题组层级快练 (30)
- 格式:doc
- 大小:189.50 KB
- 文档页数:14
2021年高三历史一轮复习题组层级快练32含答案一、单项选择题1.(xx·江苏省启东中学模拟题)1894年孙中山创建兴中会时指出:“夫以四百兆苍生之众,效万里土地之饶,固可发奋为雄,无敌于天下。
乃以庸奴误国,涂(荼)毒苍生,一蹶不兴,如斯之极。
方今强邻环列,蚕食鲸吞……。
有心人不禁大声疾呼,亟拯斯民于水火,切扶大厦之将倾。
”对材料的理解不正确的是 ( )A.开发中华资源,抵御列强侵略B.推翻满清贵族统治C.建立资产阶级共和国D.以救国救民为己任答案 C解析从“夫以四百兆苍生之众,效万里土地之饶,固可发奋为雄,无敌于天下”可以得出开发中华资源,抵御列强侵略,故A项排除;从“乃以庸奴误国,涂(荼)毒苍生,一蹶不兴,如斯之极。
方今强邻环列,蚕食鲸吞”可以得出推翻满清贵族统治,故B项排除;从“有心人不禁大声疾呼,亟拯斯民于水火,切扶大厦之将倾”可以得出以救国救民为己任,故D项排除;材料中没有体现建立资产阶级共和国,故C项理解不正确,故答案为C项。
2.(xx·山东省烟台市模拟题)列宁在评价孙中山的纲领时说:“它直接提出群众生活状况及群众斗争问题,热烈地同情被剥削的劳动者,相信他们是正义的和有力量的。
”针对的是孙中山主张的( )A.驱除鞑虏B.恢复中华C.创立民国D.平均地权答案 D解析“驱除鞑虏,恢复中华”解决的是民族独立的问题,“创立民国”解决的政治民主共和的问题,“平均地权”解决的是人民的生活和社会进步的问题,材料体现了孙中山对劳动者的关注和关心,故D项正确,A、B、C三项错误。
3.(xx·湖北省武汉三中模拟题)1912年2月15日孙中山亲自率领“国务卿士,文武将吏”拜谒明孝陵(下图)。
在祭文中,孙中山强调了辛亥首义、清室退位光复中华大业的成就。
并且说:“呜呼休哉!非我太祖在天之灵,何以及此?”这说明( )A.朱元璋的反元事迹激励了革命派B.革命派有狭隘的民族主义观念C.辛亥革命推翻了封建帝制D.三民主义的目标已经实现答案 B解析孙中山在清室退位后,率领文武百官到明孝陵举行隆重祭典,把自己摆在明太祖的事业继承者的地位上,向“我高皇帝在天之灵”报告“光复汉室”的喜讯。
题组层级快练(一)专题一正确使用词语(包括熟语)1.依次填入文中横线上的词语,全都恰当的一项是()一株株瘦削的枝条上,绽放着一簇簇耀眼的黄花,梭梭、沙枣、红柳等沙生植物郁郁葱葱,勾画出一条绿色隔离带,阻挡着风沙侵蚀的步伐,孕育着绿色的希望。
谁能想到,38 年前,这里是一片漫天黄沙的。
八步沙,是腾格里沙漠南缘、古浪县北部的一个风沙口。
上世纪六七十年代,这里的沙丘以每年7.5 米的速度向南移动,严重侵害着周边10 多个村庄和2 万多亩良田,给当地3 万多群众的生产生活以及过境公路铁路造成巨大。
面对步步紧逼的沙丘,一些人上新疆、去宁夏、走内蒙,开始逃离家乡。
当风沙袭来时,有人逃离家园,更有人留下来守护家园!为了不断恶化的自然环境。
1981年,作为三北防护林前沿阵地,古浪县着手治理荒漠,对八步沙试行“政府补贴、个人承包,谁治理、谁拥有”政策。
改革开放初期,承包沙漠对于当地人来说是一件“破天荒”的大事,谁能有勇气向茫茫沙漠发起挑战?关键时刻,石满、郭朝明、贺发林、张润元、罗元奎、程海站了出来。
这几位普普通通的西北治沙老人,被当地人亲切地称为“六老汉”。
当黄沙肆虐的时候,六老汉抱着护庄稼、保饭碗的质朴愿望,扛起共产党员应有的担当,不畏恶劣环境,无惧艰苦劳作。
他们的朴素情怀、坚定信念、勇往直前,点亮了治沙A .不毛之地危害遏制谱写B .不毛之地危险遏止撰写C .荒山野岭危害遏止谱写D.荒山野岭危险遏制撰写答案A解析“不毛之地”指不长庄稼的地方,泛指贫瘠、荒凉的土地或地带。
“荒山野岭”指荒凉没有人烟的山岭。
这里说的是八步沙贫瘠、荒凉,而不是说其没有人烟,故选“不毛之地”。
“危害”指使受破坏;损害。
“危险”指有遭到损害或失败的可能;遭到损害或失败的可能性。
这里说的是移动的沙丘给当地3 万多群众的生产生活以及过境公路铁路造成巨大的损害,而不是遭到损害的可能性,故选“危害”。
“遏制”指制止,控制。
“遏止”指阻止。
这里说的是控制不断恶化的自然环境,而不是阻止不断恶化的环境,故选“遏制”。
题组层级快练(三十)1.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若a +b =0,则a =-b ,所以a ∥b ;若a ∥b ,则a =λb ,a +b =0不一定成立,故前者是后者的充分不必要条件.2.设a 是任一向量,e 是单位向量,且a ∥e ,则下列表示形式中正确的是( ) A .e =a|a |B .a =|a |eC .a =-|a |eD .a =±|a |e答案 D解析 对于A ,当a =0时,a|a |没有意义,错误; 对于B ,C ,D 当a =0时,选项B ,C ,D 都对; 当a ≠0时,由a ∥e 可知,a 与e 同向或反向,选D.3.(2015·北京东城期中)已知ABCD 为平行四边形,若向量AB →=a ,AC →=b ,则向量BD →为( ) A .a -b B .a +b C .b -2a D .-a -b答案 C4.如图所示,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A .0 B.BE → C.AD → D.CF →答案 D解析 由于BA →=DE →,故BA →+CD →+EF →=CD →+DE →+EF →=CF →.5.(2015·广东惠州二中模拟)已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且OP →=3OA →-OB→2,则( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上 答案 B解析 OP →=3OA →-OB →2=32OA →-12OB →=OA →+12(OA →-OB →)=OA →+12BA →,即OP →-OA →=AP →=12BA →,所以点P 在线段AB的反向延长线上,故选B.6.在△ABC 中,点D 在边AB 上,CD 平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( ) A.13a +23b B.23a +13b C.35a +45b D.45a +35b 答案 B解析 由内角平分线定理,得|CA ||CB |=|AD ||DB |=2.∴CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=23CB →+13CA →=23a +13b .故B 正确.7.已知向量i 与j 不共线,且AB →=i +m j ,AD →=n i +j ,若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是( )A .m +n =1B .m +n =-1C .mn =1D .mn =-1答案 C解析 由A ,B ,D 共线可设AB →=λAD →,于是有i +m j =λ(n i +j )=λn i +λj .又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m ,即有mn =1.8.O 是平面上一定点,A ,B ,C 是该平面上不共线的三个点,一动点P 满足:OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则直线AP 一定通过△ABC 的( )A .外心B .内心C .重心D .垂心答案 C解析 取BC 中点M . OP →=OA →+λ(AB →+AC →),OP →-OA →=λ(AB →+AC →),AP →=2λAD →.∴A ,P ,D 三点共线,∴AP 一定通过△ABC 的重心,C 正确.9.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形 C .梯形 D .以上都不对答案 C解析 由已知AD →=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →. ∴AD →∥BC →.又AB →与CD →不平行,∴四边形ABCD 是梯形.10.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C )的充要条件是AP →=λ(AB →+AD →),则λ的取值范围是( )A .λ∈(0,1)B .λ∈(-1,0)C .λ∈(0,22) D .λ∈(-22,0) 答案 A解析 如图所示,∵点P 在对角线AC 上(不包括端点A ,C ),∴AP →=λAC →=λ(AB →+AD →).由AP →与AC →同向知,λ>0.又|AP →|<|AC →|, ∴|AP →||AC →|=λ<1,∴λ∈(0,1).反之亦然. 11.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下列说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上 答案 D解析 若A 成立,则λ=12,而1μ=0,不可能;同理B 也不可能;若C 成立,则0<λ<1,且0<μ<1,1λ+1μ>2,与已知矛盾;若C ,D 同时在线段AB 的延长线上时,λ>1,且μ>1,1λ+1μ<2,与已知矛盾,故C ,D 不可能同时在线段AB 的延长线上,故D 正确.12.如图所示,下列结论不正确的是________.①PQ →=32a +32b ;②PT →=-32a -32b ;③PS →=32a -12b ;④PR →=32a +b .答案 ②④解析 由a +b =23PQ →,知PQ →=32a +32b ,①正确;由PT →=32a -32b ,从而②错误;PS →=PT →+b ,故PS →=32a-12b ,③正确;PR →=PT →+2b =32a +12b ,④错误.故正确的为①③. 13.如图所示,已知∠B =30°,∠AOB =90°,点C 在AB 上,OC ⊥AB ,用OA →和OB →来表示向量OC →,则OC →等于________.答案 34OA →+14OB →解析 OC →=OA →+AC →=OA →+14AB →=OA →+14(OB →-OA →)=34OA →+14OB →.14.设a 和b 是两个不共线的向量,若AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,且A ,B ,D 三点共线,则实数k 的值等于________.答案 -4解析 ∵A ,B ,D 三点共线,∴AB →∥BD →.∵AB →=2a +k b ,BD →=BC →+CD →=a -2b ,∴k =-4.故填-4. 15.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________. 答案 1∶2解析 如图所示,取AC 中点D .∴OA →+OC →=2OD →. ∴OD →=BO →.∴O 为BD 中点,∴面积比为高之比.16.已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ,μ,使向量d =λa +μb 与c 共线?答案 当λ=-2μ时共线解析 ∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(-3λ+3μ)e 2. 要使d 与c 共线,则应有实数k ,使d =k c . 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2.即⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ.故存在这样的实数λ,μ,只要λ=-2μ,就能使d 与c 共线. 17.如图所示,已知点G 是△ABO 的重心.(1)求GA →+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n=3.答案 (1)GA →+GB →+GO →=0 (2)略解析 (1)如图所示,延长OG 交AB 于M 点,则M 是AB 的中点. ∴GA →+GB →=2GM →. ∵G 是△ABO 的重心, ∴GO →=-2GM →. ∴GA →+GB →+GO →=0. (2)∵M 是AB 边的中点, ∴OM →=12(OA →+OB →)=12(a +b ).又∵G 是△ABO 的重心,∴OG →=23OM →=13(a +b ).∴PG →=OG →-OP →=13(a +b )-m a =(13-m )a +13b .而PQ →=OQ →-OP →=n b -m a , ∵P ,G ,Q 三点共线,∴有且只有一个实数λ,使得PG →=λPQ →. ∴(13-m )a +13b =λn b -λm a . ∴(13-m +λm )a +(13-λn )b =0. ∵a 与b 不共线,∴⎩⎪⎨⎪⎧13-m +λm =0,13-λn =0.消去λ,得1m +1n=3.。
题组层级快练(一)一、单项选择题1.下列说法正确的是( )A .M ={(2,3)}与N ={(3,2)}表示同一集合B .M ={(x ,y )|x +y =1}与N ={y |x +y =1}表示同一集合C .M ={x ∈N |x (x +2)≤0}有2个子集D .设U =R ,A ={x |lg x <1},则∁U A ={x |lg x ≥1}={x |x ≥10}答案 C2.若A =⎩⎨⎧⎭⎬⎫x |x 2∈Z ,B =⎩⎨⎧⎭⎬⎫y |y +12∈Z ,则A ∪B 等于( ) A .BB .AC .∅D .Z答案 D 解析 A ={x |x =2n ,n ∈Z }为偶数集,B ={y |y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z .3.(2023·全国甲卷,理)设集合A ={x |x =3k +1,k ∈Z },B ={x |x =3k +2,k ∈Z },U 为整数集,∁U (A ∪B )=( )A .{x |x =3k ,k ∈Z }B .{x |x =3k -1,k ∈Z }C .{x |x =3k -2,k ∈Z }D .∅答案 A解析 因为整数集Z ={x |x =3k ,k ∈Z }∪{x |x =3k +1,k ∈Z }∪{x |x =3k +2,k ∈Z },U =Z ,所以∁U (A ∪B )={x |x =3k ,k ∈Z }.故选A.4.已知集合A ={(x ,y )|xy =1},B ={(x ,y )|x ∈Z ,y ∈Z },则A ∩B 有________个真子集.( )A .3B .16C .15D .4 答案 A解析 A ={(x ,y )|xy =1},B ={(x ,y )|x ∈Z ,y ∈Z },则A ∩B ={(1,1),(-1,-1)},真子集个数为22-1=3.故选A.5.(2023·山东济宁检测)设全集U ={-3,-2,-1,0,1,2,3},集合A ={-2,-1,0,1},B ={x |x 2-x -2=0},则下列四个图中的阴影部分所表示的集合为{-2,0,1}的是( )答案 C解析因为A={-2,-1,0,1},B={x|x2-x-2=0}={-1,2},所以A∩B={-1},A∪B={-2,-1,0,1,2}.则A中的阴影部分所表示的集合为{-2,0,1,2};B中的阴影部分所表示的集合为{2};C中的阴影部分所表示的集合为{-2,0,1};D中的阴影部分所表示的集合为{-1}.故选C.6.(2022·石家庄二中模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]答案 A解析集合M={0,1},集合N={x|0<x≤1},M∪N={x|0≤x≤1},所以M∪N=[0,1].7.(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.SC.T D.Z答案 C解析当n=2k,k∈Z时,S={s|s=4k+1,k∈Z};当n=2k+1,k∈Z时,S={s|s=4k+3,k∈Z}.所以T S,S∩T=T.故选C.8.(2024·河北辛集中学模拟)已知集合A={1,3,a2-2a},B={3,2a-3},C={x|x<0},若B⊆A且A∩C=∅,则a=()A.1 B.2C.3 D.2或3答案 B解析方法一:由题得2a-3=1或2a-3=a2-2a.若2a-3=1,则a=2,故A={0,1,3},B={1,3},此时满足B⊆A,A∩C=∅.若2a-3=a2-2a,则a=1或a=3,当a=1时,A={-1,1,3},B={-1,3},此时A∩C ={-1},不符合题意;当a=3时,a2-2a=3,不符合题意.故a=2,选B.方法二:因为A∩C=∅,故集合A中的元素均为非负数,从而a2-2a≥0,得a≤0或a≥2,故排除A;由集合中元素的互异性得2a-3≠3,即a≠3,排除C、D.故选B.9.若非空且互不相等的集合M,N,P满足:M∩N=M,N∪P=P,则M∪P=()A.M B.NC.P D.∅答案 C解析∵M∩N=M,∴M⊆N,∵N∪P=P,∴N⊆P,∵M,N,P非空且互不相等,∴M N P,∴M∪P =P.故选C.10.(2018·课标全国Ⅱ,理)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9 B.8C.5 D.4答案 A解析方法一:由x2+y2≤3知,-3≤x≤3,-3≤y≤ 3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为C31C31=9,故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.二、多项选择题11.已知集合M ={y |y =x -|x |,x ∈R },N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫13x ,x ∈R ,则下列选项正确的是( ) A .M =NB .N ⊆MC .M ∩N =∅D .M =∁R N答案 CD 解析 由题意得M ={y |y ≤0},N ={y |y >0},∴∁R N ={y |y ≤0},∴M =∁R N ,M ∩N =∅.12.(2024·重庆八中适应性考试)已知全集U 的两个非空真子集A ,B 满足(∁U A )∪B =B ,则下列关系一定正确的是( )A .A ∩B =∅B .A ∩B =BC .A ∪B =UD .(∁U B )∪A =A答案 CD解析 令U ={1,2,3,4},A ={2,3,4},B ={1,2},满足(∁U A )∪B =B ,但A ∩B ≠∅,A ∩B ≠B ,故A 、B 均不正确;由(∁U A )∪B =B ,知∁U A ⊆B ,∴U =[A ∪(∁U A )]⊆(A ∪B ),∴A ∪B =U ,由∁U A ⊆B ,知∁U B ⊆A ,∴(∁U B )∪A =A ,故C 、D 均正确.13.1872年,德国数学家戴德金用有理数的“分割”来定义无理数(史称“戴德金分割”).所谓“戴德金分割”,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N =Q ,M ∩N =∅,M 中每一个元素均小于N 中的每一个元素,则称(M ,N )为“戴德金分割”.试判断下列选项中,可能成立的是( )A .M ={x ∈Q |x <0},N ={x ∈Q |x >0}是一个戴德金分割B .M 没有最大元素,N 有一个最小元素C .M 有一个最大元素,N 有一个最小元素D .M 没有最大元素,N 也没有最小元素答案 BD解析 对于A ,因为M ∪N ={x ∈Q |x ≠0}≠Q ,故A 错误;对于B ,设M ={x ∈Q |x <0},N ={x ∈Q |x ≥0},满足“戴德金分割”,故B 正确;对于C ,不能同时满足M ∪N =Q ,M ∩N =∅,故C 错误;对于D ,设M ={x ∈Q |x <2},N ={x ∈Q |x ≥2},满足“戴德金分割”,此时M 没有最大元素,N 也没有最小元素,故D 正确.三、填空题与解答题14.集合A ={0,|x |},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________. 答案 {0,1} {1,0,-1} {-1}解析因为A⊆B,所以|x|∈B,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A={0,1},则A∩B={0,1},A∪B={1,0,-1},∁B A={-1}.15.已知集合A={x|log2x<1},B={x|0<x<c},c>0.若A∪B=B,则c的取值范围是________.答案[2,+∞)解析A={x|0<x<2},由数轴分析可得c≥2.16.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+a2-5=0}.(1)若A∩B={2},求a的值;(2)若A∪B=A,求a的取值范围;(3)若U=R,A∩(∁U B)=A,求a的取值范围.答案(1)-1或-3(2)(-∞,-3](3){a|a≠-1±3且a≠-1且a≠-3}解析A={1,2}.(1)由A∩B={2},得2∈B,则4+4a+4+a2-5=0,得a=-1或-3.当a=-1时,B={x|x2-4=0}={2,-2},符合题意;当a=-3时,B={x|x2-4x+4=0}={2},符合题意.综上,a=-1或-3.(2)由A∪B=A,得B⊆A.①若B=∅,则Δ=4(a+1)2-4(a2-5)<0,得a<-3;②若B={1},则1+2a+2+a2-5=0且Δ=0,此时无解;③若B={2},则4+4a+4+a2-5=0且Δ=0,得a=-3;④若B={1,2},则1+2a+2+a2-5=0且4+4a+4+a2-5=0,此时无解.综上,a的取值范围为(-∞,-3].(3)由A∩(∁U B)=A,得A∩B=∅,所以1+2a+2+a2-5≠0且4+4a+4+a2-5≠0,解得a≠-1±3且a≠-1且a≠-3.故a的取值范围为{a|a≠-1±3且a≠-1且a≠-3}.17.(2024·成都七中月考)已知非空集合A,B满足A∪B={1,2,3,4},A∩B=∅,且A的元素个数不是A中的元素,B的元素个数不是B中的元素,则集合A,B的所有可能情况种数为()A.1 B.2C.3 D.4答案 B解析易知A的元素个数不能为2,否则A,B中必然有一个含有元素2,且集合中元素个数为2,不合题意.所以A的元素个数为1或3,所以可能情况有A={3},B={1,2,4}或A={1,2,4},B={3},共2种.故选B. 18.【多选题】设集合X是实数集R的子集,如果x0∈R满足对任意的a>0,都存在x∈X,使得0<|x-x0|<a,则称x0为集合X的聚点.则下列集合中是以0为聚点的集合有()A .{x |x ∈R ,x ≠0}B .{x |x ∈Z ,x ≠0} C.⎩⎨⎧⎭⎬⎫x |x =1n ,n ∈N *D.⎩⎨⎧⎭⎬⎫x |x =n n +1,n ∈N *答案 AC解析 对于A ,对任意的a >0,都存在x =a 2使得0<|x -0|=a 2<a ,故0是集合{x |x ∈R ,x ≠0}的聚点. 对于B ,对于某个实数a >0,比如取a =12,此时对任意的x ∈{x |x ∈Z ,x ≠0},都有|x -0|≥1,也就是说0<|x -0|<12不可能成立,从而0不是集合{x |x ∈Z ,x ≠0}的聚点. 对于C ,对任意的a >0,都存在n >1a ,即1n <a ,0<|x -0|=1n <a ,故0是集合{x |x =1n,n ∈N *}的聚点. 对于D ,n n +1=1-1n +1,故n n +1随着n 的增大而增大,故n n +1的最小值为11+1=12,即x ≥12,故对任意的0<a <12,不存在x ,使得0<|x -0|<a ,故0不是集合⎩⎨⎧⎭⎬⎫x |x =n n +1,n ∈N *的聚点.故选AC.。
题组层级快练(七)专题七语言表达简明、得体、准确、鲜明、生动1.阅读下面一段文字,完成后面的题目。
大家好!①非常荣幸能够代表毕业生发言。
此时此刻,②我心情非常激动。
高中三年,③我们早已习惯于在学校的生活,早已离不开四季飘香的校园。
④我们将告别大家朝夕相处的同学、学识渊博的老师。
⑤在此,⑥请允许我代表高三的全体同仁,⑦向我们的恩师致以崇高的敬意!今后,⑧我们这些高足,⑨定当以自己的实际行动报答母校……(1)文中画线的句子中有两处表达不简明,应删除个别词语。
表达不简明的句子序号分别是________和________。
(2)文中画线的句子中有两处表达不得体,应替换个别词语。
表达不得体的句子序号分别是________和________。
答案(1)③④(2)⑥⑧解析③“在”多余;④“大家”多余;⑥“同仁”不得体;⑧“高足”不得体。
2.下面是一封校庆邀请函的部分内容,其中有五处不得体,请找出并作修改。
学校诚邀您来看一下校庆典礼,与贵校师生共襄盛典。
您的拨冗惠顾就是对我们的最大支持。
如能参加,务必于5月10日前发回执告知,以便学校做好接待准备。
如不能亲临,可将贺信呈送到校庆办公室。
①将____________改为____________②将____________改为____________③将____________改为____________④将____________改为____________⑤将____________改为____________答案①“来看一下”改为“出席”或“参加”;②“贵校”改为“我校”“全校”或“本校”;③“惠顾”改为“光临”或“莅临”;④“务必”改为“希望”或“请”;⑤“呈送”改为“惠寄”“寄送”或“发送”。
解析这是一封代表学校发出的书面邀请函,所以在遣词造句时不仅需要正确使用书面语体,而且还要恰当地使用敬谦辞。
①“来看一下”属于口语词汇,不符合邀请函的语体风格,可将其改为“出席”或“参加”。
高一高考调研题组层级快练数学答案
题组层级快练(一)
1.下列各组集合中表示同一集合的是()A.M=[(3.221:M=((9.3)1
B.y={2,3},A=8,2}
C.-{(x,)Ix+y=1},N=(ylx+y=1}
D.y=[2,3},={(2,3)}
答案B
2.集合=xlx=llf,aey,p=lxlx=d-4al5.aeNj.则下列关系山止确的是()
A.P
B.Py
C.=P
D.MgPH厚
答案A解析P=(xlx=1+(a-2),acN',当a=2时,x=1,而中无元素1.P 比M多一个元素。
3.(2014?四川文)已知集合4=[xl(x+1)(x-2)≤0},集合B为整数集,则AnB=()C.(一2,-1,0,1}D.{-1,0,1,2}
答案D解析由二次函数y=(x+1)(x一2)的图像可以得到不等式(x+1)(x一2)≤0的解集A=[-1,2],属于A的整数只有一1,0,1,2,所以AnB=(-1,0,1,2},故选D.
4.(2015?《高考调研》原创题)已知i为虚数单位,集合P={-1,1},0=(i,i3,若Pno=(zi),则复数2等于()答案C解析因为0={i,i),所以0={i,-1}.又P={-1,1},所以png={-1l,所以2i=一1,所以2=i,故选C.
5.集合A一{0,2,al,B-1,,若AUB={0,1,2,4,16},则a的值为()
答案D解析由UB-{0,1,2,a,},知a-4.
6.设P-{riy=-+1,x=R},Q-{yly=2",x=R},则()A.sQB.QEP C.[aFs 0D.QFciP 答案C解析依题意得集合P={rlr≤1],0=[yly>0],。
题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。
高考调研题组层级快练历史2023电子版一、选择题(本大题共25小题,满分50分,每小题2分。
每小题所列的四个选项中,只有一项符合题目要求)1、据考证,周武王灭商后,封舜的后代妫满于陈,妫满死后被谥为陈胡公.其后代便以“陈”为姓氏。
陈姓源流反映了西周时期一项重要的政治制度。
这项制度是A.郡县制B.行省制C.宗法制D.九品中正制2、某历史学习兴趣小组在探讨中国古代小农经济的基本特点时,形成了如下一些观点,你认为错误的是A.以一家一户为单位B.农业和家庭手工业相结合C.经济上自给自足D.生产的产品大部分投放市场3、商鞅变法规定:制止弃农经商,未经允许从商者罚作奴隶。
此规定体现的经济政策是A.海禁政策B.闭关锁国C.重农抑商D.土地国有4、明太祖朱元璋曾在8天内,平均每天批阅奏章两百多件,处理国事四百多件,为减轻负担,他设置了A.御史大夫B.中书省C.殿阁大学士D.军机处5、明确规定中国割让香港岛给英国的不平等条约是A《南京条约》 B.《北京条约》 C.《天津条约》 D.《辛丑条约》6、慈禧太后一直被认为是晚清封建顽固派的最高代表,可她支持洋务运动,这是因为洋务派“中学为体、西学为用”的主张有利于A.废除封建制度B.维护清朝统治C.推行君主立宪D.促进民主共和7、有同学收集了一些研究性学习素材,其中涉及“张謇”“短暂的春天”“国民经济建设运动”“军管理”“《中美友好通商航海条约》”等内容。
他探究的主题应该是A.近代中国民族资本主义的曲折发展B.近代中国经济结构的变动C.近代中国思想解放潮流D.近代中国反侵略、求民主的潮流8、1905年,中国人自己摄制的电影首映成功。
这部影片不论对中国电影史,还是中国京剧史来讲,都是弥足珍贵的资料,它是A.《定军山》B.《歌女红牡丹》C.《渔光曲》D.《风云儿女》9、陈独秀在《敬告青年》一文中写道:国人而欲脱蒙昧时代……当以科学与人权并重。
以此文的发表为开端的运动是A.太平天国运动B.义和团运动C.新文化运动D.维新变法运动10、为集中全力纠正博古等人的“左倾”军事路线错误,会议委托张闻天起草《中央关于反对敌人五次“围剿”的总结的决议》这次会议应该是A.八七会议B.中共三大C.中共七大D.遵义会议11、1958年8月13日,《人民日报》社论写道:“这又一次生动地证明:“人有多大胆,地有多大产”,解放了的人民可以创造出史无前例的奇迹来······”。
高考调研题组层级快练地理选修二1. 引言地理是高中阶段的一门重要学科,对于学生的综合素质和发展具有重要意义。
高考地理考试中,题组层级的快速训练对于提升学生成绩至关重要。
本文将针对地理选修二这一内容,介绍题组层级的快速训练方法,帮助学生在高考中取得好成绩。
2. 题组层级快练的重要性题组层级是高考地理考试中的一种题型,对于学生的综合运用能力和分析能力有很高的要求。
通过进行题组层级快练,学生可以熟悉题组层级题型的出题规律,提高解题速度和准确率。
此外,题组层级快练也有助于学生对地理知识的整合和巩固。
3. 题组层级快练的方法3.1 制定学习计划要进行题组层级快练,首先需要制定一个科学合理的学习计划。
根据地理选修二的内容,制定每周的学习目标和计划,并合理安排每天的学习时间。
坚持按计划学习,分阶段进行题组层级的快练,循序渐进提高解题能力。
3.2 系统学习题型知识点学习题组层级快练之前,必须要掌握题组层级题型的基本知识点。
通过系统学习教材和参考书,掌握地理选修二的相关知识点和概念。
了解题目要求和解题方法,为进行题组层级快练做好准备。
3.3 多做题目,培养解题思路进行题组层级快练的关键是多做题目,培养解题思路。
选择一些与地理选修二相关的题目进行练习,通过反复做题,加深对知识点的理解和记忆。
同时,在解题过程中要注意总结解题思路和方法,发现规律和技巧,提高解题的速度和准确率。
3.4 进行模拟考试进行题组层级快练的另一个重要环节是进行模拟考试。
选择一些真实高考地理题目,模拟真实考试的环境和时间,进行考前冲刺的训练。
在模拟考试中,能够更好地体验真实考试的紧张感和时间压力,提高应对考试的能力。
4. 学习资源推荐4.1 教材地理选修二的教材是进行题组层级快练的基础资源,学生可以根据教材进行系统的知识学习和复习。
4.2 参考书针对地理选修二的参考书也是一个很好的学习资源,学生可以选择适合自己的参考书进行查漏补缺和提高解题能力。
高考调研高一数学必修一题组层级快练答案1、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ2、36、下列生活实例中, 数学原理解释错误的一项是( ) [单选题] *A. 从一条河向一个村庄引一条最短的水渠, 数学原理: 在同一平面内, 过一点有且只有一条直线垂直于已知直线(正确答案)B. 两个村庄之间修一条最短的公路, 其中的数学原理是:两点之间线段最短C. 把一个木条固定到墙上需要两颗钉子, 其中的数学原理是: 两点确定一条直线D. 从一个货站向一条高速路修一条最短的公路, 数学原理: 连结直线外一点与直线上各点的所有线段中, 垂线段最短.3、16.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高时,气温变化记作,那么气温下降时,气温变化记作()[单选题] *A.-10℃(正确答案)B.-13℃C.+10℃D.+13℃4、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。
记录一被测人员在一周内的体温测量结果分别为+1,-3,-5,+1,-6,+2,-4,那么,该被测者这一周中测量体温的平均值是(??)[单选题] *A.1℃B.31℃C.8℃(正确答案)D.69℃5、260°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限6、19、如果点M是第三象限内的整数点,那么点M的坐标是()[单选题] *(-2,-1)(-2,-2)(-3,-1)(正确答案)(-3,-2)7、以A(3,2),B(6,5),C(1,10)为顶点的三角形是()[单选题] *A、锐角三角形B、锐角三角形C、直角三角形(正确答案)D、无法判断8、1、方程x2?-X=0 是(? ? )? ? ? ? ? ? 。
[单选题] *A、一元一次方程B、一元二次方程(正确答案)C、二元一次方程D、二元二次方程9、二次函数y=3x2-4x+5的二次项系数是()。
高考调研层级快练语文答案1、1“欢迎你到我家来拜访!”这句话表达得体。
[判断题] *对错(正确答案)2、1形散神不散是散文的主要特点之一。
形散主要指散文取材广泛自由,表现手法不拘一格;神不散指表达的主题必须明确集中。
[判断题] *对(正确答案)错3、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、偏僻(piān)杜撰(zhuàn)B、稀罕(gàn)溺爱(ruò)(正确答案)C、辜负(gū)风骚(sāo)D、愚蠢(chǔn)纨绔(kù)4、1祥林嫂是孙犁《荷花淀》中的人物形象。
[判断题] *对(正确答案)错5、1向非专业人士介绍工艺流程时应尽量使用专用术语,以使他们学到更多的专业知识。
[判断题] *对错(正确答案)6、关于《红楼梦》中人物形象的分析,正确的一项是() [单选题] *A.《红楼梦》中,晴雯性格温柔和顺,处事细心周到,人人称赞;袭人性情急躁直率,待人爱憎分明,受人怨谤。
二人性格迥异,却都走向悲剧结局,令人唏嘘。
B.黛玉是诗社中的佼佼者,“温柔敦厚”是姐妹们对其诗风的赞誉。
C.《红楼梦》中写史湘云有金麒麟、薛宝钗有金锁,是为了说明她们有显赫的家世,从而反衬出林黛玉出身的贫寒。
D.《红楼梦》中的刘姥姥来自社会底层,农村生活孕育了她精于世故又朴实善良的复杂性格。
(正确答案)7、“间隔”“亲密无间”的“间”读音都是“jiàn”。
[判断题] *对(正确答案)错8、22.下列词语中加点字的注音,不完全正确的一项是()[单选题] *A.着落(zhuó)粗犷(guǎng)字帖(tiè)屏息敛声(bǐng)B.瞭望(liáo)稽首(qī)侍候(shì)浮光掠影(nüè)(正确答案)C.麾下(huī)睥睨(pì)鲜妍(yán)战战兢兢(jīng)D.一霎(shà)翌日(yì)箴言(zhēn)刨根问底(páo)9、1《芝麻官餐馆》采用了夹叙夹议的方法,再现一位离休县长打破世俗观念开餐馆的同时,又表达了作者有感而发的人生思考,读来令人深深回味。
题组层级快练1.1集合一、单项选择题1.下列各组集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y)|x +y =1},N ={y|x +y =1}D .M ={2,3},N ={(2,3)}2.集合M ={x ∈N |x(x +2)≤0}的子集个数为( )A .1B .2C .3D .4 3.已知集合A =⎩⎨⎧⎭⎬⎫x ∈Z |32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .54.(2021·长沙市高三统一考试)若集合M ={x ∈R |-3<x<1},N ={x ∈Z |-1≤x ≤2},则M ∩N =( )A .{0}B .{-1,0}C .{-1,0,1}D .{-2,-1,0,1,2}5.(2021·山东新高考模拟)设集合A ={(x ,y)|x +y =2},B ={(x ,y)|y =x 2},则A ∩B =( )A .{(1,1)}B .{(-2,4)}C .{(1,1),(-2,4)}D .∅6.已知集合A ={x|log 2(x -2)>0},B ={y|y =x 2-4x +5,x ∈A},则A ∪B =( )A .[3,+∞)B .[2,+∞)C .(2,+∞)D .(3,+∞)7.已知集合A ={x ∈N |1<x<log 2k},集合A 中至少有3个元素,则( )A .k>8B .k ≥8C .k>16D .k ≥168.(2020·重庆一中月考)已知实数集R ,集合A ={x|log 2x<1},B ={x ∈Z |x 2+4≤5x},则(∁R A)∩B =( )A .[2,4]B .{2,3,4}C .{1,2,3,4}D .[1,4]9.(2021·郑州质检)已知集合A ={x|x>2},B ={x|x<2m ,m ∈R }且A ⊆∁R B ,那么m 的值可以是( )A .1B .2C .3D .410.已知集合A ={y |y =x +1x,x ≠0},集合B ={x|x 2-4≤0},若A ∩B =P ,则集合P 的子集个数为( ) A .2 B .4 C .8 D .16二、多项选择题11.(2021·沧州七校联考)设集合A =⎭⎬⎫⎩⎨⎧<<7221x x ,下列集合中,是A 的子集的是( ) A .{x|-1<x<1} B .{x|1<x<3} C .{x|1<x<2} D .∅12.设集合M ={x|(x -3)(x +2)<0},N ={x|x<3},则( )A .M ∩N =MB .M ∪N =NC .M ∩(∁R N)=∅D .M ∪N =R三、填空题与解答题13.集合A ={0,|x|},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.14.(1)设全集U =A ∪B ={x ∈N *|lgx<1},若A ∩(∁U B)={m|m =2n +1,n =0,1,2,3,4},则集合B =________.(2)已知集合A ={x|log 2x<1},B ={x|0<x<c},c>0.若A ∪B =B ,则c 的取值范围是________.15.已知集合A ={x|1<x<3},集合B ={x|2m<x<1-m}.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B =(1,2),求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.16.已知集合A ={x|1<x<k},集合B ={y|y =2x -5,x ∈A},若A ∩B ={x|1<x<2},则实数k 的值为( )A .5B .4.5C .2D .3.517.设f(n)=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ^={n ∈N |f(n)∈P},Q ^={n ∈N |f(n)∈Q},则P ^∩(∁N Q ^)=( )A .{0,3}B .{0}C .{1,2}D .{1,2,6,7}18.(2018·课标全国Ⅱ,理)已知集合A ={(x ,y)|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .41.1集合 参考答案1.答案 B2.答案 B 解析 ∵M ={x ∈N |x(x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.选B.3.答案 C4.答案 B 解析 由题意,得N ={x ∈Z |-1≤x ≤2}={-1,0,1,2},M ={x ∈R |-3<x<1},则M ∩N ={-1,0}.故选B.5.答案 C6.答案 C 解析 ∵log 2(x -2)>0,∴x -2>1,即x>3,∴A =(3,+∞),∴y =x 2-4x +5=(x -2)2+1>2,∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.7.答案 C 解析 因为集合A 中至少有3个元素,所以log 2k>4,所以k>24=16.故选C.8.答案 B 解析 由log 2x<1,解得0<x<2,故A =(0,2),故∁R A =(-∞,0]∪[2,+∞),由x 2+4≤5x ,即x 2-5x +4≤0,解得1≤x ≤4,又x ∈Z ,所以B ={1,2,3,4}.故(∁R A)∩B ={2,3,4}.故选B.9.答案 A 解析 由B ={x|x<2m ,m ∈R },得∁R B ={x|x ≥2m ,m ∈R }.因为A ⊆∁R B ,所以2m ≤2,m ≤1.故选A.10.答案 B11.答案 ACD 解析 依题意得,A ={x|-1<x<log 27},∵2=log 24<log 27<log 28=3,∴选ACD.12.答案 ABC 解析 由题意知,M ={x|-2<x<3},N ={x|x<3},所以M ∩N ={x|-2<x<3}=M ,M ∪N =N ,因为∁R N ={x|x ≥3},所以M ∩(∁R N)=∅.故选ABC.13.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x|∈B ,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.14.(1)答案 {2,4,6,8}解析 U ={1,2,3,4,5,6,7,8,9},A ∩(∁U B)={1,3,5,7,9},∴B ={2,4,6,8}.(2)答案 [2,+∞)解析 A ={x|0<x<2},由数轴分析可得c ≥2.15.答案 (1)(-∞,-2] (2)-1 (3)[0,+∞)解析 (1)由A ⊆B ,得⎩⎪⎨⎪⎧1-m>2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(2)由已知,得⎩⎪⎨⎪⎧2m ≤1,1-m =2⇒⎩⎪⎨⎪⎧m ≤12,m =-1,∴m =-1. (3)由A ∩B =∅,得 ①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m<1-m ,即m<13时,需⎩⎪⎨⎪⎧m<13,1-m ≤1或⎩⎪⎨⎪⎧m<13,2m ≥3,得0≤m<13或∅,即0≤m<13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).16.答案 D解析 B =(-3,2k -5),由A ∩B ={x|1<x<2},知k =2或2k -5=2,因为k =2时,2k -5=-1,A ∩B =∅,不合题意,所以k =3.5.故选D.17.答案 B解析 设P 中元素为t ,由方程2n +1=t ,n ∈N ,解得P ^={0,1,2},Q ^={1,2,3},∴P ^∩(∁N Q ^)={0}.18.答案A解析 方法一:由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 31C 31=9.故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图象,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数.故选A.。
题组层级快练3.3.1导数的应用--极值与最值一、单项选择题1.(2021·辽宁沈阳一模)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点2.(2021·河北邯郸一中月考)若函数f(x)=ae x-sinx在x=0处有极值,则a的值为() A.-1B.0C.1D.e3.函数f(x)=12x-sinx在0,π2上的最小值和最大值分别是()A.π6-32,0 B.π4-1,0 C.π6-32,π4-1D.-12,124.(2021·杭州学军中学模拟)函数f(x)=xe-x,x∈[0,4]的最小值为()A.0 B.1e C.4e4D.2e25.若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是()A.(-2,2)B.[-2,2]C.(-∞,-1)D.(1,+∞)6.若函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和13,则()A.a-2b=0B.2a-b=0C.2a+b=0D.a+2b=07.设二次函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()二、多项选择题8.已知函数f(x)=x3-ax-1,以下结论正确的是()A.当a=0时,函数f(x)的图象的对称中心为(0,-1)B.当a≥3时,函数f(x)在(-1,1)上为单调递减函数C.若函数f(x)在(-1,1)上不单调,则0<a<3D.当a=12时,f(x)在[-4,5]上的最大值为159.(2021·山东临沂期末)已知函数f(x)=x+sinx-xcosx的定义域为[-2π,2π),则()A.f(x)为奇函数B.f(x)在[0,π)上单调递增C.f(x)恰有4个极大值点D.f(x)有且仅有4个极值点三、填空题与解答题10.已知函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则f(2)的值为________.11.(2021·内蒙古兴安盟模拟)已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.12.(2018·江苏)若函数f(x)=2x3-ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为________.13.(2021·广东省高二期末)已知函数f(x)=13x3-4x+3.(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[-3,5]上的最大值与最小值.14.已知函数f(x)=(x2-2x)e x(x∈R,e为自然对数的底数).(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[0,m]上的最大值和最小值.15.(2021·天水一中诊断)若函数f(x)=ax22-(1+2a)·x+2lnx(a>0)a的取值范围是()B.(1,+∞)C.(1,2)D.(2,+∞)16.(2016·北京)设函数f(x)3-3x,x≤a,2x,x>a.(1)若a=0,则f(x)的最大值为________;(2)若f(x)无最大值,则实数a的取值范围是________.17.(2020·衡水中学调研卷)已知函数f(x)=xlnx.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数).3.3.1导数的应用--极值与最值参考答案1.答案D解析由f(x)=xe x +1,可得f ′(x)=(x +1)e x ,令f ′(x)>0可得x>-1,即函数f(x)在(-1,+∞)上单调递增;令f ′(x)<0可得x<-1,即函数f(x)在(-∞,-1)上单调递减,所以x =-1为f(x)的极小值点.故选D.2.答案C解析f ′(x)=ae x -cosx ,若函数f(x)=ae x -sinx 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意.故选C.3.答案A解析函数f(x)=12x -sinx ,f ′(x)=12-cosx ,令f ′(x)>0,解得π3<x ≤π2,令f ′(x)<0,解得0≤x<π3,所以f(x)在0,π2上单调递增,所以f(x)min ==π6-32,而f(0)=0,=π4-1<0,故f(x)在区间0,π2上的最小值和最大值分别是π6-32,0.故选A.4.答案A解析f ′(x)=1-xe x,当x ∈[0,1)时,f ′(x)>0,f(x)单调递增,当x ∈(1,4]时,f ′(x)<0,f(x)单调递减,因为f(0)=0,f(4)=4e 4>0,所以当x =0时,f(x)有最小值,且最小值为0.故选A.5.答案A解析f ′(x)=3x 2-3,令f ′(x)=0,得x =±1.三次方程f(x)=0有3个根⇔f(x)极大值>0且f(x)极小值<0.∵x =-1为极大值点,x =1为极小值点,(-1)=2+a>0,(1)=a -2<0,∴-2<a<2.故选A.6.答案D解析y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.故选D.7.答案C解析由f(x)在x =-2处取得极小值可知,当x<-2时,f ′(x)<0,则xf ′(x)>0;当-2<x<0时,f ′(x)>0,则xf ′(x)<0;当x >0时,f ′(x)>0,则xf ′(x)>0.故选C.8.答案ABC解析本题考查利用导数研究函数的单调性、极值、最值.y =x 3为R 上的奇函数,其图象的对称中心为原点,当a =0时,根据平移知识,函数f(x)的图象的对称中心为(0,-1),A 正确;由题意知f ′(x)=3x 2-a ,因为当-1<x<1时,3x 2<3,又a ≥3,所以f ′(x)<0在(-1,1)上恒成立,所以函数f(x)在(-1,1)上为单调递减函数,B 正确;f ′(x)=3x 2-a ,当a ≤0时,f ′(x)≥0,f ′(x)不恒等于0,此时f(x)在(-∞,+∞)上单调递增,不符合题意,故a>0.令f ′(x)=0,解得x =±3a3.因为f(x)在(-1,1)上不单调,所以f ′(x)=0在(-1,1)上有解,所以0<3a3<1,解得0<a<3,C 正确;令f ′(x)=3x 2-12=0,得x =±2.根据函数的单调性,f(x)在[-4,5]上的最大值只可能为f(-2)或f(5).因为f(-2)=15,f(5)=64,所以最大值为64,D 错误.故选ABC.9.答案ABD解析A 显然正确;∵f(x)=x +sinx -xcosx ,∴f ′(x)=1+cosx -(cosx -xsinx)=1+xsinx.当x ∈[0,π)时,f ′(x)>0,则f(x)在[0,π)上单调递增.显然f ′(0)≠0,令f ′(x)=0,得sinx =-1x ,分别作出函数y=sinx ,y =-1x的图象如图.由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f(x)在区间[-2π,2π)上有4个极值点,且只有2个极大值点.10.答案18解析f ′(x)=3x 2+2ax +b 1)=10,1)=0,2+a +b +1=10,+b +3=0,=4,=-11=-3,=3.当a =-3,b =3时,f ′(x)=3(x -1)2≥0,f(x)无极值,故舍去.当a =4,b =-11时,令f ′(x)=0,得x 1=1,x 2=-113.当x 变化时,f ′(x),f(x)的变化情况如下表:∴f(x)=x 3+4x 2-11x +16,f(2)=18.11.答案-37解析由已知可得,f ′(x)=6x 2-12x ,由6x 2-12x ≥0得x ≥2或x ≤0,因此当x ∈[2,+∞),(-∞,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,又因为x ∈[-2,2],所以当x ∈[-2,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,所以f(x)max =f(0)=m =3,故有f(x)=2x 3-6x 2+3,所以f(-2)=-37,f(2)=-5.因为f(-2)=-37<f(2)=-5,所以函数f(x)的最小值为f(-2)=-37.12.答案-3解析令f(x)=2x 3-ax 2+1=0⇒a =2x +1x2.令g(x)=2x +1x 2(x>0),g ′(x)=2-2x 3>0⇒x>1⇒g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵有唯一零点,∴a =g(1)=2+1=3⇒f(x)=2x 3-3x 2+1.求导可知在[-1,1]上,f(x)min =f(-1)=-4,f(x)max =f(0)=1,∴f(x)min +f(x)max =-3.13.答案(1)函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2)(2)函数f(x)在区间[-3,5]上的最大值为743,最小值为-73思路(1)求导后,利用导数的符号可得函数的单调区间;(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在[-2,2]上单调递减,在(2,5]上单调递增,根据单调性可得最大最小值.解析(1)f ′(x)=x 2-4,由f ′(x)>0,得x>2或x<-2;由f ′(x)<0,得-2<x<2,所以函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在(-2,2)上单调递减,在(2,5]上单调递增,因为f(-3)=13×(-3)3-4×(-3)+3=6,f(2)=13×23-4×2+3=-73,f(-2)=13×(-2)3-4×(-2)+3=253,f(5)=13×53-4×5+3=743,所以函数f(x)在区间[-3,5]上的最大值为743,最小值为-73.14.答案略解析(1)f(x)=(x 2-2x)e x ,求导得f ′(x)=e x (x 2-2).因为e x >0,令f ′(x)=e x (x 2-2)>0,即x 2-2>0,解得x<-2或x> 2.令f ′(x)=e x (x 2-2)<0,即x 2-2<0,解得-2<x< 2.所以函数f(x)在(-∞,-2)和(2,+∞)上单调递增,在(-2,2)上单调递减.即函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)①当0<m ≤2时,因为f(x)在(-2,2)上单调递减,所以f(x)在区间[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(m)=(m 2-2m)e m .②当2<m ≤2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(0)=f(2)=0,所以f(x)在[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.③当m>2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(m)>0=f(0),所以f(x)在[0,m]上的最大值为f(m)=(m 2-2m)·e m ,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.15.思路把函数f(x)题,然后再通过分离参数的方法求出参数a 的取值范围.答案C 解析由f(x)=ax 22-(1+2a)x +2lnx(a>0,x >0),得导数f ′(x)=ax -(1+2a)+2x(x >0),∵函数f(x)=ax 22-(1+2a)x +2lnx(a>0)∴方程ax -(1+2a)+2x=0∴a =1x 在区间故a =1x∈(1,2),则a 的取值范围是(1,2).故选C.评说涉及函数的极值问题,往往要使用导数这个解题的工具,在解题时要注意运用等价转化的解题思想.16.答案(1)2(2)(-∞,-1)解析(1)若a =0,则f(x)3-3x ,x ≤0,2x ,x>0,当x>0时,-2x<0;当x ≤0时,f ′(x)=3x 2-3=3(x +1)·(x-1),令f ′(x)>0,得x<-1,令f ′(x)<0,得-1<x ≤0,所以函数f(x)在(-∞,-1)上单调递增,在(-1,0]上单调递减,所以函数f(x)在(-∞,0]上的最大值为f(-1)=2.综上可得,函数f(x)的最大值为2.(2)函数y =x 3-3x 与y =-2x 的大致图象如图所示,由图可知当f(x)无最大值时,a ∈(-∞,-1).17.答案(1)极小值点为x =1e,无极大值点(2)当a ≤1时,g(x)min =0,当1<a<2时,g(x)min =a -e a -1,当a ≥2时,g(x)min =a +e -ae 解析(1)f ′(x)=lnx +1,x>0,由f ′(x)=0,得x =1e .所以f(x)所以x =1e 是函数f(x)的极小值点,极大值点不存在.(2)g(x)=xlnx -a(x -1),则g ′(x)=lnx +1-a ,由g ′(x)=0,得x =e a -1.所以在区间(0,e a -1)上,g(x)单调递减,在区间(e a -1,+∞)上,g(x)单调递增.当e a -1≤1,即a ≤1时,在区间[1,e]上,g(x)单调递增,所以g(x)的最小值为g(1)=0.当1<e a-1<e,即1<a<2时,g(x)的最小值为g(e a-1)=a-e a-1.当e a-1≥e,即a≥2时,在区间[1,e]上,g(x)单调递减,所以g(x)的最小值为g(e)=a+e-ae.综上,当a≤1时,g(x)的最小值为0;当1<a<2时,g(x)的最小值为a-e a-1;当a≥2时,g(x)的最小值为a+e-ae.。
部编版四年级语文下册语文要素分类评价19.层次段落班级姓名得分时间:40分钟满分:100分一、读短文,完成练习。
(50分)茉莉的茎细长而挺拔,碧绿的叶子是椭圆形的,叶脉清晰可见。
远远望去,茉莉就像一位亭亭玉立的少女,楚楚动人。
茉莉一般在夏季开花。
它刚长花苞时,人们只能看见龙爪一样半开半合的萼片,而小小的花蕾常常藏而不露。
萼片长到一定程度,花蕾便露了出来。
这时的花蕾长得很快,不出几天就会慢慢开放。
完全开放的花朵很像荷花,只是很小,花冠比一毛钱硬币还要小。
茉莉的花朵雪白雪白的,花瓣是椭圆形的。
茉莉花的寿命很短,开花一到三天后,花瓣就会慢慢凋谢。
茉莉把自己的芳香和生命无私地献给了人们,人们常常称赞它的心灵像它的花朵一样美丽纯洁。
1.根据短文内容,在括号里填上恰当的词语。
(16分)()的茎()的叶脉()的花瓣()的花朵2.用“∥”为第2段分层,并写出层意。
(18分)第一层:第二层:第三层:3.短文第2段按顺序写了茉莉开花经历的三个阶段:→→。
(16分)二、[东城区]阅读短文,完成练习。
(50分)①我上小学的时候,唱歌有点儿跑调,和同学们在音乐课上一起唱歌的时候,我怕人家听出来,就不出声,只跟着“对口型”。
②我们的音乐老师可真厉害..,据说是刚从音乐学院毕业的大学生。
对于那个年代的一所普通小学来说,她简直就是一位光芒耀眼的大明星。
她的穿着总是干干净净的,眼睛亮亮的,嘴角挂着笑,声音像银铃一样好听。
③那天的音乐课,我照例又开始“对口型”,她轻轻地走到我身边小声问:“为什么你不唱出声呢?”④我有点儿难为情,支支吾吾地说:“我……不会……唱歌。
”她先是睁大了眼睛:“不会唱歌?”然后好像反应过来什么,说:“哦,你的意思是说书上的这些歌你不会。
”她翻了翻音乐课本,好像很随意地把书丢到一边,说:“没关系,那就唱你会的歌。
”⑤“啊?”我愣住了。
她说:“没关系,来,唱吧,我要听到你的声音。
”⑥接下来,她没有继续按课本教,而是让大家自由发挥,想起什么就唱什么:唱一首高兴的歌,一首春天的歌,一首跟朋友有关的歌……她弹着琴伴奏,有的小朋友根本没调子,她也伴奏得很开心。
题组层级快练(五十五)1.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为( ) A .(-1,1) B .(1,-1) C .(-1,0) D .(0,-1)答案 D解析 r =12k 2+4-4k 2=124-3k 2,当k =0时,r 最大.2.(2019·贵州贵阳一模)圆C 与x 轴相切于T(1,0),与y 轴正半轴交于A ,B 两点,且|AB|=2,则圆C 的标准方程为( ) A .(x -1)2+(y -2)2=2 B .(x -1)2+(y -2)2=2 C .(x +1)2+(y +2)2=4 D .(x -1)2+(y -2)2=4答案 A解析 由题意得,圆C 的半径为1+1=2,圆心坐标为(1,2),∴圆C 的标准方程为(x -1)2+(y -2)2=2,故选A.3.已知圆C :x 2+y 2+Dx +Ey +F =0,则“E=F =0且D<0”是“圆C 与y 轴相切于原点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 圆C 与y 轴相切于原点⇔圆C 的圆心在x 轴上(设坐标为(a ,0)),且半径r =|a|.∴当E =F =0且D<0时,圆心为(-D 2,0),半径为|D 2|,圆C 与y 轴相切于原点;圆(x +1)2+y 2=1与y 轴相切于原点,但D =2>0,故选A.4.(2019·重庆一中一模)直线mx -y +2=0与圆x 2+y 2=9的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定答案 A解析 方法一:圆x 2+y 2=9的圆心为(0,0),半径为3,直线mx -y +2=0恒过点A(0,2),而02+22=4<9,所以点A 在圆的内部,所以直线mx -y +2=0与圆x 2+y 2=9相交.故选A. 方法二:求圆心到直线的距离,从而判定.5.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k(x -2)即kx -y -2k -3=0,又因为反射光线与圆相切,所以|-3k -2-2k -3|k 2+1=1⇒12k 2+25k +12=0⇒k =-43,或k =-34,故选D 项. 6.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+(y±33)2=43B .x 2+(y±33)2=13C .(x±33)2+y 2=43D .(x±33)2+y 2=13答案 C解析 方法一:(排除法)由圆心在x 轴上,则排除A ,B ,再由圆过(0,1)点,故圆的半径大于1,排除D ,选C.方法二:(待定系数法)设圆的方程为(x -a)2+y 2=r 2,圆C 与y 轴交于A(0,1),B(0,-1),由弧长之比为2∶1,易知∠OCA=12∠ACB =12×120°=60°,则tan60°=|OA||OC|=1|OC|,所以a =|OC|=33,即圆心坐标为(±33,0),r 2=|AC|2=12+(33)2=43.所以圆的方程为(x±33)2+y 2=43,选C. 7.(2019·保定模拟)过点P(-1,0)作圆C :(x -1)2+(y -2)2=1的两条切线,设两切点分别为A ,B ,则过点A ,B ,C 的圆的方程是( ) A .x 2+(y -1)2=2 B .x 2+(y -1)2=1 C .(x -1)2+y 2=4 D .(x -1)2+y 2=1答案 A解析 P ,A ,B ,C 四点共圆,圆心为PC 的中点(0,1),半径为12|PC|=12(1+1)2+22=2,则过点A ,B ,C 的圆的方程是x 2+(y -1)2=2.8.直线xsinθ+ycosθ=2+sinθ与圆(x -1)2+y 2=4的位置关系是( ) A .相离 B .相切 C .相交 D .以上都有可能答案 B解析 圆心到直线的距离d =|sinθ-2-sinθ|sin 2θ+cos 2θ=2. 所以直线与圆相切.9.(2013·山东,理)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0答案 A解析 如图,圆心坐标为C(1,0),易知A(1,1).又k AB ·k PC =-1,且k PC =1-03-1=12,∴k AB =-2.故直线AB 的方程为y -1=-2(x -1),即2x +y -3=0,故选A.另解:易知P ,A ,C ,B 四点共圆,其方程为(x -1)(x -3)+(y -0)(y -1)=0,即x 2+y 2-4x -y +3=0.又已知圆为x 2+y 2-2x =0, ∴切点弦方程为2x +y -3=0,选A.10.(2019·湖南师大附中月考)已知圆x 2+(y -1)2=2上任一点P(x ,y),其坐标均使得不等式x +y +m≥0恒成立,则实数m 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞) D .(-∞,-3]答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C(0,1)到l 的距离为|1+m|2,切线l 1应满足|1+m|2=2,∴|1+m|=2,m =1或m =-3(舍去).从而-m≤-1,∴m ≥1.11.(2019·福建福州质检)若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( ) A .-1 B .0 C .1 D .6答案 B解析 联立⎩⎪⎨⎪⎧(x -3)2+(y -3)2=4,x -y +2=0,消去y ,得x 2-4x +3=0.解得x 1=1,x 2=3. ∴A(1,3),B(3,5).又C(3,3),∴CA →=(-2,0),CB →=(0,2). ∴CA →·CB →=-2×0+0×2=0.12.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( ) A .1 B .2 2 C.7 D .3答案 C解析 设直线上一点P ,切点为Q ,圆心为M , 则|PQ|即为切线长,MQ 为圆M 的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1,要使|PQ|最小,即求|PM|最小,此题转化为求直线y =x +1上的点到圆心M 的最小距离,设圆心到直线y =x +1的距离为d ,则d =|3-0+1|12+(-1)2=22,∴|PM|最小值为22,|PQ|=|PM|2-1=(22)2-1=7,选C.13.以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为________.答案 (x +2)2+(y -32)2=254解析 对于直线3x -4y +12=0,当x =0时,y =3;当y =0时,x =-4.即以两点(0,3),(-4,0)为端点的线段为直径,则r =32+422=52,圆心为(-42,32),即(-2,32).∴圆的方程为(x +2)2+(y -32)2=254.14.从原点O 向圆C :x 2+y 2-6x +274=0作两条切线,切点分别为P ,Q ,则圆C 上两切点P ,Q 间的劣弧长为________. 答案 π解析 如图,圆C :(x -3)2+y 2=94,所以圆心C(3,0),半径r =32.在Rt△P OC 中,∠POC =π6.则劣弧PQ 所对圆心角为2π3.弧长为23π×32=π.15.若直线l :4x -3y -12=0与x ,y 轴的交点分别为A ,B ,O 为坐标原点,则△AOB 内切圆的方程为________. 答案 (x -1)2+(y +1)2=1解析 由题意知,A(3,0),B(0,-4),则|AB|=5.∴△AOB 的内切圆半径r =3+4-52=1,内切圆的圆心坐标为(1,-1).∴内切圆的方程为(x -1)2+(y +1)2=1.16.一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求此圆的方程.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0解析 方法一:∵所求圆的圆心在直线x -3y =0上,且与y 轴相切, ∴设所求圆的圆心为C(3a ,a),半径为r =3|a|.又圆在直线y =x 上截得的弦长为27, 圆心C(3a ,a)到直线y =x 的距离为d =|3a -a|12+12. ∴有d 2+(7)2=r 2.即2a 2+7=9a 2,∴a =±1. 故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法二:设所求的圆的方程是(x -a)2+(y -b)2=r 2, 则圆心(a ,b)到直线x -y =0的距离为|a -b|2.∴r 2=(|a -b|2)2+(7)2.即2r 2=(a -b)2+14.①由于所求的圆与y 轴相切,∴r 2=a 2.② 又因为所求圆心在直线x -3y =0上, ∴a -3b =0.③ 联立①②③,解得a =3,b =1,r 2=9或a =-3,b =-1,r 2=9. 故所求的圆的方程是(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法三:设所求的圆的方程是x 2+y 2+Dx +Ey +F =0, 圆心为(-D 2,-E 2),半径为12D 2+E 2-4F.令x =0,得y 2+Ey +F =0.由圆与y 轴相切,得Δ=0,即E 2=4F.④又圆心(-D 2,-E2)到直线x -y =0的距离为|-D 2+E2|2,由已知,得⎝⎛⎭⎪⎪⎫|-D 2+E 2|22+(7)2=r 2,即(D -E)2+56=2(D 2+E 2-4F).⑤ 又圆心(-D 2,-E2)在直线x -3y =0上,∴D -3E =0.⑥ 联立④⑤⑥,解得D =-6,E =-2,F =1或D =6,E =2,F =1.故所求圆的方程是x 2+y 2-6x -2y +1=0 或x 2+y 2+6x +2y +1=0.17.(2019·杭州学军中学月考)已知圆C :x 2+y 2+2x +a =0上存在两点关于直线l :mx +y +1=0对称. (1)求实数m 的值;(2)若直线l 与圆C 交于A ,B 两点,OA →·OB →=-3(O 为坐标原点),求圆C 的方程. 答案 (1)m =1 (2)x 2+y 2+2x -3=0解析 (1)圆C 的方程为(x +1)2+y 2=1-a ,圆心C(-1,0). ∵圆C 上存在两点关于直线l :mx +y +1=0对称, ∴直线l :mx +y +1=0过圆心C. ∴-m +1=0,解得m =1.(2)联立⎩⎪⎨⎪⎧x 2+y 2+2x +a =0,x +y +1=0,消去y ,得2x 2+4x +a +1=0. 设A(x 1,y 1),B(x 2,y 2), Δ=16-8(a +1)>0,∴a<1. 由x 1+x 2=-2,x 1x 2=a +12,得y 1y 2=(-x 1-1)(-x 2-1)=a +12-1. ∴OA →·OB →=x 1x 2+y 1y 2=a +1-1=a =-3. ∴圆C 的方程为x 2+y 2+2x -3=0.。
快速划分段落层次能力训练[1]1、我看见过波澜壮阔的大海,欣赏过水平如镜的西湖,却从没看见过漓江这样的水。
漓江的水真静啊,静得让你感觉不到它在流动;漓江的水真清啊,清得可以看见江底的沙石;漓江的水真绿啊,绿得仿佛那是一块无瑕的翡翠。
船桨激起的微波扩散出一道道水纹,才让你感觉到船在前进,岸在后移。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型2、我攀登过峰峦雄伟的泰山,游览过红叶似火的香山,却从没看见过桂林这一带的山。
桂林的山真奇啊,一座座拔地而起,各不相连,像老人,像巨象,像骆驼,奇峰罗列,形态万千;桂林的山真秀啊,像翠绿的屏障,像新生的竹笋,色彩明丽,倒映水中;桂林的山真险啊,危峰兀立,怪石嶙峋,好像一不小心就会栽倒下来。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型3、第二个节目是交换礼品。
每间牢房,每个人都准备了礼物,送给认识的或者不认识的战友,作为联欢的纪念品。
最多的礼物是“贺年片”,那是用小块的草纸做的,上面用红药水画上鲜红的五角星或者镰刀锤子,写上几句互相鼓励的话。
楼七室经过昼夜赶工,刻出了一百多颗红的、黄的、晶亮的五角星,分送给各个牢房的同志。
女室送给各室的是一幅幅绣了字的锦旗,那些彩色的线,是从他们的袜子上拆下来的……本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型4、一个寒冷的冬天,南加州沃尔逊小镇上来了一群逃难的人,他们面呈菜色,疲惫不堪。
善良而朴实的沃尔逊人,家家烧火做饭,款待他们,这些逃难的人,显然很久没有吃到这么好的食物了,他们连一句感谢的话也顾不上说,就狼吞虎咽地吃起来。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型5、年轻人留了下来,很快成了杰克逊大叔庄园里的一把好手。