析 方法一:函数f (x )=x 2-1x在(0,+∞)上是单调增函数.设0<x 1<x 2,则 f (x 1)-f (x 2)=x 21-x 22-(1x 1-1x 2) =(x 1-x 2)⎝⎛⎭⎫x 1+x 2+1x 1x 2. ∵x 2>x 1>0,∴x 1-x 2<0,x 1+x 2+1x 1x 2>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故f (x )在(0,+∞)上单调递增.方法二:f ′(x )=2x +1x2. 当x >0时,f ′(x )>0,故f (x )在(0,+∞)上为增函数.19.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.答案 (1)a >1时,(0,+∞);a =1时,{x |x >0且x ≠1};0<a <1时,{x |0<x <1-1-a 或x >1+1-a }(2)lg a 2 (3)(2,+∞)解析 (1)由x +a x -2>0,得x 2-2x +a x >0.①当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞);②当a =1时,定义域为{x |x >0且x ≠1};③当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,g (x )=x +a x -2在[2,+∞)上是增函数.∴f (x )=lg(x +a x -2)在[2,+∞)上的最小值为f (2)=lg a 2.(3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x -2>1对x ∈[2,+∞)恒成立.∴a >3x -x 2.而h (x )=3x -x 2=-(x -32)2+94在x ∈[2,+∞)上是减函数,∴h (x )max =h (2)=2.∴a >2.1.若函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的一个单调递增区间是( )A .(3,8)B .(-7,-2)C .(-3,-2)D .(0,5)答案 B解析 令-2<x +5<3,得-7<x <-2.2.若函数y =f (x )在R 上单调递增,且f (m 2+1)>f (-m +1),则实数m 的取值范围是()A .(-∞,-1)B .(0,+∞)C .(-1,0)D .(-∞,-1)∪(0,+∞)答案 D解析 由题意得m 2+1>-m +1,故m 2+m >0,故m <-1或m >0.3.函数f (x )=log 12(3-2x )的单调递增区间是________.答案 (-∞,32)4.函数y =x +x +4的最小值是________.答案 2解析 由⎩⎪⎨⎪⎧x ≥0,x +4≥0,得x ≥0. 又函数y =x +x +4在[0,+∞)上是增函数, 所以函数的最小值为0+4=2.5.函数f (x )=(13)x -log 2(x +2)在区间[-1,1]上的最大值为________. 答案 3解析 由于y =(13)x 在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减.故f (x )在[-1,1]上的最大值为f (-1)=3.6.写出下列函数的单调区间:(1)y =|x 2-3x +2|; (2)y =2-x x +3. 解析 (1)y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2 (x ≤1或x ≥2),-(x 2-3x +2) (1<x <2). 根据图像,可知,单调递增区间是⎣⎡⎦⎤1,32和[2,+∞); 单调递减区间是(-∞,1]和⎣⎡⎦⎤32,2.(2)y =2-x x +3=-⎝⎛⎭⎫1-5x +3=-1+5x +3. 方法一:图像法:作出函数的图像,得函数的单调递减区间是(-∞,-3)和(-3,+∞).方法二:利用已知函数的单调性:f (x )的图像是由y =5x的图像先向左平移3个单位,再向下平移一个单位得到的,∵y =5x在(-∞,0),及(0,+∞)上是减函数, ∴f (x )=2-x x +3在(-∞,-3),及(-3,+∞)上也是减函数. 方法三:定义法(略)7.写出下列函数的单调区间:(1)y =|x -32|; (2)y =2x +4x -2; (3)y =|x |(1-x ). 答案 (1)减区间(-∞,32),增区间(32,+∞) (2)减区间(-∞,2),(2,+∞)(3)增区间⎣⎡⎦⎤0,12,减区间(-∞,0],⎣⎡⎭⎫12,+∞。
题组层级快练 (三十 )1.对于非零向量a,b,“a+b= 0”是“a∥b”的 ()A .充分不用要条件B.必要不充分条件C.充分必要条件D.既不充分也不用要条件答案A剖析若 a+b=0,则 a=- b,因此 a∥b;若 a∥b,则 a=λb,a+b=0不用然成立,故前者是后者的充分不用要条件.2.设a是任向来量,e是单位向量,且a∥e,则以下表示形式中正确的选项是 () aA .e=|a|B.a= |a|eC.a=- |a|e D.a=±|a|e答案D剖析对于 A ,当a= 0 时,a没有意义,错误;|a|对于 B, C, D 当a=0 时,选项 B, C,D 都对;当 a≠0时,由 a∥e 可知, a 与 e 同向或反向,选 D.→→→3.(2015 北·京东城期中 )已知 ABCD 为平行四边形,若向量AB=a, AC=b,则向量 BD 为()A .a-b B.a+bC.b- 2a D.-a-b答案C→ →→4.以下列图,在正六边形ABCDEF 中, BA+ CD + EF= ()→A . 0 B.BE→→C.ADD.CF答案D→→→→→→→→→剖析由于 BA=DE ,故 BA+ CD+ EF= CD + DE+EF =CF .5.(2015 广·东惠州二中模拟)已知点 O, A, B 不在同一条直线上,点P 为该平面上一点,→→→3OA-OB且 OP=,则()2A.点 P 在线段 AB 上B.点 P 在线段 AB 的反向延长线上C.点D.点答案剖析P 在线段 AB 的延长线上P 不在直线 AB 上B→→ →3→1→ →1→→→1→ →→→3OA- OB1 OP2=2OA-2OB = OA+2(OA- OB)= OA+2BA,即 OP- OA = AP=2=→BA,因此点P 在线段 AB 的反向延长线上,应选 B.→→6.在△ ABC 中,点 D 在边 AB 上, CD 均分∠ ACB.若CB=a,CA =b, |a|= 1, |b|= 2,则→CD= ()1221A. 3a+3bB.3a+3b3443C.5a+5bD.5a+5b答案B剖析由内角均分线定理,得|CA| |AD |→→→→2→→2→→|CB|=|DB |=2.∴CD = CA+ AD=CA+3AB=CA+3(CB- CA)=23CB→+13CA→=23a+13b.故B正确.→→7.已知向量i与j不共线,且 AB=i+ m j,AD =n i+j,若 A, B,D 三点共线,则实数m,n 应该满足的条件是 ()A . m+ n= 1B. m+n=- 1C. mn= 1D. mn=- 1答案 C→→剖析由 A, B, D 共线可设 AB=λAD ,于是有i+ m j=λ(n i+j)=λn i+λj.又i,j不共线,λn= 1,因此即有 mn=1.λ= m,→ →8.O 是平面上必然点, A,B,C 是该平面上不共线的三个点,一动点 P 满足: OP=OA +→→λ(AB+ AC),λ∈ (0,+∞ ),则直线 AP 必然经过△ ABC 的 ()A .外心B.内心C.重心D.垂心答案C剖析取BC中点M.→→→ →OP= OA+λ(AB +AC),→→→→OP- OA=λ(AB +AC),→→AP= 2λAD.∴A, P,D 三点共线,∴ AP 必然经过△ ABC 的重心, C 正确.→→→9.在四边形ABCD 中, AB=a+ 2b,BC=- 4a-b,CD =- 5a-3b,则四边形ABCD 的形状是 ()A .矩形B.平行四边形C.梯形D.以上都不对答案C→→→→→剖析由已知 AD= AB+ BC+ CD=- 8a- 2b= 2(-4a-b)= 2BC.→ →→→∴AD ∥BC.又 AB与 CD 不平行,∴四边形 ABCD 是梯形.→10.已知四边形 ABCD 是菱形,点 P 在对角线 AC 上(不包括端点 A,C)的充要条件是 AP=→ →λ(AB+ AD ),则λ的取值范围是 ()A .λ∈ (0,1)B.λ∈ (- 1,0)C.λ∈ (0,2D.λ∈ (-2, 0) 2)2答案A剖析以下列图,∵点 P 在对角线 AC 上 (不包括端点 A, C),→→→→→→→ →∴AP=λAC=λ(AB +AD).由 AP 与 AC同向知,λ>0. 又 |AP|<|AC|,→|AP|=λ<1,∴λ∈(0,1) .反之亦然.∴→|AC|→→→11.设 A1,A2,A3,A4是平面直角坐标系中两两不同样的四点,若A1 A3=λA1A2(λ∈R),A1A4→1+1= 2,则称 A3,A4调停切割 A1, A2.已知平面上的点=μA1 A2(μ∈R ),且C, D 调停切割点λ μA, B,则以下说法正确的选项是()A . C 可能是线段AB 的中点B. D可能是线段AB 的中点C. C,D可能同时在线段AB 上D.C,D不可以能同时在线段AB的延长线上答案D剖析若 A 成立,则λ= 1,而 1= 0,不可以能;同理 2 μB 也不可以能;若C 成立,则0<λ<1,且 0<μ<1,1+ 1>2,与已知矛盾;若λ μC,D同时在线段AB 的延长线上时,λ>1,且μ>1,1+1λ μ<2,与已知矛盾,故C,D 不可以能同时在线段AB 的延长线上,故 D 正确.12.以下列图,以下结论不正确的选项是________.→33①PQ =2a+2b;→3 3②P T =-2a-2b;→31③PS=2a-2b;→3④PR=a+b.2答案②④2→→33剖析由 a+b=3PQ,知PQ=2a+2b,①正确;由→33→ →PT=2a-2b,从而②错误;PS=PT+→ 3 1→ → 3 1b,故PS=2a-2b,③正确;PR=PT+2b=2a+2b,④错误.故正确的为①③.→ →13.以下列图,已知∠B= 30°,∠ AOB= 90°,点 C 在 AB 上, OC⊥AB,用 OA和 OB来表示→→向量 OC,则 OC等于 ________.答案剖析3→1→4OA+ OB4→→→→1→→1→→ 3→1→OC= OA+ AC= OA+4AB= OA+4(OB- OA)=4OA+4OB.→→→14.设a和b是两个不共线的向量,若AB= 2a+k b, CB=a+b, CD= 2a-b,且 A, B,D 三点共线,则实数 k 的值等于 ________.答案- 4→ →→→ → →剖析∵A, B,D 三点共线,∴ AB∥BD .∵AB= 2a+ k b, BD= BC+ CD =a- 2b,∴k=- 4.故填- 4.→→→15.已知 O 为△ ABC 内一点,且 OA+ OC+ 2OB= 0,则△ AOC 与△ ABC 的面积之比是________.答案1∶ 2剖析以下列图,取 AC 中点 D.→→→∴OA+OC= 2OD.→→∴OD= BO.∴O 为 BD 中点,∴面积比为高之比.16.已知向量a= 2e1- 3e2,b= 2e1+ 3e2,其中e1,e2不共线,向量c=2e1- 9e2.问可否存在这样的实数λ,μ,使向量 d=λa+μb 与 c 共线?答案当λ=- 2μ时共线剖析∵d=λ(2 e1-3e2)+μ(2e1+3e2)=(2 λ+ 2μ)e1+ (- 3λ+ 3μ)e2.要使 d 与 c 共线,则应有实数k,使d= k c.即(2 λ+ 2μ)e1+ (- 3λ+ 3μ)e2= 2k e1- 9k e2.2λ+ 2μ=2k,即得λ=- 2μ.- 3λ+ 3μ=- 9k,故存在这样的实数λ,μ,只要λ=- 2μ,就能使 d 与 c 共线.17.以下列图,已知点G 是△ ABO 的重心.→→→(1)求 GA+ GB+GO;→→→→(2)若 PQ 过△ ABO 的重心 G,且 OA=a,OB=b, OP=m a, OQ= n b,求证:m 1+1n= 3.→→→答案(1)GA+ GB+ GO= 0 (2)略剖析(1) 以下列图,延长OG 交 AB 于 M 点,则M 是AB的中点.→→→∴GA+GB= 2GM.∵G 是△ABO 的重心,→→∴GO=- 2GM .→→→∴GA+GB+ GO= 0. (2)∵M 是 AB 边的中点,→ 1 →→1∴OM =2(OA + OB)=2(a+b).→ 2→1又∵G 是△ABO 的重心,∴ OG=3OM=3(a+b).→→→111∴PG=OG- OP=3(a+b) -m a=(3- m)a+3b.→→→而PQ =OQ - OP= n b- m a,∵P, G, Q 三点共线,→→∴有且只有一个实数λ,使得PG=λPQ.∴(1-m)a+1 =λn-λm 33bba.∴(1-m+λm)a+ (1-λn)b=0.3313- m+λm= 0,1 +1= 3.∵a 与 b 不共线,∴消去λ,得1m n3-λn= 0.。
高考调研数学答案2016【篇一:【高考调研】2016届高三理科数学一轮复习配套题组层级快练82】>(第二次作业)3273a.0 c.2 答案 c111263111111532333692.抛掷两枚骰子,当至少有一枚5点或一枚6点出现时,就说这次实验成功,则在30次实验中成功次数x的均值是( )55a. 650 3答案 c114555解析至少有一枚5点或一枚6点的概率为1-(1-)(1-)=1.∴x~b(30),∴e(x)=30339999=5033.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的数学期望为2(不计其他得分情况),则ab的最大值为( )1a.481 12答案d解析设投篮得分为随机变量x,则x的分布列为6当且仅当3a=2b时,等号成立.4.设等差数列{an}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d=________.12416403d.10 b.1 d.31答案 2解析 a1,a2,a3,a4,a5,a6,a7的均值为 a1+a2+a3+a4+a5+a6+a7a4,则7?a1-a4?2+?a2-a4?2+?+?a7-a4?2711=4d2=1,d=225.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.1答案 252p+1-p22126.某校举行一次以“我为教育发展做什么”为主题的演讲比赛,比赛分为初赛、复赛、决赛三个阶211段,已知某选手通过初赛、复赛、决赛的概率分别为,334(1)求该选手在复赛阶段被淘汰的概率;答案 (1) (2)99解析(1)记“该选手通过初赛”为事件a,“该选手通过复赛”为事件b,“该选手通过决赛”为事211件c,则p(a)p(b)=,p(c)=.33421433214339212399953111211212.1515515338.根据以往的经验,某工程施工期间的降水量x(单位:mm)对工期的影响如下表:求: (1)工期延误天数y的均值与方差;(2)在降水量x至少是300的条件下,工期延误不超过6天的概率. 6答案 (1)均值为3,方差为9.8 7解析 (1)由已知条件和概率的加法公式有:p(x300)=0.3,p(300≤x700)=p(x700)-p(x300)=0.7-0.3=0.4,p(700≤x900)=p(x900)-p(x700)=0.9-0.7=0.2,p(x≥900)=1-p(x900)=1-0.9=0.1. 所以y的分布列为(2)由概率的加法公式,得p(x≥300)=1-p(x300)=0.7. 又p(300≤x900)=p(x900)-p(x300)=0.9-0.3=0.6,由条件概率,得p(y≤6|x≥300)=p(x900|x≥300)=p?300≤x900?0.66=. 0.77p?x≥300?6故在降水量x至少是300的条件下,工期延误不超过6天的概率是. 79.为提高学生学习语文的兴趣,某地区举办了中学生“汉语听写比赛”.比赛成绩只有90分,70分,60分,40分,30分五种,将本次比赛的成绩分为a,b,c,d,e五个等级.从参加比赛的学生中随机抽取了30名,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:(1)1人,其成绩等级为“a或b”的概率;(2)根据(1)的结论,若从该地区参加“汉语听写比赛”的学生(参赛人数很多)中任选3人,记x表示抽到成绩等级为“a或b”的学生人数,求x的分布列及数学期望e(x).1答案 (1) (2)1346解析 (1)根据统计数据可知,从这30名学生中任选1人,其成绩等级为“a或b”的频率为=3030101. 3031故从该地区参加“汉语听写比赛”的学生中任意抽取1人,其成绩等级为“a或b”的概率约为3(2)由已知得,随机变量x的可能取值为0,1,2,3, 10238故随机变量x的分布列为279927讲评新课标高考的数学试题对概率与统计内容的考查已经悄然发生了变化,其侧重点由以往的概率及概率分布列的问题,变为统计与概率及分布列知识的综合,包括统计案例分析.书.现某人参加这个选修课的考试,他a级考试成绩合格的概率为,b级考试合格的概率为.假设各级考32试成绩合格与否均互不影响.(1)求他不需要补考就可获得该选修课的合格证书的概率;答案 (1)33解析设“a级第一次考试合格”为事件a1,“a级补考合格”为事件a2;“b级第一次考试合格”为事件b1,“b级补考合格”为事件b2.(1)不需要补考就获得合格证书的事件为a1b1,注意到a1与b1相互独立, 2113231故该考生不需要补考就获得该选修课的合格证书的概率为3即该考生参加考试的次数的期望为3【篇二:2016届浙江省高三调研考试数学(理)试题】>数学(理科)姓名______________ 准考证号______________ 本试题卷分选择题和非选择题两部分。
题组层级快练(六十一)1.(课本习题改编)直线y=ax+1与圆x2+y2-2x-3=0的位置关系是()A.相切B.相交C.相离D.随a的变化而变化答案 B解析∵直线y=ax+1恒过定点(0,1),又点(0,1)在圆(x-1)2+y2=4的内部,故直线与圆相交.2.直线x sinθ+y cosθ=2+sinθ与圆(x-1)2+y2=4的位置关系是()A.相离B.相切C.相交D.以上都有可能答案 B解析圆心到直线的距离d=|sinθ-2-sinθ|sin2θ+cos2θ=2.所以直线与圆相切.3.过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A,B两点,若|AB|=8,则直线l的方程为()A.5x+12y+20=0B.5x+12y+20=0或x+4=0C.5x-12y+20=0D.5x-12y+20=0或x+4=0答案 B解析圆的标准方程为(x+1)2+(y-2)2=25,由|AB|=8知,圆心(-1,2)到直线l的距离d=3.当直线l的斜率不存在,即直线l的方程为x=-4时,符合题意.当直线l的斜率存在时,设直线l的方程为y=k(x+4),即kx-y+4k=0.则有|3k-2|k3+1=3,∴k=-512.此时直线l的方程为5x+12y+20=0.4.已知直线l :y =k (x -1)-3与圆x 2+y 2=1相切,则直线l 的倾斜角为( ) A.π6 B.π2 C.2π3 D.5π6答案 D解析 由题意知,|k +3|k 2+1=1,∴k =-33.∴直线l 的倾斜角为5π6.5.若圆心在x 轴上,半径为5的圆C 位于y 轴左侧,且被直线x +2y =0截得的弦长为4,则圆C 的方程是( )A .(x -5)2+y 2=5B .(x +5)2+y 2=5C .(x -5)2+y 2=5D .(x +5)2+y 2=5答案 B解析 设圆心为(a,0)(a <0),因为截得的弦长为4,所以弦心距为1,则d =|a +2×0|12+22=1,解得a =-5,所以,所求圆的方程为(x +5)2+y 2=5.6.已知圆O :x 2+y 2-2x +my -4=0上两点M ,N 关于直线2x +y =0对称,则圆O 的半径为( )A .9B .3C .6D .2答案 B解析 由x 2+y 2-2x +my -4=0,得(x -1)2+(y +m 2)2=1+m 24+4,圆心坐标为(1,-m2).又由已知条件可知圆心在直线2x +y =0上,将圆心坐标代入直线方程可求得m =4.设圆O 的半径为r ,则r 2=1+m 24+4=9,解得r =3.7.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .1个 B .2个 C .3个 D .4个答案 C解析 把x 2+y 2+2x +4y -3=0化为(x +1)2+(y +2)2=8,圆心为(-1,-2),半径r =22,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于 2.8.(2015·福建福州质检)若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( )A .-1B .0C .1D .6答案 B解析 联立⎩⎪⎨⎪⎧(x -3)2+(y -3)2=4,x -y +2=0,消去y ,得x 2-4x +3=0.解得x 1=1,x 2=3. ∴A (1,3),B (3,5).又C (3,3),∴CA →=(-2,0),CB →=(0,2). ∴CA →·CB →=-2×0+0×2=0.9.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若C 上存在的点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4答案 B解析 由(x -3)2+(y -4)2=1得圆上点P (x 0,y 0)可化为⎩⎪⎨⎪⎧x 0=3+cos θ,y 0=4+sin θ.∵∠APB =90°,即AP →·BP →=0,∴(x 0+m )(x 0-m )+y 20=0.∴m 2=x 20+y 20=26+6cos θ+8sin θ=26+10sin(θ+φ)≤36.∴m ≤6,即m 的最大值为6.10.(2014·大纲全国)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.答案 43解析 利用两点间距离公式及直角三角形求△AOB 各边,进而利用二倍角公式求夹角的正切值.如图,|OA |=12+32=10.∵半径为2,∴|AB |=|OA |2-|OB |2=10-2=2 2.∴tan ∠OAB =|OB ||AB |=222=12.∴所求夹角的正切值为tan ∠CAB =2tan ∠OAB 1-tan 2∠OAB =2×121-14=43. 11.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.答案 4±15解析 依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|1·a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15.12.(2013·江西理)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.答案 -33解析 曲线y =1-x 2的图像如图所示.若直线l 与曲线相交于A ,B 两点,则直线l 的斜率k <0,设l :y =k (x -2),则点O 到l 的距离d =-2kk 2+1.又S △AOB =12|AB |·d =12×21-d 2·d =(1-d 2)·d 2≤1-d 2+d 22=12,当且仅当1-d 2=d 2,即d 2=12时,S △AOB 取得最大值.所以2k 2k 2+1=12.∴k 2=13,∴k =-33.13.已知圆C :x 2+y 2+2x -4y +3=0.若圆C 的切线在x 轴和y 轴上的截距的绝对值相等,求此切线的方程.答案 x +y -3=0或x +y +1=0或x -y +5=0或x -y +1=0或(2±6)x -y =0 解析 ∵切线在两坐标轴上截距的绝对值相等, ∴切线的斜率是±1或过原点.①当k =±1时,设切线方程为y =-x +b 或y =x +c ,分别代入圆C 的方程得2x 2-2(b -3)x +(b 2-4b +3)=0或2x 2+2(c -1)x +(c 2-4c +3)=0.由于相切,则方程有等根, 即b =3或b =-1,c =5或c =1. 故所求切线方程为x +y -3=0,x +y +1=0,x -y +5=0,x -y +1=0. ②当切线过原点时,设方程为y =kx 即kx -y =0. 由|-k -2|k 2+1=2,得k =2±6.∴此时切线方程为y =(2±6)x .综上①②可得切线方程为x +y -3=0,x +y +1=0,x -y +5=0,x -y +1=0,(2±6)x -y =0.14.已知圆C :x 2+y 2+x -6y +m =0与直线l :x +2y -3=0. (1)若直线l 与圆C 没有公共点,求实数m 的取值范围;(2)若直线l 与圆C 相交于P ,Q 两点,O 为原点,且OP ⊥OQ ,求实数m 的值. 答案 (1)(8,374) (2)m =3解析 (1)圆的方程为(x +12)2+(y -3)2=37-4m 4,故有37-4m 4>0,解得m <374.将直线l 的方程与圆C 的方程组成方程组,得⎩⎪⎨⎪⎧x +2y -3=0,x 2+y 2+x -6y +m =0,消去y ,得x 2+(3-x 2)2+x -6×3-x 2+m =0.整理,得5x 2+10x +4m -27=0.①∵直线l 与圆C 没有公共点,∴方程①无解. 故有Δ=102-4×5(4m -27)<0,解得m >8. ∴m 的取值范围是(8,374).(2)设P (x 1,y 1),Q (x 2,y 2),由OP ⊥OQ ,得OP →·OQ →=0,即x 1x 2+y 1y 2=0.② 由(1)及根与系数的关系,得 x 1+x 2=-2,x 1x 2=4m -275.③又∵P ,Q 在直线x +2y -3=0上,∴y 1y 2=3-x 12×3-x 22=14[9-3(x 1+x 2)+x 1x 2].将③代入上式,得y 1y 2=m +125,④将③④代入②,得x 1x 2+y 1y 2=4m -275+m +125=0,解得m =3.代入方程①检验得Δ>0成立,∴m =3.15.(2015·福建漳州七校第一次联考)已知圆C :x 2+y 2+2x +a =0上存在两点关于直线l :mx +y +1=0对称.(1)求实数m 的值;(2)若直线l 与圆C 交于A ,B 两点,OA →·OB →=-3(O 为坐标原点),求圆C 的方程. 答案 (1)m =1 (2)x 2+y 2+2x -3=0解析 (1)圆C 的方程为(x +1)2+y 2=1-a ,圆C (-1,0). ∵圆C 上存在两点关于直线l :mx +y +1=0对称, ∴直线l :mx +y +1=0过圆心C . ∴-m +1=0,解得m =1.(2)联立⎩⎪⎨⎪⎧x 2+y 2+2x +a =0,x +y +1=0,消去y ,得2x 2+4x +a +1=0.设A (x 1,y 1),B (x 2,y 2),Δ=16-8(a +1)>0,∴a <1. 由x 1+x 2=-2,x 1x 2=a +12,得y 1y 2=(-x 1-1)(-x 2-1)=a +12-1.∴OA →·OB →=x 1x 2+y 1y 2=a +1-1=a =-3. ∴圆C 的方程为x 2+y 2+2x -3=0.16.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 答案 (1)(x -1)2+(y -3)2=2 (2)x +3y -8=0,165解析 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上.又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=22,O 到l 的距离为4105,|PM |=4105,所以△POM 的面积为165.1.(2013·重庆)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17答案 A解析 圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值.又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-4=(2-3)2+(-3-4)2-4=52-4,故选A. 2.(2013·新课标全国Ⅱ文)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 答案 (1)y 2-x 2=1(2)x 2+(y -1)2=3或x 2+(y +1)2=3 解析 (1)设P (x ,y ),圆P 的半径为r . 由题设y 2+2=r 2,x 2+3=r 2. 从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3. 3.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为任何实数,直线l 与圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长. 答案 (1)略 (2)27解析 方法一:(1)由⎩⎪⎨⎪⎧y =kx +1,(x -1)2+(y +1)2=12,消去y ,得(k 2+1)x 2-(2-4k )x -7=0. 因为Δ=(2-4k )2+28(k 2+1)>0恒成立,所以不论k 为任何实数,直线l 和圆C 总有两个交点. (2)设直线与圆交于A (x 1,y 1),B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长 |AB |=1+k 2|x 1-x 2| =28-4k +11k 21+k 2=211-4k +31+k 2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0. 当t =0时,k =-34,当t ≠0时,因为t ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0. 故t =4k +31+k 2的最大值为4,此时|AB |最小为27.方法二:(1)圆心C (1,-1)到直线l 的距离d =|k +2|1+k 2,圆C 的半径R =23,R 2-d 2=12-k 2+4k +41+k 2=11k 2-4k +81+k2,而在S =11k 2-4k +8中, Δ=(-4)2-4×11×8<0, 故11k 2-4k +8>0对k ∈R 恒成立.所以R 2-d 2>0,即d <R ,所以不论k 为任何实数,直线l 和圆C 总有两个交点. (2)∵直线l 恒过圆内定点P (0,1),∴由平面几何知识可得当P 点为弦AB 中点时弦长最短. 由勾股定理,知|AB |=212-5=27,即直线l 被圆C 截得的最短弦长为27.。
题组层级快练(五十八)1.直线x cos140°+y sin40°+1=0的倾斜角是( ) A .40° B .50° C .130° D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.3.已知直线l 的倾斜角为α,且sin α+cos α=15,则直线l 的斜率是( )A .-43B .-34C .-43或-34D .±43答案 A解析 ∵α为倾斜角,∴0≤α<π. ∵sin α+cos α=15,∴sin α=45,cos α=-35.∴tan α=-43.4.若经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( ) A .x +2y -6=0 B .2x +y -6=0 C .x -2y +7=0 D .x -2y -7=0答案 B解析 方法一:直线过P (1,4),代入,排除A ,D ,又在两坐标轴上的截距为正,排除C ,故选B. 方法二:设方程为x a +y b =1,将(1,4)代入得1a +4b =1.a +b =(a +b )(1a +4b )=5+(b a +4ab)≥9,当且仅当b =2a ,即a =3,b =6时,截距之和最小. ∴直线方程为x 3+y6=1,即2x +y -6=0.5.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( ) A. 3 B .- 3 C .0 D .1+ 3答案 A解析 直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°,tan60°= 3. 6.若直线l 1,l 2关于x 轴对称,l 1的斜率是-7,则l 2的斜率是( ) A.7 B .-77 C.77D .-7答案 A解析 画出图形,根据对称性分析两直线的倾斜角之间的关系,再判断其斜率之间的关系. 如图所示,显然直线l 2的斜率为7.7.(2015·海淀区)若直线l 经过点A (1,2),且在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C.15<k <1 D .k >12或k <-1答案 D解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式可得.也可以利用数形结合.8.两直线x m -y n =1与x n -ym=1的图像可能是图中的哪一个( )答案 B9.若直线l 左移3个单位,再上移1个单位时,恰回到原来的位置,则直线的斜率是( ) A .-13B .-3 C.13 D .3答案 A解析 设点P (x 0,y 0)为l 上一点,∴左移3个单位,上移1个单位后变为P ′(x 0-3,y 0+1),而P 与P ′均在l 上,∴k =y 0+1-y 0x 0-3-x 0=-13.10.过点M (1,-2)的直线与x 轴,y 轴分别交于P ,Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0 答案 B解析 设P (x 0,0),Q (0,y 0),∵M (1,-2)为线段PQ 中点, ∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1.即2x -y -4=0.11.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线的倾斜角的取值范围是( )A .[π6,π3)B .(π6,π2)C .(π3,π2)D .[π6,π2]答案 B解析 ∵直线l 恒过定点(0,-3), 作出两直线的图像,如图所示,从图中看出,直线l 的倾斜角的取值范围应为(π6,π2).12.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 由条件知直线在两个轴上的截距为正数易知.13.过点M (3,-4)且在两坐标轴上的截距互为相反数的直线方程为________. 答案 y =-43x 或x -y -7=014.已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,则直线l 的方程为________.答案 x -6y +6=0或x -6y -6=0 解析 设所求直线l 的方程为x a +yb =1.∵k =16,即b a =-16,∴a =-6b .又S △ABC =3=12|a |·|b |,∴|ab |=6.则当b =1时,a =-6;当b =-1时,a =6. ∴所求直线方程为x -6+y 1=1或x 6+y-1=1.即x -6y +6=0或x -6y -6=0.15.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 (-73,-13)解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ =13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13.16.已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得到的直线l ′的方程.答案 x +3=0或x -3y +3=0 解析 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0). ∵直线l 的斜率k =3, ∴其倾斜角θ=60°.若直线l 绕点M 逆时针方向旋转30°,则直线l ′的倾斜角为60°+30°=90°,此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan30°=33. 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.17.在△ABC 中,已知A (1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.答案 2x +5y +9=0 解析 k AC =-2,k AB =23.∴AC :y -1=-2(x -1),即2x +y -3=0, AB :y -1=23(x -1),即2x -3y +1=0.由⎩⎪⎨⎪⎧2x +y -3=0,3x +2y -3=0,得C (3,-3). 由⎩⎪⎨⎪⎧2x -3y +1=0,x -2y =0,得B (-2,-1). ∴BC :2x +5y +9=0.18.过点P (1,2)作直线l ,与x 轴,y 轴正半轴分别交于A ,B 两点,求△AOB 面积的最小值及此时直线l 的方程.答案 (S △AOB )min =4,l :2x +y -4=0 解析 设直线l 的方程为y -2=k (x -1), 令y =0,得x =k -2k ,令x =0,得y =2-k .∴A ,B 两点坐标分别为A (k -2k ,0),B (0,2-k ).∵A ,B 是l 与x 轴,y 轴正半轴的交点,∴⎩⎨⎧k <0,k -2k>0,2-k >0.∴k <0.S △AOB =12·|OA |·|OB |=12·k -2k ·(2-k )=12(4-4k -k ).由-4k >0,-k >0,得S △AOB ≥12(4+2(-4k)(-k ))=4. 当且仅当k =-2时取“=”.∴S △AOB 最小值为4,方程为2x+y -4=0.1.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4答案 A解析 ∵k MN =m -4-2-m=1,∴m =1.2.直线x +a 2y -a =0(a >0),当此直线在x ,y 轴上的截距和最小时,a 的值为________. 答案 1解析 方程可化为x a +y 1a =1,因为a >0,所以截距之和t =a +1a ≥2,当且仅当a =1a ,即a =1时取等号,故a 的值为1.3.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________. 答案 x +y -3=0或x +2y -4=0解析 由题意可设直线方程为x a +yb=1.则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 4.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. 答案 (1)3x +y =0或x +y +2=0 (2)a ≤-1解析 (1)当直线过原点时,在x 轴和y 轴上的截距为零. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.因此直线l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧-(a +1)≥0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a ≤-1.。
【⾼考调研】2016届⾼三理科数学⼀轮复习题组层级快练69含答案题组层级快练(六⼗九)1.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A .椭圆 B .AB 所在的直线 C .线段AB D .⽆轨迹答案 C解析∵|AB |=5,∴到A ,B 两点距离之和为5的点的轨迹是线段AB .2.若点P 到点F (0,2)的距离⽐它到直线y +4=0的距离⼩2,则P 的轨迹⽅程为( ) A .y 2=8x B .y 2=-8x C .x 2=8y D .x 2=-8y 答案 C解析由题意知P 到F (0,2)的距离⽐它到y +4=0的距离⼩2,因此P 到F (0,2)的距离与到直线y +2=0的距离相等,故P 的轨迹是以F 为焦点,y =-2为准线的抛物线,所以P 的轨迹⽅程为x 2=8y .3.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹⽅程是( )A.x 23+y 24=1 B.x 23+y 24=1(x ≠±3) C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析∵|BC |,|CA |,|AB |成等差数列,∴|BC |+|BA |=2|CA |=4.∴点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.⼜B 是三⾓形的顶点,A ,B ,C 三点不能共线,故所求的轨迹⽅程为x 24+y 23=1,且y ≠0.4.已知点F (1,0),直线l :x =-1,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线答案 D解析连接MF ,由中垂线性质,知|MB |=|MF |.即M 到定点F 的距离与它到直线x =-1距离相等.∴点M 的轨迹是抛物线.∴D 正确.5.设椭圆与双曲线有共同的焦点F 1(-1,0),F 2(1,0),且椭圆长轴是双曲线实轴的2倍,则椭圆与双曲线的交点轨迹是( )A .双曲线B .⼀个圆C .两个圆D .两条抛物线答案 C解析由|PF 1|+|PF 2|=4a ,|PF 1|-|PF 2|=2a ,得到|PF 1|=3|PF 2|或|PF 2|=3|PF 1|,所以是两个圆.6.经过抛物线y 2=2px 焦点的弦的中点的轨迹是( ) A .抛物线 B .椭圆 C .双曲线 D .直线答案 A解析点差法 k AB =2p y 1+y 2=2p 2y=k MF =yx -p 2化简得抛物线.7.(2015·北京朝阳上学期期末)已知正⽅形的四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),点D ,E 分别在线段OC ,AB 上运动,且|OD |=|BE |,设AD 与OE 交于点G ,则点G 的轨迹⽅程是( )A .y =x (1-x )(0≤x ≤1)B .x =y (1-y )(0≤y ≤1)C .y =x 2(0≤x ≤1)D .y =1-x 2(0≤x ≤1) 答案 A解析设D (0,λ),E (1,1-λ),0≤λ≤1,所以线段AD 的⽅程为x +yλ=1(0≤x ≤1),线段OE 的⽅程为y =(1-λ)x (0≤x ≤1),联⽴⽅程组x +y λ=1,0≤x ≤1,y =(1-λ)x ,0≤x ≤1,(λ为参数),消去参数λ得点G 的轨迹⽅程为y =x (1-x )(0≤x ≤1),故A 正确.8.(2015·衡⽔调研卷)双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)实轴的两个顶点为A ,B ,点P 为双曲线M 上除A ,B 外的⼀个动点,若QA ⊥P A 且QB ⊥PB ,则动点Q 的运动轨迹为( )A .圆B .椭圆C .双曲线D .抛物线答案 C解析 A (-a,0),B (a,0),设Q (x ,y ),P (x 0,y 0),k AP =y 0x 0+a ,k BP =y 0x 0-a ,k AQ =yx +a ,k BQ=y x -a ,由QA ⊥P A 且QB ⊥PB ,得k AP k AQ =y 0x 0+a ·y x +a =-1,k BP k BQ =y 0x 0-a ·y x -a=-1.两式相乘即得轨迹为双曲线.9.长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,动点C (x ,y )满⾜AC →=2CB →,则动点C 的轨迹⽅程________.答案 x 2+14y 2=1解析设A (a,0),B (0,b ),则a 2+b 2=9.⼜C (x ,y ),则由AC →=2CB →,得(x -a ,y )=2(-x ,b -y ).即x -a =-2x ,y =2b -2y ,即?a =3x ,b =32y ,代⼊a 2+b 2=9,并整理,得x 2+14y 2=1.10.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平⾏四边形MONP ,则点P 的轨迹⽅程为________.答案 y 2=4(x -2)解析设直线⽅程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由?y =k (x -1),y 2=4x ,联⽴得x =x 1+x 2=2k 2+4k 2.y =y 1+y 2=4kk2,消去参数k ,得y 2=4(x -2).11.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹⽅程为________.答案 (x -10)2+y 2=36(y ≠0)解析⽅法⼀:直接法.设A (x ,y ),y ≠0,则D (x 2,y2).∴|CD |=(x 2-5)2+y 24=3. 化简,得(x -10)2+y 2=36.由于A ,B ,C 三点构成三⾓形,所以A 不能落在x 轴上,即y ≠0. ⽅法⼆:定义法.如图,设A (x ,y ),D 为AB 的中点,过A 作AE ∥CD 交x 轴于E .∵|CD |=3,∴|AE |=6,则E (10,0),∴A 到E 的距离为常数6.∴A 的轨迹为以E 为圆⼼,6为半径的圆,即(x -10)2+y 2=36.⼜A ,B ,C 不共线,故A 点纵坐标y ≠0,故A 点轨迹⽅程为(x -10)2+y 2=36(y ≠0).12.已知抛物线y 2=nx (n <0)与双曲线x 28-y 2m=1有⼀个相同的焦点,则动点(m ,n )的轨迹⽅程是________.答案 n 2=16(m +8)(n <0)解析抛物线的焦点为(n 4,0),在双曲线中,8+m =c 2=(n4)2,n <0,即n 2=16(m +8)(n <0).13.如图所⽰,直⾓三⾓形ABC 的顶点坐标A (-2,0),直⾓顶点B (0,-22),顶点C 在x 轴上,点P 为线段OA 的中点.(1)求BC 边所在直线⽅程;(2)M 为直⾓三⾓形ABC 外接圆的圆⼼,求圆M 的⽅程;(3)若动圆N 过点P 且与圆M 内切,求动圆N 的圆⼼N 的轨迹⽅程.答案 (1)y =22x -22 (2)(x -1)2+y 2=9 (3)49x 2+45y 2=1 解析 (1)∵k AB =-2,AB ⊥BC ,∴k CB =22.∴BC :y =22x -2 2. (2)在上式中,令y =0,得C (4,0).∴圆⼼M (1,0).⼜∵|AM |=3,∴外接圆的⽅程为(x -1)2+y 2=9. (3)∵P (-1,0),M (1,0),∵圆N 过点P (-1,0),∴PN 是该圆的半径.⼜∵动圆N 与圆M 内切,∴|MN |=3-|PN |,即|MN |+|PN |=3.∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆.∴a =32,c =1,b =a 2-c 2=54. ∴轨迹⽅程为49x 2+45y 2=1.14.已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0). (1)求动点P 的轨迹C 的⽅程; (2)讨论轨迹C 的形状.答案 (1)x 2-y 2λ=1(λ≠0,x ≠±1) (2)略解析 (1)由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ. 整理,得x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中⼼在原点,焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中⼼在原点,焦点在x 轴上的椭圆(除去长轴两个端点);③当λ=-1时,轨迹C 为以原点为圆⼼,1为半径的圆除去点(-1,0),(1,0);④当λ<-1时,轨迹C 为中⼼在原点,焦点在y 轴上的椭圆(除去短轴的两个端点). 15.(2014·福建⽂)已知曲线Γ上的点到点F (0,1)的距离⽐它到直线y =-3的距离⼩2. (1)求曲线Γ的⽅程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发⽣变化?证明你的结论.答案 (1)x 2=4y (2)线段AB 长度不变,证明略思路 (1)由题意判断曲线是抛物线,⽤定义求曲线⽅程;(2)先求出切线⽅程,联⽴⽅程得出A ,M 的坐标,⽤勾股定理表⽰AB 的长度.解析⽅法⼀:(1)设S (x ,y )为曲线Γ上任意⼀点,依题意,点S 到F (0,1)的距离与它到直线y =-1的距离相等,所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线,所以曲线Γ的⽅程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的⽅程为y =14x 2,设P (x 0,y 0)(x 0≠0),则y 0=14x 20.由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0.所以切线l 的⽅程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由 y =12x 0x -14x 20,y =0,得A 12x 0,0. 由y =12x 0x -14x 20,y =3,得M 12x 0+6x 0,3. ⼜N (0,3),所以圆⼼C14x 0+3x 0,3,半径r =12|MN |=14x 0+3x 0. ∴|AB |=|AC |2-r 2 =12x 0-14x 0+3x 02+32-14x 0+3x 02= 6. 所以点P 在曲线Γ上运动时,线段AB 的长度不变.⽅法⼆:(1)设S (x ,y )为曲线Γ上任意⼀点,则|y -(-3)|-(x -0)2+(y -1)2=2,依题意,点S (x ,y )只能在直线y =-3的上⽅,所以y >-3. 所以(x -0)2+(y -1)2=y +1. 化简,得曲线Γ的⽅程为x 2=4y . (2)同⽅法⼀.16.(2014·湖北)在平⾯直⾓坐标系xOy 中,点M 到点F (1,0)的距离⽐它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的⽅程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有⼀个公共点、两个公共点、三个公共点时k 的相应取值范围.答案 (1)y 2=?4x ,x ≥0,0,x <0. (2)略思路 (1)根据两点间的距离公式及点到直线的距离公式列⽅程求解轨迹⽅程,注意分x ≥0,x <0两种情况讨论,最后写成分段函数的形式;(2)先求出直线l 的⽅程,然后联⽴直线l 与抛物线的⽅程,消去x ,得到关于y 的⽅程,分k =0,k ≠0两种情况讨论;当k ≠0时,设直线l 与x 轴的交点为(x 0,0)进⽽按Δ,x 0与0的⼤⼩关系再分情况讨论.解析 (1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1. 化简整理,得y 2=2(|x |+x ).故点M 的轨迹C 的⽅程为y 2=?4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0).依题意,可设直线l 的⽅程为y -1=k (x +2).由⽅程组?y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0. ①当k =0时,此时y =1.把y =1代⼊轨迹C 的⽅程,得x =14.故此时直线l :y =1与轨迹C 恰好有⼀个公共点14,1. 当k ≠0时,⽅程①的判别式为Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③若?Δ<0,x 0<0,由②③解得k <-1,或k >12.即当k ∈(-∞,-1)∪12,+∞时,直线l 与C 1没有公共点,与C 2有⼀个公共点,故此时直线l 与轨迹C 恰好有⼀个公共点.若 Δ=0,x 0<0,或Δ>0,x 0≥0,由②③解得k ∈-1,12,或-12≤k <0.即当k ∈?-1,12时,直线l 与C 1只有⼀个公共点,与C 2有⼀个公共点.当k ∈-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈-12,0∪?-1,12时,直线l 与轨迹C 恰好有两个公共点.若Δ>0,x 0<0,由②③解得-12.即当k ∈-1,-12∪0,12时,直线l 与C 1有两个公共点,与C 2有⼀个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综上可知,当k ∈(-∞,-1)∪12,+∞∪{0}时,直线l 与轨迹C 恰好有⼀个公共点;当k ∈-12,0∪?-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈?-1,-12∪0,12时,直线l与轨迹C恰好有三个公共点.。
题组层级快练(六十)1.以抛物线y 2=4x 的焦点为圆心,半径为2的圆的方程为( )A .x 2+y 2-2x -1=0 B .x 2+y 2-2x -3=0C .x 2+y 2+2x -1=0D .x 2+y 2+2x -3=0答案 B解析 ∵抛物线y 2=4x 的焦点是(1,0),∴圆的标准方程是(x -1)2+y 2=4,展开得x 2+y 2-2x -3=0.2.若圆(x +3)2+(y -1)2=1关于直线l :mx +4y -1=0对称,则直线l 的斜率为( )A .4B .-4C.D .-1414答案 D解析 依题意,得直线mx +4y -1=0经过点(-3,1),所以-3m +4-1=0.所以m =1.故直线l 的斜率为-.143.过点P (0,1)与圆x 2+y 2-2x -3=0相交的所有直线中,被圆截得的弦最长时的直线方程是( )A .x =0B .y =1C .x +y -1=0D .x -y +1=0答案 C解析 依题意得所求直线是经过点P (0,1)及圆心(1,0)的直线,因此所求直线方程是x +y =1,即x +y -1=0,选C.4.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4答案 C解析 设圆心C 的坐标为(a ,b ),半径为r .∵圆心C 在直线x +y -2=0上,∴b =2-a .∵|CA |2=|CB |2,∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2.∴a =1,b =1.∴r =2.∴方程为(x -1)2+(y -1)2=4.5.(2015·四川成都外国语学校)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1答案 B解析 C 1:(x +1)2+(y -1)2=1的圆心为(-1,1),它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1.6.(2015·山东青岛一模)若过点P (1,)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长3|AB |=( )A.B .23C.D .42答案 A解析 如图所示,∵PA ,PB 分别为圆O :x 2+y 2=1的切线,∴OA ⊥AP .∵P (1,),O (0,0),3∴|OP |==2.1+3又∵|OA |=1,∴在Rt △APO 中,cos ∠AOP =.12∴∠AOP =60°,∴|AB |=2|AO |sin ∠AOP =.37.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5B .1022C .15D .2022答案 B解析 圆的标准方程为(x -1)2+(y -3)2=10,则圆心(1,3),半径r =,由题意知AC ⊥BD ,且|AC |=210,|BD |=2=2,1010-55所以四边形ABCD 的面积为S =|AC |·|BD |12=×2×2=10.1210528.已知点P 在圆x 2+y 2=5上,点Q (0,-1),则线段PQ 的中点的轨迹方程是( )A .x 2+y 2-x =0B .x 2+y 2+y -1=0C .x 2+y 2-y -2=0D .x 2+y 2-x +y =0答案 B解析 设P (x 0,y 0),PQ 中点的坐标为(x ,y ),则x 0=2x ,y 0=2y +1,代入圆的方程即得所求的方程是4x 2+(2y +1)2=5,化简,得x 2+y 2+y -1=0.9.已知两点A (0,-3),B (4,0),若点P 是圆x 2+y 2-2y =0上的动点,则△ABP 面积的最小值为( )A .6B.112C .8D.212答案 B解析 如图,过圆心C 向直线AB 作垂线交圆于点P ,连接BP ,AP ,这时△ABP 的面积最小.直线AB的方程为+=1,x4y-3即3x -4y -12=0,圆心C 到直线AB 的距离为d ==,|3×0-4×1-12|32+(-4)2165∴△ABP 的面积的最小值为×5×(-1)=.1216511210.在平面直角坐标系中,若动点M (x ,y )满足条件Error!动点Q 在曲线(x -1)2+y 2=上,则|MQ |的12最小值为( )A.B.2322C .1-D.-22512答案 C解析 作出平面区域,由图形可知|MQ |的最小值为1-.2211.以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为________.答案 (x +2)2+(y -)2=32254解析 对于直线3x -4y +12=0,当x =0时,y =3;当y =0时,x =-4.即以两点(0,3),(-4,0)为端点的线段为直径,则r ==,圆心为(-,),32+422524232即(-2,).32∴圆的方程为(x +2)2+(y -)2=.3225412.从原点O 向圆C :x 2+y 2-6x +=0作两条切线,切点分别为P ,Q ,则圆C 上两切点P ,Q274间的劣弧长为________.答案 π解析 如图,圆C :(x -3)2+y 2=,94所以圆心C (3,0),半径r =.32在Rt △POC 中,∠POC =.π6则劣弧PQ 所对圆心角为.2π3弧长为π×=π.233213.设圆C 同时满足三个条件:①过原点;②圆心在直线y =x 上;③截y 轴所得的弦长为4,则圆C 的方程是________.答案 (x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8解析 由题意可设圆心A (a ,a ),如图,则22+22=2a 2,解得a =±2,r 2=2a 2=8.所以圆C 的方程是(x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8.14.一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为2,求此圆的方7程.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0解析 方法一:∵所求圆的圆心在直线x -3y =0上,且与y 轴相切,∴设所求圆的圆心为C (3a ,a ),半径为r =3|a |.又圆在直线y =x 上截得的弦长为2,7圆心C (3a ,a )到直线y =x 的距离为d =.|3a -a |12+12∴有d 2+()2=r 2.即2a 2+7=9a 2,∴a =±1.7故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.方法二:设所求的圆的方程是(x -a )2+(y -b )2=r 2,则圆心(a ,b )到直线x -y =0的距离为.|a -b |2∴r 2=()2+()2.|a -b |27即2r 2=(a -b )2+14.①由于所求的圆与y 轴相切,∴r 2=a 2.②又因为所求圆心在直线x -3y =0上,∴a -3b =0.③联立①②③,解得a =3,b =1,r 2=9或a =-3,b =-1,r 2=9.故所求的圆的方程是(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.方法三:设所求的圆的方程是x 2+y 2+Dx +Ey +F =0,圆心为(-,-),半径为.D2E 212D 2+E 2-4F 令x =0,得y 2+Ey +F =0.由圆与y 轴相切,得Δ=0,即E 2=4F .④又圆心(-,-)到直线x -y =0的距离为,D2E 2|-D 2+E 2|2由已知,得2+()2=r 2,(|-D2+E2|2)7即(D -E )2+56=2(D 2+E 2-4F ).⑤又圆心(-,-)在直线x -3y =0上,D2E2∴D -3E =0.⑥联立④⑤⑥,解得D =-6,E =-2,F =1或D =6,E =2,F =1.故所求圆的方程是x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.15.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=4.10(1)求直线CD 的方程;(2)求圆P 的方程.答案 (1)x +y -3=0(2)(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40解析 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2),∴直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.①又直径|CD |=4,10∴|PA |=2.10∴(a +1)2+b 2=40.由①②解得Error!或Error!∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.16.已知实数x ,y 满足x 2+y 2-2y =0.(1)求2x +y 的取值范围;(2)若x +y +c ≥0恒成立,求实数c 的取值范围.答案 (1)1-≤2x +y ≤1+ (2)c ≥-1552解析 (1)方法一:圆x 2+(y -1)2=1的参数方程为 Error!∴2x +y =2cos θ+sin θ+1.∵-≤2cos θ+sin θ≤,55∴1-≤2x +y ≤+1.55方法二:2x +y 可看作直线y =-2x +b 在y 轴的截距,当直线与圆相切时b 取最值,此时=1.|2×0+1-b |5∴b =1±,∴1-≤2x +y ≤1+.555(2)∵x +y =cos θ+1+sin θ=sin(θ+)+1,2π4∴x +y +c 的最小值为1-+c .2∴x +y +c ≥0恒成立等价于1-+c ≥0.2∴c 的取值范围为c ≥-1.21.将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0答案 C解析 因为圆心是(1,2),所以将圆心坐标代入各选项验证知选C.2.设A (0,0),B (1,1),C (4,2),若线段AD 是△ABC 外接圆的直径,则点D 的坐标是( )A .(-8,6)B .(8,-6)C .(4,-6)D .(4,-3)答案 B解析 线段AB 的垂直平分线x +y -1=0与线段AC 的垂直平分线2x +y -5=0的交点即圆心(4,-3),直径为10,易得点D 的坐标为(8,-6).3.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准方程是( )A .(x -3)2+(y -)2=173B .(x -2)2+(y -1)2=1C .(x -1)2+(y -3)2=1D .(x -)2+(y -1)2=132答案 B解析 设圆心为(a,1),由已知得d ==1,∴a =2(舍-).|4a -3|5124.圆心在抛物线x 2=2y (x >0)上,并且与抛物线的准线及y 轴均相切的圆的方程是( )A .x 2+y 2-x -2y -=014B .x 2+y 2+x -2y +1=0C .x 2+y 2-x -2y +1=0D .x 2+y 2-2x -y +=014答案 D解析 ∵圆心在抛物线上,∴设圆心(a ,).a 22∴圆的方程为(x -a )2+(y -)2=r 2.a 22∴x 2+y 2-2ax -a 2y +a 2+-r 2=0.a 44对比A ,B ,C ,D 项,仅D 项x ,y 前系数符合条件.5.若方程-x -m =0有实数解,则实数m 的取值范围为( )16-x 2A .-4≤m ≤4 B .-4≤m ≤4222C .-4≤m ≤4D .4≤m ≤42答案 B 解析 由题意知方程=x +m 有实数解,分别作出y =与y =x +m 的图像,若两图像有16-x 216-x 2交点,需-4≤m ≤4.26.若直线l :4x -3y -12=0与x ,y 轴的交点分别为A ,B ,O 为坐标原点,则△AOB 内切圆的方程为________.答案 (x -1)2+(y +1)2=1解析 由题意知,A (3,0),B (0,-4),则|AB |=5.∴△AOB 的内切圆半径r ==1,内切圆的圆心坐标为(1,-1).3+4-52∴内切圆的方程为(x -1)2+(y +1)2=1.7.已知圆C 的方程为x 2+y 2-mx -2my =0(m ≠0),以下关于这个圆的叙述中,所有正确命题的序号是________.①圆C 必定经过坐标原点;②圆C 的圆心不可能在第二象限或第四象限;③y 轴被圆C 所截得的弦长为2m ;④直线y =x 与y 轴的夹角的平分线必过圆心.答案 ①②8.(2015·吉林长春一调)若圆C :x 2+y 2+2x -4y +3=0关于直线2ax +by +6=0对称,则由点(a ,b )向圆所作的切线长的最小值为________.答案 4解析 圆C :(x +1)2+(y -2)2=2,圆心坐标为C (-1,2)代入直线2ax +by +6=0,得-2a +2b +6=0即点(a ,b )在直线x -y -3=0上.过C (-1,2)作l 的垂线,垂足设为D ,过D 作圆C 的切线,切点设为E ,则切线长|DE |最短,于是有|CE |=,2|CD |==3,|6|22∴切线长|DE |==4.|CD |2-r 29.在直角坐标系xOy 中,以M (-1,0)为圆心的圆与直线x -y -3=0相切.3(1)求圆M 的方程;(2)如果圆M 上存在两点关于直线mx +y +1=0对称,求实数m 的值.(3)已知A (-2,0),B (2,0),圆内的动点P 满足|PA |·|PB |=|PO |2,求·的取值范围.PA → PB→答案 (1)(x +1)2+y 2=4 (2)m =1 (3)[-2,6)解析 (1)依题意,圆M 的半径r 等于圆心M (-1,0)到直线x -y -3=0的距离,即r ==2.3|-1-3|1+3∴圆M 的方程为(x +1)2+y 2=4.(2)∵圆M 上存在两点关于直线mx +y +1=0对称,∴直线mx +y +1=0必过圆心M (-1,0).∴-m +1=0,∴m =1.(3)设P (x ,y ),由|PA ||PB |=|PO |2,得·=x 2+y 2,(x +2)2+y 2(x -2)2+y 2即x 2-y 2=2.∴·=(-2-x ,-y )·(2-x ,-y )PA → PB→ =x 2-4+y 2=2(y 2-1).∵点P 在圆M 内,∴(x +1)2+y 2<4,∴0≤y 2<4,∴-1≤y 2-1<3.∴·的取值范围为[-2,6).PA → PB→。
题组层级快练(六十四)1.已知M (-2,0),N (2,0),|PM |-|PN |=3,则动点P 的轨迹是( ) A .双曲线 B .双曲线左边一支 C .双曲线右边一支 D .一条射线答案 C解析 ∵|PM |-|PN |=3<4,由双曲线定义知,其轨迹为双曲线的一支. 又∵|PM |>|PN |,故点P 的轨迹为双曲线的右支.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1答案 B解析 椭圆x 24+y 2=1的焦点为(±3,0).因为双曲线与椭圆共焦点,所以排除A ,C. 又双曲线x 22-y 2=1经过点(2,1),所以选B.3.(2015·济宁模拟)如图所示,正六边形ABCDEF 的两个顶点A ,D 为双曲线的两个焦点,其余4个顶点都在双曲线上,则该双曲线的离心率是( )A.3+1B.3-1C. 3D. 2答案 A解析 令正六边形的边长为m ,则有|AD |=2m ,|AB |=m ,|BD |=3m ,该双曲线的离心率等于|AD |||AB |-|BD ||=2m3m -m=3+1.4.已知双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),双曲线的一个焦点到一条渐近线的距离为53c (c 为双曲线的半焦距长),则双曲线的离心率为( )A.52B.32C.355D.23答案 B解析 双曲线x 2a 2-y 2b 2=1的渐近线为x a ±yb =0,焦点A (c,0)到直线bx -ay =0的距离为bc a 2+b 2=53c ,则 c 2-a 2=59c 2,得e 2=94,e =32,故选B.5.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y 29=1C.x 29-y 27=1 D.x 27-y 23=1 答案 A解析 ∵MF 1→·MF 2→=0,∴MF 1→⊥MF 2→. ∴|MF 1→|2+|MF 2→|2=40.∵||MF 1→|-|MF 2→||=2a , ∴|MF 1→|·|MF 2→|=20-2a 2=2,∴a 2=9,b 2=1. ∴所求双曲线的方程为x 29-y 2=1.6.已知双曲线mx 2-ny 2=1(m >0,n >0)的离心率为2,则椭圆mx 2+ny 2=1的离心率为( ) A.12 B.63C.33D.233答案 B解析 由已知双曲线的离心率为2,得1m +1n1m=2. 解得m =3n .又m >0,n >0,∴m >n ,即1n >1m .故由椭圆mx 2+ny 2=1,得y 21n +x 21m=1.∴所求椭圆的离心率为e =1n -1m1n =1n -13n 1n=63. 7.(2014·山东理)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0.8.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,点P 在双曲线上,当△F 1PF 2的面积为2时,PF 1→·PF 2→的值为( )A .2B .3C .4D .6答案 B解析 设点P (x 0,y 0),依题意得,|F 1F 2|=23+1=4, S △PF 1F 2=12|F 1F 2||y 0|=2|y 0|=2,∴|y 0|=1.又∵x 203-y 20=1,∴x 20=3(y 20+1)=6. ∴PF 1→·PF 2→=(-2-x 0,-y 0)·(2-x 0,-y 0)=x 20+y 20-4=3.9.已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)答案 D解析 依题意,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e<2,e 2-2e-1<0,(e -1)2<2,所以1<e <1+2,故选D.10.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.3.B.38C.233D.433答案 D解析 设M (x 0,12p x 20),y ′=(12p x 2)′=x p ,故在M 点处的切线的斜率为x 0p =33,故M (33p ,16p ).由题意又可知抛物线的焦点为(0,p 2),双曲线右焦点为(2,0),且(33p ,16p ),(0,p 2),(2,0)三点共线,可求得p =433,故选D.11.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线x 24-y 2=1的顶点为(±2,0),渐近线方程为y =±12x ,即x -2y =0和x +2y =0.故其顶点到渐近线的距离d =|±2|1+4=25=25 5.12.已知双曲线x 29-y 2a =1的右焦点的坐标为(13,0),则该双曲线的渐近线方程为________.答案 2x ±3y =0解析 ∵右焦点坐标是(13,0), ∴9+a =13,即a =4. ∴双曲线方程为x 29-y 24=1.∴渐近线方程为x 3±y2=0,即2x ±3y =0.13.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________.答案 -2解析 由题可知A 1(-1,0),F 2(2,0). 设P (x ,y )(x ≥1),则P A 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),P A 1→·PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5.∵x ≥1,函数f (x )=4x 2-x -5的图像的对称轴为x =18,∴当x =1时,P A 1→·PF 2→取得最小值-2.14.P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支上一点,F 1,F 2分别为双曲线的左、右焦点,焦距为2c ,则△PF 1F 2的内切圆的圆心横坐标为________.答案 a解析 如图所示,内切圆与三条边的切点分别为A ,B ,C ,由切线性质,得|F 1C |=|F 1A |,|PC |=|PB |,|F 2A |=|F 2B|.由双曲线定义知,|PF 1|-|PF 2|=2a , 即(|PC |+|CF 1|)-(|PB |+|BF 2|)=2a . ∴|CF 1|-|BF 2|=2a 即|F 1A |-|F 2A |=2a . ∵|F 1A |+|F 2A |=2c ,∴|F 1A |=a +c .∴A (a,0).15.(2015·兰州高三诊断)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)一条渐近线的倾斜角为π3,离心率为e ,则a 2+eb的最小值为________.答案263解析 由题意,可得k =b a =tan π3= 3.∴b =3a ,则a 2=b 23,∴e =1+b 2a2=2. ∴a 2+e b =b 23+2b =b 3+2b≥2b 3×2b =263. 当且仅当b 2=6,a 2=2时取“=”.16.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0;(3)在(2)的条件下求△F 1MF 2的面积. 答案 (1)x 2-y 2=6 (2)略 (3)6解析 (1)∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0). ∵过点P (4,-10),∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)方法一:由(1)可知,在双曲线中,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0). ∴kMF 1=m 3+23,kMF 2=m3-23.∴kMF 1·kMF 2=m 29-12=-m 23.∵点M (3,m )在双曲线上, ∴9-m 2=6,m 2=3.故kMF 1·kMF 2=-1,∴MF 1⊥MF 2. ∴MF 1→·MF 2→=0.方法二:∵MF 1→=(-3-23,-m ), MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2. ∵M (3,m )在双曲线上, ∴9-m 2=6,即m 2-3=0. ∴MF 1→·MF 2→=0.(3)△F 1MF 2的底|F 1F 2|=43, △F 1MF 2的边F 1F 2的高h =|m |=3, ∴S △F 1MF 2=6.17.如图所示,双曲线的中心在坐标原点,焦点在x 轴上,F 1,F 2分别为左、右焦点,双曲线的左支上有一点P ,∠F 1PF 2=π3,且△PF 1F 2的面积为23,又双曲线的离心率为2,求该双曲线的方程.答案 3x 22-y 22=1解析 设双曲线的方程为x 2a 2-y 2b 2=1,∴F 1(-c,0),F 2(c,0),P (x 0,y 0). 在△PF 1F 2中,由余弦定理,得 |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos π3=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|. 即4c 2=4a 2+|PF 1|·|PF 2|. 又∵S △PF 1F 2=23, ∴12|PF 1|·|PF 2|·sin π3=2 3. ∴|PF 1|·|PF 2|=8. ∴4c 2=4a 2+8,即b 2=2. 又∵e =c a =2,∴a 2=23.∴所求双曲线方程为3x 22-y 22=1.1.设F 1,F 2分别是双曲线x 2a 2-y 2b 2=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°且|AF 1|=3|AF 2|,则双曲线的离心率为( )A. 5B.152C.102D.52答案 C解析 由双曲线的定义:|AF 1|-|AF 2|=2a 和|AF 1|=3|AF 2|,得|AF 1|=3a ,|AF 2|=a .在△AF 1F 2中,由勾股定理4c 2=(3a )2+a 2解出答案.2.(2013·全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 ∵e =c a =52,∴e 2=c 2a 2=a 2+b 2a 2=54.∴a 2=4b 2,b a =±12.∴渐近线方程为y =±12x .3.(2013·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32 C .2 D .3答案 C解析 设A 点坐标为(x 0,y 0),则由题意,得S △AOB =|x 0|·|y 0|= 3.抛物线y 2=2px 的准线为x =-p 2,所以x 0=-p 2,代入双曲线的渐近线的方程y =±b a x ,得|y 0|=bp 2a.由⎩⎪⎨⎪⎧ca =2,a 2+b 2=c 2,得b=3a ,所以|y 0|=32p .所以S △AOB =34p 2=3,解得p =2或p =-2(舍去). 4.已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.答案 x 236-y 264=1或y 264-x 236=1解析 方法一:①当焦点在x 轴上时, 设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),因渐近线的方程为y =±43x ,并且焦点都在圆x 2+y 2=100上, ∴⎩⎪⎨⎪⎧b a =43,a 2+b 2=100,解得⎩⎪⎨⎪⎧a =6,b =8.∴双曲线的方程为x 236-y 264=1.②当焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0),因渐近线的方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,∴⎩⎪⎨⎪⎧a b =43,a 2+b 2=100,解得⎩⎪⎨⎪⎧a =8,b =6.∴双曲线的方程为y 264-x 236=1.综上,双曲线的方程为x236-y264=1或y264-x236=1.方法二:设双曲线的方程为42·x2-32·y2=λ(λ≠0),从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576.∴双曲线的方程为x236-y264=1或y264-x236=1.。
题组层级快练(二十)1.设f (x )=x 3+x ,则f (x )d x 的值等于( )A .0B .8C .2⎠⎛02f (x )d xD.⎠⎛02f (x )d x答案 A解析2.下列值等于1的是( ) A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x 答案 C解析 ⎠⎛011d x =x | 10=1.3.若函数f (x )=x 2+2x +m (m ,x ∈R )的最小值为-1,则⎠⎛12f (x )d x 等于( )A .2 B.163 C .6 D .7答案 B解析 f (x )=(x +1)2+m -1,∵f (x )的最小值为-1,∴m -1=-1,即m =0.∴f (x )=x 2+2x . ∴⎠⎛12f (x )d x =⎠⎛12(x 2+2x )d x =(13x 3+x 2)| 21=13×23+22-13-1=163. 4.(2015·福建莆田一中期末)曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )答案 D解析 当x ∈[0,π2]时,y =sin x 与y =cos x 的图像的交点坐标为(π4,22),作图可知曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积可分为两部分:一部分是曲线y =sin x ,y =cos x 与直线x=0,x =π4所围成的平面区域的面积;另一部分是曲线y =sin x ,y =cos x 与直线x =π4,x =π2所围成的平面区域的面积.且这两部分的面积相等,结合定积分定义可知选D.5.(2015·东北三校一联) sin 2x2d x =( ) A .0 B.π4-12 C.π4-14 D.π2-1 答案 B6.若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b答案 D解析 a =⎠⎛02x 2d x =13x 3| 20=83,b =⎠⎛02x 3d x =14x 4| 20=4,c =⎠⎛02sin x d x =-cos x | 20=1-cos2<2,∴c <a <b . 7.物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后物体A 追上物体B 所用的时间t (s)为( )A .3B .4C .5D .6答案 C解析 因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t ,所以⎠⎛0t(3t 2+1-10t )d t =(t 3+t -5t 2)| t 0=t 3+t -5t 2=5,所以(t -5)(t 2+1)=0,即t =5.8.(2015·山东淄博一模)如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A.⎠⎛02|x 2-1|d xB .|⎠⎛02(x 2-1)d x |C.⎠⎛02(x 2-1)d xD.⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x答案 A解析 由曲线y =|x 2-1|的对称性,所求阴影部分的面积与如下图形的面积相等,即⎠⎛02|x 2-1|d x ,选A.9.(2015·南昌一模)若⎠⎛1a (2x +1x )d x =3+ln2(a >1),则a 的值是( )A .2B .3C .4D .6答案 A解析 由题意可知⎠⎛1a (2x +1x )d x =(x 2+ln x )| a 1=a 2+ln a -1=3+ln2,解得a =2. 10.(2014·湖北理)若函数f (x ),g (x )满足f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .3答案 C解析 对于①,sin 12x cos 12x d x =12sin x d x =0,所以①是一组正交函数;对于②, (x +1)(x -1)d x=(x 2-1)d x ≠0,所以②不是一组正交函数;对于③,x ·x 2d x =x 3d x =0,所以③是一组正交函数,选C.答案 2π+112.(2015·陕西五校二联)定积分(|x |-1)d x 的值为________.答案 -113.(2015·海淀一模)函数y =x -x 2的图像与x 轴所围成的封闭图形的面积等于________. 答案 16解析 由x -x 2=0,得x =0或x =1.因此所围成的封闭图形的面积为⎠⎛01(x -x 2)d x =(x 22-x 33)| 10=12-13=16.14.(2015·安徽六校联考)已知a =⎠⎛0πsin x d x ,则二项式(1-a x )5的展开式中x -3的系数为________.答案 -80解析 由a =⎠⎛0πsin x d x =-cos x | π0=-(cosπ-cos0)=2,则x-3的系数为C 35(-a )3=10×(-2)3=-80.15.如图,长方形的四个顶点为O (0,0),A (2,0),B (2,4),C (0,4),曲线y =ax 2经过点B ,现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域的概率是________.答案 23解析 ∵y =ax 2过点B (2,4),∴a =1.16.求由抛物线y 2=x -1与其在点(2,1),(2,-1)处的切线所围成的面积. 答案 23解析 y =±x -1,y ′x =±12x -1.∵过点(2,1)的直线斜率为y ′|x =2=12,直线方程为y -1=12(x -2),即y =12x .同理,过点(2,-1)的直线方程为y =-12x ,抛物线顶点在(1,0).如图所示.由抛物线y 2=x -1与两条切线y =12x ,y =-12x 围成的图形面积为:S =S △AOB -2⎠⎛12x -1d x =12×2×2-2×23×(x -1)32|21=2-43(1-0)=23.。
题组层级快练(七十七)1.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45 B.35 C.25 D.15答案 D解析 基本事件的个数有5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,若每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12 C.23 D.34 答案 A解析 由题意得,甲、乙两位同学参加小组的所有可能的情况共3×3=9种.又两位同学参加同一个兴趣小组的种数为3,故概率为39=13.3.(2014·湖北文改编)先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1 答案 B解析 先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112.4.(2015·衡水调研卷)现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率;先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计射击运动员射击4次至少击中3次的概率为( ) A .0.852B .0.819 2C .0.8D .0.75答案 D解析 因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-520=0.75,故选D.5.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15答案 D解析 在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB 与DE ),共有3种,∴所求概率为315=15.6.5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为奇数的概率为( )A.35B.25 C.34 D.23答案 A解析 基本事件总数为C 25=10,2张卡片上数字之和为奇数,需1为奇1为偶,共有C 13C 12=6,∴所求概率为610=35,选A.7.一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )A.35B.310C.12D.625答案 B解析 设3个白球分别为a 1,a 2,a 3,2个黑球分别为b 1,b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6种,故所求概率为620=310.8.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A.132B.164C.332D.364答案 D解析 基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364.9.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( ) A.34 B.56 C.16 D.13 答案 B解析 该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据古典概型概率公式,得事件“至少摸出1个黑球”的概率是56.10.若连续抛掷两次质地均匀的骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A.13B.14C.16D.112 答案 D解析 该试验会出现6×6=36种情况,点(m ,n )在直线x +y =4上的情况有(1,3),(2,2),(3,1)共三种,则所求概率P =336=112.11.(2014·陕西理)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.45答案 C解析 从这5个点中任取2个,有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有C 24=6种,因此所求概率P =610=35.故选C. 12.(2015·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13 B.59 C.23 D.79 答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9. 设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.13.(2015·浙江金丽衢十二校二联)若在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( )A.17 B.27 C.37 D.47 答案 C解析 因为任取3个顶点连成三角形共有C 38=8×7×63×2=56个,又每个顶点为直角顶点的非等腰三角形有3个,所以共有24个三角形符合条件.所以所求概率为2456=37.14.(2015·河北邯郸二模)甲、乙、丙3位教师安排在周一至周五中的3天值班,要求每人值班1天且每天至多安排1人,则恰好甲安排在另外两位教师前面值班的概率是( )A.13B.23C.34D.35答案 A解析 第一种情况:甲安排在第一天,则有A 24=12种;第二种情况:甲安排在第二天,则有A 23=6种;第三种情况:甲安排在第三天,则有A 22=2种,所以所求概率为12+6+2A 35=13. 15.(2014·江西理)10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.答案 12解析 本题属于古典概型,由古典概型概率公式可得所求概率为C 13C 37C 410=12.16.曲线C 的方程为x 2m 2+y 2n 2=1,其中m ,n 是将一枚骰子先后投掷两次所得的点,事件A =“方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆”,那么P (A )=________.答案512解析 试验中所含基本事件个数为36;若方程表示椭圆,则前后两次的骰子点数不能相同,则去掉6种可能.又椭圆焦点在x 轴上,则m >n ,又只剩下一半情况,即有15种,因此P (A )=1536=512.17.(2014·山东文)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.答案 (1)1,3,2 (2)415解析 (1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是50×150=1,150×15=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2. 则抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的. 记事件D :“抽取的这2件商品来自相同地区”, 则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415,即这2件商品来自相同地区的概率为415.18.如图所示是某市2015年2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量优良的概率;(2)求此人停留期间至多有1天空气重度污染的概率. 答案 (1)16 (2)23解析 (1)在2月1日至今2月12日这12天中,只有5日,8日共2天的空气质量优良,所以此人到达当时空气质量优良的概率P =212=16.(2)根据题意,事件“此人在该市停留期间至多有1天空气重度污染”,即“此人到达该市停留期间0天空气重度污染或仅有1天空气重度污染”.“此人在该市停留期间0天空气重度污染”等价于“此人到达该市的日期是4日或8日或9日”,其概率为312=14.“此人在该市停留期间仅有1天空气重度污染”等价于“此人到达该市的日期是3日或5日或6日或7日或10日”,其概率为512.所以此人停留期间至多有1天空气重度污染的概率为P =14+512=23.1.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16答案 D解析 甲乙两人任选4个景点共有方法A 46A 46种,而最后一小时他们在同一个景点的情况有C 16A 35A 35种,所求概率为P =C 16A 35A 35A 46A 46=16,故选D.2.(2015·郑州质检)现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12B.916C.1116D.724答案 B解析 所求概率P =C 24·A 3444=916.3.(2015·衡水调研卷)一张储蓄卡的密码共有6位数字,每位数字都可从0-9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,若他记得密码的最后一位是偶数,则他不超过2次就按对的概率是( )A.45B.35C.25D.15答案 C解析 只按一次就按对的概率是15.按两次就按对的概率是4×15×4=15,所以不超过2次就按对的概率是15+15=25,选C.4.(2015·江苏南京、盐城二模)盒中有3张分别标有1,2,3的卡片,从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为________.答案 59解析 对立事件为:两次抽的卡片号码中都为奇数,共有2×2=4种抽法.而有放回的两次抽了卡片共有3×3=9种基本事件,因此所求事件概率为1-49=59.5.从集合{a ,b ,c ,d ,e }的所有子集中任取一个,则该子集恰是集合{a ,b ,c }的子集的概率是________.答案 146.(2013·江苏)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案2063解析 从正整数m ,n (m ≤7,n ≤9)中任取两数的所有可能结果有C 17C 19=63个,其中m ,n 都取奇数的结果有C 14C 15=20个,故所求概率为2063. 7.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.答案 35解析 从5个小球中任选两个小球的方法数为C 25=10,其中不同色的方法数为C 13C 12=6,所以所求概率为P =610=35.。
题组层级快练(七十八)1.(2015·重庆一中期中)在[-2,3]上随机取一个数x ,则(x +1)(x -3)≤0的概率为( ) A.25 B.14 C.35 D.45答案 D解析 由(x +1)(x -3)≤0,得-1≤x ≤3.由几何概型得所求概率为45.2.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( )A.14B.13C.427D.415 答案 A解析 面积为36 cm 2时,边长AM =6 cm ; 面积为81 cm 2时,边长AM =9 cm. ∴P =9-612=312=14.3.若在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.23 答案 C解析 如图,在AB 边上取点P ′,使AP ′AB =34,则P 只能在AP ′上(为包括P ′点)运动,则所求概率为AP ′AB =34. 4.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A.4π81B.81-4π81C.127D.827答案 C解析 由已知条件可知,蜜蜂只能在一个棱长为1的小正方体内飞行,结合几何概型可得蜜蜂“安全飞行”的概率为P =1333=127.5.(2014·湖北理)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2.在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18 B.14 C.34 D.78答案 D解析 由题意作图,如图所示,Ω1的面积为12×2×2=2,图中阴影部分的面积为2-12×22×22=74,则所求的概率P =742=78,选D.6.已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4,记函数f (x )满足条件⎩⎪⎨⎪⎧f (2)≤12,f (-2)≤4为事件A ,则事件A 发生的概率为( )A.14B.58 C.12 D.38 答案 C解析 由题意知,事件A 所对应的线性约束条件为⎩⎪⎨⎪⎧0≤b ≤4,0≤c ≤4,4+2b +c ≤12,4-2b +c ≤4,其对应的可行域如图中阴影部分所示,所以事件A 的概率P (A )=S △OADS 正方形OABC =12,选C.7.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6 D .1-π6答案 B解析 正方体的体积为2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×4π3×13=2π3,则点P 到点O 的距离小于或等于1的概率为2π38=π12,故点P 到点O 的距离大于1的概率为1-π12.8.若在区域⎩⎨⎧x +y -2≤0,x -y +2≥0,y ≥0内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2B.π8C.π6D.π4答案 D解析 区域为△ABC 内部(含边界),则概率为P =S 半圆S △ABC=π212×22×2=π4,故选D. 9.(2013·四川理)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78答案 C解析 设通电x 秒后第一串彩灯闪亮,y 秒后第二串彩灯闪亮.依题意得0≤x ≤4,0≤y ≤4,∴S =4×4=16.又两串彩灯闪亮的时刻相差不超过2秒,即|x -y |≤2,如图可知,符合要求的S ′=16-12×2×2-12×2×2=12,∴P =S ′S =1216=34.10.已知实数a 满足-3<a <4,函数f (x )=lg(x 2+ax +1)的值域为R 的概率为P 1,定义域为R 的概率为P 2,则( )A .P 1>P 2B .P 1=P 2C .P 1<P 2D .P 1与P 2的大小不确定答案 C解析 若f (x )的值域为R ,则Δ1=a 2-4≥0,得a ≤-2或a ≥2. 故P 1=-2-(-3)4-(-3)+4-24-(-3)=37.若f (x )的定义域为R ,则Δ2=a 2-4<0,得-2<a <2. 故P 2=47.∴P 1<P 2.11.(2014·福建文)如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.答案 0.18解析 几何概型与随机模拟实验的关系.由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18.∵S 正=1,∴S 阴=0.18.12.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.答案 23解析 圆周上使弧AM 的长度为1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1M 2的长度为2,B 点落在优弧M 1M 2上就能使劣弧AB 的长度小于1,所以劣弧AB 的长度小于1的概率为23.13.若在区间[0,10]内随机取出两个数,则这两个数的平方和也在区间[0,10]内的概率是________. 答案π40解析 将取出的两个数分别用x ,y 表示,则0≤x ≤10,0≤y ≤10.如图所示,当点(x ,y )落在图中的阴影区域时,取出的两个数的平方和也在区间[0,10]内,故所求概率为14π×10102=π40.14.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.答案 3解析 设长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h (2h +2)(2h +1)=14,解得h =3,故长方体的体积为1×1×3=3.15.(2015·茂名一模)已知一颗粒子等可能地落入如图所示的四边形ABCD 内的任意位置,如果通过大量的试验发现粒子落入△BCD 内的频率稳定在25附近,那么点A 和点C 到直线BD 的距离之比约为________.答案 32解析 由几何概型的概率计算公式,得粒子落在△ABD 与△CBD 中的概率之比等于△ABD 与△CBD 的面积之比,而△ABD 与△CBD 的面积之比又等于点A 和点C 到直线BD 的距离之比,所以点A 和点C 到直线BD 的距离之比约为3525=32,故填32.16.(2015·广东深圳)已知复数z =x +y i(x ,y ∈R )在复平面上对应的点为M .(1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机抽取一个数作为x ,从集合Q 中随机抽取一个数作为y ,求复数z 为纯虚数的概率;(2)设x ∈[0,3],y ∈[0,4],求点M 落在不等式组: ⎩⎪⎨⎪⎧x +2y -3≤0,x ≥0,y ≥0所表示的平面区域内的概率.答案 (1)16 (2)316解析 (1)记“复数z 为纯虚数”为事件A .∵组成复数z 的所有情况共有12个:-4,-4+i ,-4+2i ,-3,-3+i ,-3+2i ,-2,-2+i ,-2+2i,0,i,2i ,且每种情况出现的可能性相等,属于古典概型, 其中事件A 包含的基本事件共2个:i,2i , ∴所求事件的概率为P (A )=212=16. (2)依条件可知,点M 均匀地分布在平面区域{(x ,y )|⎩⎨⎧0≤x ≤3,0≤y ≤4}内,属于几何概型.该平面区域的图形为右图中矩形OABC 围成的区域,面积为S =3×4=12.而所求事件构成的平面区域为{(x ,y )|⎩⎨⎧x +2y -3≤0,x ≥0,y ≥0},其图形如图中的三角形OAD (阴影部分).又直线x +2y -3=0与x 轴,y 轴的交点分别为A (3,0),D (0,32),∴三角形OAD 的面积为S 1=12×3×32=94.∴所求事件的概率为P =S 1S =9412=316.17.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率; (2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.答案 (1)2536 (2)221288解析 (1)设甲、乙两船到达时间分别为x ,y ,则0≤x <24,0≤y <24且y -x >4或y -x <-4. 作出区域⎩⎪⎨⎪⎧0≤x <24,0≤y <24,y -x >4或y -x <-4.设“两船无需等待码头空出”为事件A ,则P (A )=2×12×20×2024×24=2536.(2)当甲船的停泊时间为4小时,两船不需等待码头空出,则满足x -y >2或y -x >4,设在上述条件时“两船不需等待码头空出”为事件B ,画出区域⎩⎪⎨⎪⎧0≤x <24,0≤y <24,y -x >4或x -y >2.P (B )=12×20×20+12×22×2224×24=442576=221288.1.(2015·湖南澧县三校)假设在时间间隔T 内的任何时刻,两条不相关的短信机会均等地进入同一部手机.若这两条短信进入手机的间隔时间不大于t (0<t <T ),则手机受到干扰.手机受到干扰的概率是( )A .(tT )2B .(1-t T )2C .1-(tT )2D .1-(1-tT)2答案 D解析 分别设两个互相独立的信号为X ,Y ,则所有事件集可表示为0≤x ≤T,0≤y ≤T .由题目得,如果手机受到干扰的事件发生,必有|x -y |≤t .这时x ,y 满足⎩⎪⎨⎪⎧0≤x ≤T ,0≤y ≤T ,|x -y |≤t ,约束条件⎩⎪⎨⎪⎧0≤x ≤T ,0≤y ≤T ,|x -y |≤t ,的可行域为如图阴影部分.而所有事件的集合即为正方形面积,阴影区域面积为T 2-2×12(T -t )2=T 2-(T -t )2所以阴影区域面积和正方形面积比值即为干扰发生的概率,即1-(1-tT)2,故选D.2.(2013·陕西理)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A .1-π4B.π2-1 C .2-π2D.π4答案 A解析 依题意知,有信号的区域面积为π4×2=π2,矩形面积为2,故无信号的概率P =2-π22=1-π4.3.(2014·辽宁文)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是()A.π2B.π4C.π6D.π8答案 B解析 由几何概型的概率公式可知,质点落在以AB 为直径的半圆内的概率P =半圆的面积长方形的面积=12π2=π4,故选B.。
题组层级快练(二十六)1.函数f (x )=(1+3tan x )cos x 的最小正周期为( ) A .2π B.3π2 C .π D.π2答案 A解析 f (x )=(1+3tan x )cos x =cos x +3sin x cos x ·cos x =2cos(x -π3),则T =2π.2.下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)答案 A解析 对于选项A ,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选A.3.函数y =sin(π4-x )的一个单调递增区间为( )A .(3π4,7π4)B .(-π4,3π4)C .(-π2,π2)D .(-3π4,π4)答案 A解析 y =sin(π4-x )=-sin(x -π4),故由2k π+π2≤x -π4≤2k π+3π2,解得2k π+34π≤x ≤2k π+74π(k ∈Z ).因此,函数y =sin(π4-x )的单调增区间为[2k π+34π,2k π+74π](k ∈Z ).4.(2015·湖南洛阳模拟)若函数y =sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.23π C.32π D.53π 答案 C解析 sin(-x 3+φ3)=sin(x 3+φ3)观察选项.当φ=32π时,等式恒成立.5.函数f (x )=(1+cos2x )sin 2x 是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为π2的奇函数D .周期为π2的偶函数答案 D解析 f (x )=(1+cos2x )sin 2x =2cos 2x sin 2x =12sin 22x =1-cos4x 4,则T =2π4=π2且为偶函数.6.函数g (x )=sin 22x 的单调递增区间是( ) A .[k π2,k π2+π4](k ∈Z )B .[k π,k π+π4](k ∈Z )C .[k π2+π4,k π2+π2](k ∈Z )D .[k π+π4,k π+π2](k ∈Z )答案 A7.如果函数y =3cos(2x +φ)的图像关于点(4π3,0)成中心对称,那么|φ|的最小值为( )A.π6B.π4 C.π3 D.π2答案 A解析 依题意得3cos(8π3+φ)=0,8π3+φ=k π+π2,φ=k π-136π(k ∈Z ),因此|φ|的最小值是π6.8.已知函数y =sin ωx 在[-π3,π3]上是增函数,则实数ω的取值范围是( )A .[-32,0)B .[-3,0)C .(0,32]D .(0,3] 答案 C解析 由于y =sin x 在[-π2,π2]上是增函数,为保证y =sin ωx 在[-π3,π3]上是增函数,所以ω>0且π3·ω≤π2,则0<ω≤32.9.下列函数中,对于任意x ∈R ,同时满足条件f (x )=f (-x )和f (x -π)=f (x )的函数是( ) A .f (x )=sin x B .f (x )=sin x cos x C .f (x )=cos x D .f (x )=cos 2x -sin 2x 答案 D解析 因为对任意x ∈R 有f (x )=f (-x )且f (x -π)=f (x ),所以f (x )为偶函数且f (x )的最小正周期为π.故A ,C 错.B 项中,f (x )=sin x cos x =12sin2x 为奇函数,故B 错,D 项中,f (x )=cos 2x -sin 2x =cos2x ,满足条件,故选D.10.将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( ) A .在区间⎣⎡⎦⎤π12,7π12上单调递减 B .在区间⎣⎡⎦⎤π12,7π12上单调递增 C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 答案 B解析 y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度得到y =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+π3=3sin ⎝⎛⎭⎫2x -23π. 令2k π-π2≤2x -23π≤2k π+π2,得k π+π12≤x ≤k π+712π,k ∈Z .则y =3sin ⎝⎛⎭⎫2x -23π的增区间为⎣⎡⎦⎤k π+π12,k π+712π,k ∈Z . 令k =0得其中一个增区间为⎣⎡⎦⎤π12,712π,故B 正确.画出y =3sin ⎝⎛⎭⎫2x -23π在⎣⎡⎦⎤-π6,π3上的简图,如图,可知y =3sin ⎝⎛⎭⎫2x -23π在⎣⎡⎦⎤-π6,π3上不具有单调性,故C ,D 错误.11.(2015·南昌大学附中)设f (x )=sin(ωx +φ),其中ω>0,则f (x )是偶函数的充要条件是( ) A .f (0)=1 B .f (0)=0 C .f ′(0)=1 D .f ′(0)=0答案 D解析 f (x )=sin(ωx +φ)是偶函数,有φ=k π+π2,k ∈Z .∴f (x )=±cos ωx .而f ′(x )=±ωsin ωx ,∴f ′(0)=0,故选D.12.(2015·北京顺义一模)已知函数f (x )=cos(2x +π3)-cos2x ,其中x ∈R ,给出下列四个结论:①函数f (x )是最小正周期为π的奇函数; ②函数f (x )图像的一条对称轴是直线x =2π3;③函数f (x )图像的一个对称中心为(5π12,0);④函数f (x )的单调递增区间为[k π+π6,k π+2π3],k ∈Z .其中正确的结论的个数是( )A .1B .2C .3D .4答案 C解析 由已知得,f (x )=cos(2x +π3)-cos2x =cos2x cos π3-sin2x sin π3-cos2x =-sin(2x +π6),不是奇函数,故①错.当x =2π3时,f (2π3)=-sin(4π3+π6)=1,故②正确;当x =5π12时,f (5π12)=-sin π=0,故③正确;令2k π+π2≤2x +π6≤2k π+3π2,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z ,故④正确.综上,正确的结论个数为3.13.(2013·江西理)函数y =sin2x +23sin 2x 的最小正周期T 为________. 答案 π解析 y =sin2x +23sin 2x =sin2x -3cos2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.14.将函数y =sin(ωx +φ)(π2<φ<π)的图像,仅向右平移4π3,或仅向左平移2π3,所得到的函数图像均关于原点对称,则ω=________.答案 12解析 注意到函数的对称轴之间距离是函数周期的一半,即有T 2=4π3-(-2π3)=2π,T =4π,即2πω=4π,ω=12.15.设函数f (x )=sin(3x +φ)(0<φ<π),若函数f (x )+f ′(x )是奇函数,则φ=________. 答案2π3解析 由题意得f ′(x )=3cos(3x +φ),f (x )+f ′(x )=2sin(3x +φ+π3)是奇函数,因此φ+π3=k π(其中k ∈Z ),φ=k π-π3.又0<φ<π,所以φ=2π3.16.已知函数f (x )=sin x +a cos x 的图像的一条对称轴是x =5π3,则函数g (x )=a sin x +cos x 的初相是________.答案 23π解析 f ′(x )=cos x -a sin x ,∵x =5π3为函数f (x )=sin x +a cos x 的一条对称轴,∴f ′(5π3)=cos 5π3-a sin 5π3=0,解得a =-33.∴g (x )=-33sin x +cos x =233(-12sin x +32cos x ) =233sin(x +2π3). 17.(2013·安徽理)已知函数f (x )=4cos ωx ·sin(ωx +π4)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f (x )在区间[0,π2]上的单调性.答案 (1)1 (2)单调递增区间为[0,π8],单调递减区间为[π8,π2]解析 (1)f (x )=4cos ωx ·sin(ωx +π4)=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx )+ 2 =2sin(2ωx +π4)+ 2.因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin(2x +π4)+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时f (x )单调递减. 综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.18.已知函数f (x )=(sin x -cos x )sin2xsin x .(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递减区间.答案 (1){x ∈R |x ≠k π,k ∈Z } T =π (2)[k π+3π8,k π+7π8](k ∈Z )解析 (1)由sin x ≠0,得x ≠k π(k ∈Z ). 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为f (x )=(sin x -cos x )sin2xsin x=2cos x (sin x -cos x ) =sin2x -cos2x -1 =2sin(2x -π4)-1,所以f (x )的最小正周期为T =2π2=π. (2)函数y =sin x 的单调递减区间为[2k π+π2,2k π+3π2](k ∈Z ).由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ).所以f (x )的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ).1.(2013·浙江理)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 f (x )是奇函数时,φ=π2+k π(k ∈Z );φ=π2时,f (x )=A cos(ωx +π2)=-A sin ωx 为奇函数.所以“f (x )是奇函数”是“φ=π2”的必要不充分条件,选B.2.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )答案 C解析 由题意知,f (x )在π6处取得最大值或最小值,∴x =π6是函数f (x )的对称轴.∴2×π6+φ=π2+k π,φ=π6+k π,k ∈Z .又由f (π2)>f (π),得sin φ<0.∴φ=-56π+2k π(k ∈Z ),不妨取φ=-56π.∴f (x )=sin(2x -5π6).由2k π-π2≤2x -56π≤2k π+π2,得f (x )的单调递增区间是[k π+π6,k π+2π3](k ∈Z ).3.若函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M 答案 C解析 方法一(特值法):取M =2,w =1,φ=0画图像即得答案.方法二:T =2πw ,g (x )=M cos(w x +φ)=M sin(w x +φ+π2)=M sin[w (x +π2w )+φ],∴g (x )的图像是由f (x )的图像向左平移π2w (即T4)得到的.由b -a =T2,可知,g (x )的图像由f (x )的图像向左平移b -a 2得到的.∴得到g (x )图像如图所示.选C.4.已知函数f (x )=2cos 2x +23sin x cos x -1(x ∈R ). (1)求函数f (x )的周期、对称轴方程; (2)求函数f (x )的单调增区间.答案 (1)T =π,对称轴方程为x =k π2+π6(k ∈Z )(2)[k π-π3,k π+π6](k ∈Z )解析 f (x )=2cos 2x +23sin x cos x -1=3sin2x +cos2x =2sin(2x +π6).(1)f (x )的周期T =π,函数f (x )的对称轴方程为x =k π2+π6(k ∈Z ).(2)由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得kx -π3≤x ≤k π+π6(k ∈Z ).∴函数f (x )的单调增区间为[k π-π3,k π+π6](k ∈Z ).5.已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间. 答案 (1)12 (2)T =π,⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z 思路 (1)由sin α=22与α的取值范围,求出cos α或α的值;再代入函数f (x ),即可求出f (α)的值.(2)利用二倍角公式与辅助角公式,化简函数f (x ),再利用周期公式,即可求出函数f (x )的最小正周期;利用正弦函数的单调性,即可求出函数f (x )的单调递增区间.解析 方法一:(1)因为0<α<π2,sin α=22,∴cos α=22.∴f (α)=22⎝⎛⎭⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . 方法二:f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1)因为0<α<π2,sin α=22,所以α=π4.从而f (α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .。
题组层级快练(八十一)(第一次作业)1.随机变量X 的分布列为则E (5X +4)等于( ) A .15 B .11 C .2.2 D .2.3 答案 A解析 ∵E (X )=1×0.4+2×0.3+4×0.3=2.2, ∴E (5X +4)=5E (X )+4=11+4=15.2.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53 B.73 C .3 D.113 答案 C解析 由已知得⎩⎨⎧x 1·23+x 2·13=43,(x 1-43)2·23+(x 2-43)2·13=29,解得⎩⎨⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2.又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.3.设投掷1颗骰子的点数为ξ,则( ) A .E (ξ)=3.5,D (ξ)=3.52 B .E (ξ)=3.5,D (ξ)=3512C .E (ξ)=3.5,D (ξ)=3.5 D .E (ξ)=3.5,D (ξ)=3516答案 B4.某运动员投篮命中率为0.6,他重复投篮5次,若他命中一次得10分,没命中不得分;命中次数为X ,得分为Y ,则E (X ),D (Y )分别为( )A .0.6,60B .3,12C .3,120D .3,1.2答案 C解析 X ~B (5,0.6),Y =10X ,∴E (X )=5×0.6=3,D (X )=5×0.6×0.4=1.2.D (Y )=100D (X )=120. 5.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.6.若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2B .2-4C .3·2-10D .2-8答案 C解析 ∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·(12)11=3·2-10. 7.签盒中有编号为1,2,3,4,5,6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的数学期望为( )A .5B .5.25C .5.8D .4.6答案 B解析 由题意可知,X 可以取3,4,5,6,P (X =3)=1C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X=6)=C 25C 36=12.由数学期望的定义可求得E (X )=5.25.8.有一批产品,其中有12件正品和4个次品,从中任取3件,若ξ表示取到次品的个数,则E (ξ)=________.答案 34解析 次品个数ξ的可能取值为0,1,2,3,P (ξ=0)=C 312C 316=1128,P (ξ=1)=C 212C 14C 316=3370,P (ξ=2)=C 112C 24C 316=970,P (ξ=3)=C 34C 316=1140.ξ的分布列为E (ξ)=0×1128+1×3370+2×970+3×1140=66+36+3140=34.9.(2014·浙江理)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.答案 25解析 设出ξ=1,ξ=2时的概率,利用分布列中概率之和为1及期望的公式求解. 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15.所以D (ξ)=15+35×0+15×1=25.10.某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a 1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的期望为________元.答案 500解析 ∵a 1+2a 1+4a 1=1,∴a 1=17,E (ξ)=17×700+27×560+47×420=500元.11.体育课的排球发球项目考试的规则是每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围.答案 (0,12)解析 由已知条件可得P (X =1)=p ,P (X =2)=(1-p )p ,P (X =3)=(1-p )2p +(1-p )3=(1-p )2,则E (X )=P (X =1)+2P (X =2)+3P (X =3)=p +2(1-p )p +3(1-p )2=p 2-3p +3>1.75,解得p >52或p <12.又由p ∈(0,1),可得p ∈(0,12).12.(2014·重庆理)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.) 答案 (1)584 (2)4728解析 (1)由古典概型的概率计算公式知所求概率为p =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112.故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.13.(2015·山东潍坊一模)某次数学测验共有10道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定;每选对1道题得5分,不选或选错得0分.某考生每道题都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道题能排除两个错误选项,另2道只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(1)求该考生本次测验选择题得50分的概率;(2)求该考生本次测验选择题所得分数的分布列和数学期望. 答案 (1)136 (2)1153解析 (1)设选对一道“能排除2个选项的题目”为事件A ,选对一道“能排除1个选项的题目”为事件B ,则P (A )=12,P (B )=13.该考生选择题得50分的概率为P (A )·P (A )·P (B )·P (B )=(12)2×(13)2=136.(2)该考生所得分数X =30,35,40,45,50, P (X =30)=(12)2×(1-13)2=19,P (X =35)=C 12(12)2·(23)2+(12)2·C 12·13×23=13, P (X =40)=(12)2×(23)2+C 12·(12)2·C 12·13×23+(12)2×(13)2=1336,P (X =45)=C 12(12)2·(13)2+(12)2·C 12·13×23=16,该考生所得分数X 的分布列为所以E (X )=30×19+35×13+40×1336+45×16+50×136=1153.14.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A 袋或B 袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是13,23.(1)分别求出小球落入A 袋或B 袋中的概率;(2)在容器的入口处依次放入4个小球;记ξ为落入B 袋中的小球个数.求ξ的分布列和数学期望. 答案 (1)13,23 (2)E (ξ)=83解析 (1)记“小球落入A 袋中”为事件M ,“小球落入B 袋中”为事件N ,则事件M 的对立事件为事件N ,而小球落入A 袋中当且仅当小球一直向左落下或一直向右落下,故P (M )=(13)3+(23)3=127+827=13.从而P (N )=1-P (M )=1-13=23.(2)显然,随机变量ξ的所有可能取值为0,1,2,3,4. 且ξ~B (4,23),故P (ξ=0)=C 04(23)0×(13)4=181, P (ξ=1)=C 14(23)1×(13)3=881, P (ξ=2)=C 24(23)2×(13)2=827, P (ξ=3)=C 34(23)3×(13)1=3281,则ξ的分布列为故ξ的数学期望为E(ξ)=4×23=83.。
题组层级快练(六十四)1.已知M (-2,0),N (2,0),|PM |-|PN |=3,则动点P 的轨迹是( ) A .双曲线 B .双曲线左边一支 C .双曲线右边一支 D .一条射线答案 C解析 ∵|PM |-|PN |=3<4,由双曲线定义知,其轨迹为双曲线的一支. 又∵|PM |>|PN |,故点P 的轨迹为双曲线的右支.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1答案 B解析 椭圆x 24+y 2=1的焦点为(±3,0).因为双曲线与椭圆共焦点,所以排除A ,C. 又双曲线x 22-y 2=1经过点(2,1),所以选B.3.(2015·济宁模拟)如图所示,正六边形ABCDEF 的两个顶点A ,D 为双曲线的两个焦点,其余4个顶点都在双曲线上,则该双曲线的离心率是( )A.3+1B.3-1C. 3D. 2答案 A解析 令正六边形的边长为m ,则有|AD |=2m ,|AB |=m ,|BD |=3m ,该双曲线的离心率等于|AD |||AB |-|BD ||=2m3m -m=3+1. 4.已知双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),双曲线的一个焦点到一条渐近线的距离为53c (c 为双曲线的半焦距长),则双曲线的离心率为( )A.52B.32C.355D.23答案 B解析 双曲线x 2a 2-y 2b 2=1的渐近线为x a ±y b =0,焦点A (c,0)到直线bx -ay =0的距离为bc a 2+b 2=53c ,则 c 2-a 2=59c 2,得e 2=94,e =32,故选B.5.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y 29=1C.x 29-y 27=1 D.x 27-y 23=1 答案 A解析 ∵MF 1→·MF 2→=0,∴MF 1→⊥MF 2→. ∴|MF 1→|2+|MF 2→|2=40.∵||MF 1→|-|MF 2→||=2a , ∴|MF 1→|·|MF 2→|=20-2a 2=2,∴a 2=9,b 2=1. ∴所求双曲线的方程为x 29-y 2=1.6.已知双曲线mx 2-ny 2=1(m >0,n >0)的离心率为2,则椭圆mx 2+ny 2=1的离心率为( ) A.12 B.63C.33D.233答案 B解析 由已知双曲线的离心率为2,得1m +1n1m=2. 解得m =3n .又m >0,n >0,∴m >n ,即1n >1m .故由椭圆mx 2+ny 2=1,得y 21n +x 21m=1.∴所求椭圆的离心率为e =1n -1m1n =1n -13n 1n=63. 7.(2014·山东理)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( )A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0.8.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,点P 在双曲线上,当△F 1PF 2的面积为2时,PF 1→·PF 2→的值为( )A .2B .3C .4D .6答案 B解析 设点P (x 0,y 0),依题意得,|F 1F 2|=23+1=4, S △PF 1F 2=12|F 1F 2||y 0|=2|y 0|=2,∴|y 0|=1.又∵x 203-y 20=1,∴x 20=3(y 20+1)=6. ∴PF 1→·PF 2→=(-2-x 0,-y 0)·(2-x 0,-y 0)=x 20+y 20-4=3.9.已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2) 答案 D解析 依题意,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e <2,e 2-2e -1<0,(e -1)2<2,所以1<e <1+2,故选D.10.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.3.B.38C.233D.433答案 D解析 设M (x 0,12p x 20),y ′=(12p x 2)′=x p ,故在M 点处的切线的斜率为x 0p =33,故M (33p ,16p ).由题意又可知抛物线的焦点为(0,p 2),双曲线右焦点为(2,0),且(33p ,16p ),(0,p2),(2,0)三点共线,可求得p=433,故选D. 11.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线x 24-y 2=1的顶点为(±2,0),渐近线方程为y =±12x ,即x -2y =0和x +2y =0.故其顶点到渐近线的距离d =|±2|1+4=25=25 5.12.已知双曲线x 29-y 2a =1的右焦点的坐标为(13,0),则该双曲线的渐近线方程为________.答案 2x ±3y =0解析 ∵右焦点坐标是(13,0), ∴9+a =13,即a =4. ∴双曲线方程为x 29-y 24=1.∴渐近线方程为x 3±y2=0,即2x ±3y =0.13.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________.答案 -2解析 由题可知A 1(-1,0),F 2(2,0). 设P (x ,y )(x ≥1),则P A 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),P A 1→·PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5.∵x ≥1,函数f (x )=4x 2-x -5的图像的对称轴为x =18,∴当x =1时,P A 1→·PF 2→取得最小值-2.14.P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支上一点,F 1,F 2分别为双曲线的左、右焦点,焦距为2c ,则△PF 1F 2的内切圆的圆心横坐标为________.答案 a解析 如图所示,内切圆与三条边的切点分别为A ,B ,C ,由切线性质,得|F 1C |=|F 1A |,|PC |=|PB |,|F 2A |=|F 2B |.由双曲线定义知,|PF 1|-|PF 2|=2a , 即(|PC |+|CF 1|)-(|PB |+|BF 2|)=2a . ∴|CF 1|-|BF 2|=2a 即|F 1A |-|F 2A |=2a . ∵|F 1A |+|F 2A |=2c ,∴|F 1A |=a +c .∴A (a,0).15.(2015·兰州高三诊断)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)一条渐近线的倾斜角为π3,离心率为e ,则a 2+eb 的最小值为________.答案263解析 由题意,可得k =b a =tan π3= 3.∴b =3a ,则a 2=b 23,∴e =1+b 2a2=2. ∴a 2+e b =b 23+2b =b 3+2b≥2b 3×2b =263. 当且仅当b 2=6,a 2=2时取“=”.16.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)在(2)的条件下求△F 1MF 2的面积. 答案 (1)x 2-y 2=6 (2)略 (3)6解析 (1)∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0). ∵过点P (4,-10),∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)方法一:由(1)可知,在双曲线中,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0). ∴kMF 1=m 3+23,kMF 2=m 3-23.∴kMF 1·kMF 2=m 29-12=-m 23.∵点M (3,m )在双曲线上, ∴9-m 2=6,m 2=3.故kMF 1·kMF 2=-1,∴MF 1⊥MF 2.∴MF 1→·MF 2→=0.方法二:∵MF 1→=(-3-23,-m ), MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2. ∵M (3,m )在双曲线上, ∴9-m 2=6,即m 2-3=0. ∴MF 1→·MF 2→=0.(3)△F 1MF 2的底|F 1F 2|=43, △F 1MF 2的边F 1F 2的高h =|m |=3, ∴S △F 1MF 2=6.17.如图所示,双曲线的中心在坐标原点,焦点在x 轴上,F 1,F 2分别为左、右焦点,双曲线的左支上有一点P ,∠F 1PF 2=π3,且△PF 1F 2的面积为23,又双曲线的离心率为2,求该双曲线的方程.答案 3x 22-y 22=1解析 设双曲线的方程为x 2a 2-y 2b 2=1,∴F 1(-c,0),F 2(c,0),P (x 0,y 0). 在△PF 1F 2中,由余弦定理,得 |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos π3=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|. 即4c 2=4a 2+|PF 1|·|PF 2|. 又∵S △PF 1F 2=23, ∴12|PF 1|·|PF 2|·sin π3=2 3. ∴|PF 1|·|PF 2|=8.∴4c 2=4a 2+8,即b 2=2. 又∵e =c a =2,∴a 2=23.∴所求双曲线方程为3x 22-y 22=1.1.设F 1,F 2分别是双曲线x 2a 2-y 2b 2=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°且|AF 1|=3|AF 2|,则双曲线的离心率为( )A. 5B.152C.102D.52答案 C解析 由双曲线的定义:|AF 1|-|AF 2|=2a 和|AF 1|=3|AF 2|,得|AF 1|=3a ,|AF 2|=a .在△AF 1F 2中,由勾股定理4c 2=(3a )2+a 2解出答案.2.(2013·全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 ∵e =c a =52,∴e 2=c 2a 2=a 2+b 2a 2=54.∴a 2=4b 2,b a =±12.∴渐近线方程为y =±12x .3.(2013·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32 C .2 D .3答案 C解析 设A 点坐标为(x 0,y 0),则由题意,得S △AOB =|x 0|·|y 0|= 3.抛物线y 2=2px 的准线为x =-p2,所以x 0=-p 2,代入双曲线的渐近线的方程y =±b a x ,得|y 0|=bp 2a.由⎩⎪⎨⎪⎧ca =2,a 2+b 2=c 2,得b =3a ,所以|y 0|=32p .所以S △AOB =34p 2=3,解得p =2或p =-2(舍去). 4.已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.答案 x 236-y 264=1或y 264-x 236=1解析 方法一:①当焦点在x 轴上时,设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),因渐近线的方程为y =±43x ,并且焦点都在圆x 2+y 2=100上, ∴⎩⎪⎨⎪⎧b a =43,a 2+b 2=100,解得⎩⎪⎨⎪⎧a =6,b =8.∴双曲线的方程为x 236-y 264=1.②当焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0),因渐近线的方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,∴⎩⎪⎨⎪⎧a b =43,a 2+b 2=100,解得⎩⎪⎨⎪⎧a =8,b =6.∴双曲线的方程为y 264-x 236=1.综上,双曲线的方程为x 236-y 264=1或y 264-x 236=1.方法二:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576. ∴双曲线的方程为x 236-y 264=1或y 264-x 236=1.。