《几何与代数》 科学出版社 习题解析第一章
- 格式:ppt
- 大小:2.23 MB
- 文档页数:40
高代与解几第二章自测题(一)——行列式一、 判断题1. 一个排列施行一次对换后,其逆序数改变1.( × )2. 一个排列施行一次对换后,其奇偶性改变.( √ )3. 2≥n 时,n 级的奇排列共2!n 个. ( √ ) 二、填空题1. 排列)15342( 的逆序数是 5 ,它是一个 奇 排列. 排列 2)22)(2)(12(13 --n n n 的逆序数是 n (n -1) .2. 设行列式ijn nD a ⨯=,则n n A a A a A a 1112121111...+++= D ,n n A a A a A a 5152125111...+++= 0 .3. 行列式D =x x x x x x 2213321232321--的展开式中4x 的系数是 -4 ,常数项是 -18 .4. 排列821j j j 的逆序数是9,则排列 178j j j 的逆序数是 19 .5. 设82718491423123267----=D ,则14131211M M M M -+-= 240 .二、证明题3. nn D n 20012000302202002210002----=(提示:逐行向下叠加得上三角形行列式)4. nD n 222232222222221=(提示:爪型行列式)高代与解几第二章自测题(二)——矩阵,线性方程组一、 判断题1. 如果矩阵A 有r 阶子式大于零,那么r A rank >)(.( ×)2. 如果矩阵A 没有非零子式,那么0)(=A rank .(√ )3. 如果矩阵A 的r 阶子式都等于零,那么r A rank <)(.( √)4. 初等变换不改变矩阵的秩.(√ )5. 若n 元线性方程组有2个解,则其增广矩阵的秩小于n .(√ ) 三、填空题1. 54⨯矩阵A 的秩为2, 则A 的标准形为___⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000000001000001____________. 2 若n 元线性齐次方程组仅有零解,则其系数矩阵的秩为 n .三、计算与证明题1. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=-++=++++04523,05734,03,02543254321543154321x x x x x x x x x x x x x x x x x x 的一般解. 解:对这个齐次线性方程组的系数矩阵施行行初等变换,得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-45230573411110312111→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----45230452304523012111→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000343532103131310100000000004523012111 取543,,x x x 为自由未知量,得其一般解为:……2. 解线性方程组12341234123421,4222,2 1.x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩解 方程组的增广矩阵为:B =⎢⎢⎢⎣⎡112224112--- 111- 121⎥⎥⎥⎦⎤,….……………………………….. 2分 对B 做行初等变换:B =⎢⎢⎢⎣⎡211000010000- 100⎥⎥⎥⎦⎤,…………………………….....…… 6分 从而得方程组的解为……3. 设n a a a ,,,21 是数域K 中互不相同的数,n b b b ,,,21 是数域K 中任一组给定的数,证明:有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =,.,...,2,1n i =证明:要证有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =()n i ,,2,1 =,即要证有唯的一组数1210,...,,,-n c c c c ,使得⎪⎪⎩⎪⎪⎨⎧=++++==++++==++++=------n n n n n n n n n n n b a c a c a c c a f b a c a c a c c a f b a c a c a c c a f 112210212122221021111221101...)(......)(...)(1 …… (2分)即证方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++------n n n n n n n n n n b x a x a x a x b x a x a x a x b x a x a x a x 1122102112222120111122110............1 …… (4分) 有唯一一组解.而此方程组的方程个数与未知数个数相等.其系数行列式121323312222112111111----=n nn nn n n a a a a a a a a a a a a D……(5分) T D 是范德蒙德行列式,由范德蒙德行列式的结论知,∑≤<≤-==nj i i jT a aD D 1)( ……(7分)又n a a a ,,,21 是数域K 中互不相同的数,故0≠D ,由克莱姆法则知,上述方程组有唯一一组解.得证. …… (10分)4. 设n a a a ,...,,21是互不相同的数,b 是任意数,证明线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++----11212111221121......1...n n n n n n n n n bx a x a x a b x a x a x a x x x 只有唯一解,并求出这个解.证明:观察知此方程组的未知量个数与方程个数相等,其系数行列式D =1121121111---n nn n na a a a a a是n 阶范德蒙德行列式 …… (4分) 因此,D =∏≤<≤-ni j j ia a1)(,由于n a a a ,...,,21是互不相同的数,所以0≠D ,根据克莱姆法则知此线性方程组只有唯一解, n k DD x kk ,...,2,1,==,其中k D 是将系数行列式D 的第k 列换成 T n b b b ),...,,,1(12-, …… (7分)显然k D 依然是n 阶范德蒙德行列式,且k D 的值只是将D 的值中k a 的地方换成b ,因此n k a a a a a a a a a b a b b a b a x k k k k k k n k k n k ,...,2,1,))...()()...(())...()()...((111111=--------=-+-+ (10分)5. 假设有齐次线性方程组⎪⎩⎪⎨⎧=++=++=++,0,02,0321321321 x x x p x x x x x x当p 为何值时,方程组仅有零解?又在何时有非零解?在有非零解时,求出其一般解。
第一章向量代数一、向量及其线性运算1.向量及其表示(1)向量:有大小和方向的量。
(2)表示:AB ,A 为向量的起点,B 为向量的重点。
(3)向量的模:||AB 。
(4)向径(半径向量/定位向量):称为P 的向径,简记为P 。
(5)单位向量:模为1,记为|a |aa o =。
(6)零向量:模为0,任意方向,与任何向量共线。
(7)自由向量:可自由平行移动。
(8)相等(相反):大小相等,方向相同(相反)。
(9)共线(平行):平行移动到同一始点,在一条直线上;共面。
(10)共面:平行移动到同一始点,在一个平面上。
2.向量的加法和减法(1)加法:①三角/多边形法则(定义1.1):首尾相连,第一个向量起点到最后一个向量终点;②平行四边形法则(定义1.2):首首相连,平行四边形过起点的对角线;③三角/多边形不等式:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |。
(2)减法:三角形法则(定义1.3):首首相连,OA OB AB -=。
3.向量的数乘(1)定义1.4:实数λ与向量a 的乘积是一个向量,记为λa。
|λa|=|λ||a|,方向取决于λ。
4.运算律(图形法证明)①交换律:a ±b =b ±a②结合律:(a ±b )±c =a ±(b ±c );λ(μa )=(λμ)a③分配律:(λ+μ)a =λa +μa ;λ(a +b )=λa +λb5.共线及共面向量的判定(1)定理1.1:向量b 与非零向量a 共线⟺∃λ∈R ,使b=λa ;推论1.1:两个向量a ,b 共线⟺∃λ,μ∈R ,且λ,μ不同时为0,使λa +μb =0。
(2)定理1.2:若a ,b 不共线,向量c 与a ,b 共面⟺∃λ,μ∈R ,使c =λa +μb ;推论1.2:三个向量a ,b ,c 共面⟺∃λ,μ,φ∈R ,使λa +μb+φc =0。
《线性代数与解析几何》练习册参考答案第1章1.1 1.7;2 i =4,j =5;3,+,-3(1)1;(2) -1;4,(1)1;(2)3333a b c abc ++-;(3) 288;(4) abcd .1.2 1.(1)27a ;(2)5a ;2 (1)-3;(2) 3()a b c ++;(3)0;(4) 16;(5) 123b b b ;(6) 12341a a a a ++++ 1.3 .1.12;2(1)12;(2) 12(1)(2)(2)x x x --+;3. 1, -1;4.0,86.5.14142323()()a a b b a a b b --; 6.0,-1,2,3;7. 4142439A A A ++=-,444518A A +=.8.-2. 1.4 1(1) (1,2,3)T ;(2) (,,)T a b c - 2. 1或-2;3;313λλ≠≠且. 第2章2.1 121002211X ⎛⎫= ⎪-⎝⎭2.61010AB ⎛⎫= ⎪⎝⎭,131262129BA ⎛⎫⎪= ⎪⎪-⎝⎭,111152017T B C A -⎛⎫+= ⎪⎝⎭;,3 (1)112233AB a b a b a b =++,111213212223313233a b a b a b BA a b a b a b a b a b a b ⎛⎫⎪= ⎪ ⎪⎝⎭;(2)111213*********3233nn a b a b a b BA a a b a b a b a b a b a b -⎛⎫⎪= ⎪ ⎪⎝⎭() 4.(1)cos sin sin cos n n n n θθθθ⎛⎫⎪⎝⎭;(2)121(1)200nn n nn n n n n n λλλλλλ----⎛⎫⎪⎪ ⎪ ⎪ ⎪⎝⎭;5. 000000008⎛⎫ ⎪⎪ ⎪⎝⎭;7. 1200b B b ⎛⎫= ⎪⎝⎭,12,b b 是任意常数。
思考题1-11. 不成立。
因为222(),+=+++A B A AB BA B AB 不一定等于BA . 2. 成立。
因为22(),+=+++A E A AE EA E =AE EA . 3. 成立。
因为22()(),+-=-+-=-A E A E A AE EA E A E2()()-+=-A E A E A E .4. 不成立。
因为矩阵的乘法不满足消去律,由222()=AB A B ,得不出=AB BA .5. 不成立。
反例,1111⎡⎤=⎢⎥--⎣⎦A 。
6. 不成立。
反例,1000⎡⎤=⎢⎥⎣⎦A 。
7. 不成立。
反例,1001⎡⎤=⎢⎥-⎣⎦A 。
8. 成立。
因为,()().Tk TT kk===A A A A A9. 不成立。
因为,()()()(1),Tk TT kkkk=-==-=-A A A A A A 结论与k 的奇偶性有关。
10. 成立。
由对称阵的定义可知结论成立。
习题1-11.111100-⎡⎤=⎢⎥⎣⎦X2.1,2x y ==3.BAABC ABABC 、、正确,依次为55⨯矩阵、41⨯矩阵、41⨯矩阵。
4.(1)3-3-5-7915⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2)10530100⎡⎤⎢⎥-⎣⎦;(3)32659110-4⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(4)1432321211⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(5)222111222333121213132323222a x a x a x a x x a x x a x x +++++;(6)157063004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(7)050505050-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦5.(1)111112221222331332k a k a k a k a k a k a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,在矩阵A 的左边乘以对角矩阵时,其乘积等于用该对角矩阵的对角元分别乘以矩阵A 的各行; (2)111212313121222323k a k a k a k a k a k a ⎡⎤⎢⎥⎣⎦,在矩阵A 的右边乘以对角矩阵时,其乘积等于用该对角矩阵的对角元分别乘以矩阵A 的各列。
《⾼等代数与解析⼏何》课程分章节经典练习题及参考解答公众号ID:campusinout关注本⽂推送的练习与典型例题及参考解答对应于《⾼等代数与空间解析⼏何》课程学习、考研等通⽤的经典教材,由陈志杰编写、⾼等教育出版社的《⾼等代数与空间解析⼏何(第⼆版)》教材. 这些课后习题都是学习该课程,或者线性代数学习提⾼应知应会的、⾮常经典的练习题,不管是对于课程学习、还是考研等相关内容的复习、备考,都应该逐题过关、熟练掌握!注:本⽂内容由学友整理⾃⽹络搜索的⽂档,分享转载仅供学习参考,如原出处不允许转载分享,请告知删除,谢谢!更多通⽤教材课后习题分享在逐步完善中...《⾼等代数解析⼏何》练习题解答第⼀章向量代数1.1 向量的线性运算1.2 向量的共线与共⾯1.3 ⽤坐标表⽰向量1.4 线性相关性与线性⽅程组1.5 n维向量空间1.6 ⼏何空间向量的内积1.7 ⼏何空间向量的外积1.8 ⼏何空间向量的混合积1.9 平⾯曲线的⽅程第⼆章⾏列式2.1 映射与变换2.2 置换的奇偶性2.3 矩阵2.4 ⾏列式的定义2.5 ⾏列式的性质2.6 ⾏列式按⼀⾏(⼀列)展开2.7 ⽤⾏列式解线性⽅程组的克拉默法则2.8 拉普拉斯定理第三章线性⽅程组与线性⼦空间3.1 ⽤消元法解线性⽅程组3.2 线性⽅程组的解的情况3.3 向量组的线性相关性3.4 线性⼦空间3.5 线性⼦空间的基与维数3.6 齐次线性⽅程组的解的结构3.7 ⾮齐次线性⽅程组的解的结构,线性流形第四章⼏何空间中的平⾯与直线4.1 ⼏何空间中平⾯的仿射性质4.2 ⼏何空间中平⾯的度量性质4.3 ⼏何空间中直线的仿射性质4.4 ⼏何空间中直线的度量性质4.5 平⾯束第五章矩阵的秩与矩阵的运算5.1 向量组的秩5.2 矩阵的秩5.3 ⽤矩阵的秩判断线性⽅程组的解的情况5.4 线性映射及其矩阵5.5 线性映射及矩阵的运算5.6 矩阵乘积的⾏列式与矩阵的逆5.7 矩阵的分块5.8 初等矩阵5.9 线性映射的象空间与核空间第六章线性空间与欧⼏⾥得空间6.1 线性空间及其同构6.2 线性⼦空间的和与直和6.3 欧⼏⾥得空间6.4 欧⼏⾥得空间中的正交补空间与正交投影6.5 正交变换与正交矩阵第七章⼏何空间的常见曲⾯7.1 ⽴体图与投影7.2 空间曲⾯与曲线的⽅程7.3 旋转曲⾯7.4 柱⾯与柱⾯坐标7.5 锥⾯7.6 ⼆次曲⾯7.7 直纹⾯7.8 曲⾯的交线与曲⾯围成的区域第⼋章线性变换8.1 线性空间的基变换与坐标变换8.2 基变换对线性变换矩阵的影响8.3 线性变换的特征值与特征向量8.4 可对⾓化线性变换8.5 线性变换的不变⼦空间第九章线性空间上的函数9.1 线性函数与双线性函数9.2 对称双线性函数9.3 ⼆次型9.4 对称变换及其典范形9.5 反称双线性函数9.6 ⾣空间9.7 对偶空间第⼗章坐标变换与点变换10.1 平⾯坐标变换10.2 ⼆次曲线⽅程的化简10.3 平⾯的点变换10.4 变换群与⼏何学10.5 ⼆次曲线的正交分类与仿射分类10.6 ⼆次超曲⾯⽅程的化简第⼗⼀章⼀元多项式的因式分解11.1 ⼀元多项式11.2 整除的概念11.3 最⼤公因式11.4 不定⽅程与同余式11.5 因式分解定理11.6 重因式11.7 多项式的根11.8 复系数与实系数多项式11.9 有理系数多项式第⼗⼆章多元多项式12.1 多元多项式12.2 对称多项式12.3 结式12.4 吴消元法12.5 ⼏何定理的机器证明第⼗三章多项式矩阵与若尔当典范形13.1 多项式矩阵13.2 不变因⼦13.3 矩阵相似的条件13.4 初等因⼦13.5 若尔当典范形13.6 矩阵的极⼩多项式第⼗四章若尔当典范形的讨论与应⽤14.1 若尔当典范形的⼏何意义14.2 简单的矩阵⽅程14.3 矩阵函数14.4 矩阵的⼴义逆14.5 矩阵特征值的范围。