基于单片机的便携式土壤温湿度测量仪的
- 格式:doc
- 大小:3.68 MB
- 文档页数:30
基于单片机的土壤温湿度检测计设计设计土壤温湿度检测是农业生产中常见的一个问题,可以帮助农民掌握土壤中的环境条件,从而更好地管理农作物的生长环境,提高农作物产量。
本文将基于单片机设计一个土壤温湿度检测计,在介绍设计方案之前,我们先来了解一下土壤温湿度检测的原理和要解决的问题。
1.土壤温湿度检测原理土壤温湿度检测的原理主要是利用温湿度传感器测量土壤温湿度的值。
温湿度传感器通常是通过变化的电阻来测量温湿度的。
当温湿度发生变化时,传感器内部的电阻也会发生相应的变化。
通过连接到单片机的模拟输入引脚,可以将传感器的输出电压转化为数字信号,从而获取温湿度的数值。
2.设计方案基于以上原理,我们可以设计一个基于单片机的土壤温湿度检测计。
设计主要包括以下几个部分:2.1 单片机选择:单片机是控制整个系统的核心部件。
在选择单片机时,首先要考虑单片机的性能和资源是否足够满足我们的需求。
同时,还要考虑单片机的价格和易用性。
常用的单片机有STM32系列和Arduino等。
我们可以根据具体需求选择适合的单片机。
2.2传感器选择:温湿度传感器是关键的部件。
我们可以选择适用于土壤温湿度检测的传感器,如DHT11或DHT22、传感器的选择要考虑到准确性、精度和稳定性等因素。
2.3电路设计:电路设计是整个系统的基础。
首先需要根据所选择的单片机和传感器,设计合适的电路连接,包括连接单片机的引脚、传感器的引脚和其他组件的引脚。
其次,还要设计相应的电源电路,以提供所需的电压和电流。
2.4 程序设计:程序设计是实现功能的关键。
通过编程,我们可以将传感器的输出信号转换为温湿度数值,并将其显示在LCD屏幕上。
在程序设计时,我们可以使用相应的编程语言,如C语言或Python等,根据单片机型号和开发环境选择合适的编译器和开发工具。
3.功能扩展除了基本的土壤温湿度检测功能,我们还可以对设计进行功能扩展,提供更多的便利和实用性:3.1数据存储:设计一个存储功能,可以将土壤温湿度数值存储到存储器中,以便后期分析和比较。
基于AT89S52单片机便携式土壤湿度测试仪的设计
师永立;师卫
【期刊名称】《科技情报开发与经济》
【年(卷),期】2011(021)005
【摘要】介绍了一种便携式土壤湿度测试仪的设计方法,设计以单片机和模拟电路为基础的土壤湿度测试系统,阐述了其组成和工作原理.实验结果表明:测试系统具有测量精度高、显示直观、操作方便等特点,可以满足生产实践中的要求.
【总页数】3页(P204-206)
【作者】师永立;师卫
【作者单位】太原理工大学信息工程学院,山西太原,030024;太原理工大学信息工程学院,山西太原,030024
【正文语种】中文
【中图分类】S152.7+1
【相关文献】
1.基于单片机的便携式酒精浓度测试仪设计与实现 [J], 曾当兵
2.基于单片机的土壤湿度测试仪的设计 [J], 曹晴;贾芳;谷小青
3.基于AT89S52单片机的数字网线测试仪设计 [J], 王深
4.基于AT89S52单片机的便携式数字心率计设计 [J], 申玉宏
5.基于单片机AT89S52的网线断点测试仪设计 [J], 徐健
因版权原因,仅展示原文概要,查看原文内容请购买。
基于单片机土壤温湿度检测计设计一、引言土壤温湿度是农业生产中非常重要的因素之一,对于农作物的生长和产量有着重要影响。
因此,设计一款能够快速、准确地测量土壤温湿度的检测仪器是十分必要的。
本文将介绍一种基于单片机的土壤温湿度检测计的设计方案。
二、设计方案1.硬件设计硬件设计包括传感器选型、模块连接、显示屏等方面。
传感器选型:土壤温湿度传感器是测量土壤温湿度的核心部件,需要选取性能稳定、精度高的传感器。
常用的土壤温湿度传感器有分布式温湿度传感器、阴极使导湿度传感器等,本设计选择分布式温湿度传感器。
模块连接:将传感器与单片机连接起来,可以通过模拟输入引脚将传感器的输出信号送入单片机进行处理。
同时,可以通过串口或者I2C总线等方式将单片机与显示屏连接,实时显示测量结果。
显示屏:设计中可以选择LED数码管显示屏或者液晶屏来显示温湿度数值。
数码管显示屏更为简单,但是显示效果较差;液晶屏显示效果好,但是需要额外的驱动电路。
2.软件设计软件设计主要是单片机程序的编写,包括传感器数据的读取、处理和显示等功能。
传感器数据的读取:通过单片机的模拟输入引脚读取传感器输出的模拟信号,然后进行模拟到数字的转换。
数据处理:对传感器读取到的数据进行处理,可以进行温度和湿度的校准,然后计算得到最终的温度和湿度数值。
数据显示:将处理后的温湿度数值通过串口或者I2C总线发送给显示屏,并在屏幕上实时显示。
3.功能设计土壤温湿度检测计可以设计以下功能:-实时显示土壤温度和湿度数值;-设置报警功能,当温湿度超过一定范围时,发出警报;-数据存储功能,可以将测量得到的温湿度数据保存到存储芯片中,方便后续分析;-数据通信功能,可以通过串口或者无线方式将测量数据传给上位机,实现数据的远程监测与管理。
三、总结本文介绍了一种基于单片机的土壤温湿度检测计的设计方案,包括硬件和软件设计。
通过选用适当的传感器,并将其与单片机和显示屏连接起来,可以实时、准确地测量土壤温湿度,并通过显示屏显示出来。
便携式土壤温湿度测量仪的设计学生:XX,指导教师:XXX(安徽农业大学信息与计算机学院合肥 230036)摘要:在影响环境的众多因素中温湿度是至关重要的,本文设计了一种基于STC89C51单片机的温湿度测量仪,通过终端传感器检测环境中的温度和湿度的变化,并对采集到的数据进行处理和传输。
终端传感器采用精确度较高的TDR-5土壤温湿度传感器,该传感器适用于节水农业灌溉、温室大棚、花卉蔬菜、草地牧场、土壤速测、植物培养、科学试验等领域。
本文给出了系统硬件电路的设计和软件程序的设计,实现了土壤温湿度的实时自动检测的功能。
实践证明该温湿度测量仪具有测量精度高、通用性强等特点,具有一定的实用价值。
关键词:TDR-5土壤温湿度传感器,A/D转换器,STC89C51,LCD显示1 引言随着人们生活水平的提高,人们对食品的绿色健康更加关注,如何培育出优良品种的植株,一直是人们不断研究的课题。
因而基于单片机的温湿度测量系统对解决这些问题有着非常重大的意义。
以前种植植被一般都用温室栽培,为了充分的利用好温室栽培这一高效技术,就必需有一套科学的,先进的管理方法,用以对不同种类植被生长的各个时期所需的温度及湿度等进行实时的监控。
温湿度测量仪是一种24小时不间断监控并记录温度和湿度的仪器,被广泛的应用于农业研究、食品、医药、化工、气象、环保、电子、实验室等众多领域。
目前,随着工业控制自动化进程的加快,它的使用越来越普遍,并且在不断的延伸。
在日常的生产生活中,经常需要检测环境中的温湿度,而运用到工农业生产领域则要求更为严格。
随着科技的发展,环境监测在农业领域的应用越来越广泛,例如要确定某些幼苗的生长特性与温度、湿度有什么样的关系等。
这些都需要利用温湿度的实时记录才能实现。
继而温湿度测量仪被广泛应用于粮仓、种植园、温室大棚、自动控制等众多领域。
可以对环境的温度和湿度进行检测和控制,以实现数据采集、温湿度调节以及超限报警等各项功能,为此设计了一种基于STC89C51单片机的温湿度测量仪。
目录1 绪论 (1)1.1选题背景及意义 .................................... 错误!未定义书签。
1.2设计任务与要求 .................................... 错误!未定义书签。
2 总体方案设计 (3)3单元模块设计 (5)3.1各单元模块功能介绍及电路设计 (5)3.1.1时钟模块简介 (5)3.1.2 复位模块简介 (6)3.1.3 报警模块简介 (6)3.1.4 显示模块简介 (7)3.2特殊器件的介绍 (8)3.3.1 土壤湿度传感器简介 (8)3.3.2 51系列单片机简介 (9)3.3.3 LCD1602简介 (9)3.3.4 蜂鸣器简介 (13)3.3各单元模块的联接 (13)4软件设计 (13)4.1软件设计原理 (14)4.2软件设计所用工具 (14)4.3系统软件流程框图 (14)5系统调试 (15)5.1 硬件调试 (16)5.2 软件调试 (16)6系统功能及结论 (16)6.1系统功能功能实现情况 .............................. 错误!未定义书签。
6.2设计中遇到的问题及解决 (17)6.3后期展望 .......................................... 错误!未定义书签。
7总结与体会 ............................................. 错误!未定义书签。
8参考文献 . (20)附录1:相关设计图 (21)附录2:元器件清单表 (22)附录3:相关设计软件 (23)1 绪论1.1选题背景及意义在中国广大面积的农村,没有发达的工商业,有的只是大量闲置的田地。
如果利用这些闲置的田地,种植美丽的花卉、树苗,能给当地带来一笔可观的收入。
而这些花卉及树苗的种植对土壤湿度有着极高的要求。
在植物的成长过程中,土壤的湿度起着一个很重要的作用,并且不同的植物,对土壤的湿度需求是不同的。
基于单片机的便携式土壤温湿度测量仪的便携式土壤温湿度测量仪的设计学生:XX,指导教师:XXX(安徽农业大学信息与计算机学院合肥 230036)摘要:在影响环境的众多因素中温湿度是至关重要的,本文设计了一种基于STC89C51单片机的温湿度测量仪,通过终端传感器检测环境中的温度和湿度的变化,并对采集到的数据进行处理和传输。
终端传感器采用精确度较高的TDR-5土壤温湿度传感器,该传感器适用于节水农业灌溉、温室大棚、花卉蔬菜、草地牧场、土壤速测、植物培养、科学试验等领域。
本文给出了系统硬件电路的设计和软件程序的设计,实现了土壤温湿度的实时自动检测的功能。
实践证明该温湿度测量仪具有测量精度高、通用性强等特点,具有一定的实用价值。
关键词:TDR-5土壤温湿度传感器,A/D转换器,STC89C51,LCD显示1 引言随着人们生活水平的提高,人们对食品的绿色健康更加关注,如何培育出优良品种的植株,一直是人们不断研究的课题。
因而基于单片机的温湿度测量系统对解决这些问题有着非常重大的意义。
以前种植植被一般都用温室栽培,为了充分的利用好温室栽培这一高效技术,就必需有一套科学的,先进的管理方法,用以对不同种类植被生长的各个时期所需的温度及湿度等进行实时的监控。
温湿度测量仪是一种24小时不间断监控并记录温度和湿度的仪器,被广泛的应用于农业研究、食品、医药、化工、气象、环保、电子、实验室等众多领域。
目前,随着工业控制自动化进程的加快,它的使用越来越普遍,并且在不断的延伸。
在日常的生产生活中,经常需要检测环境中的温湿度,而运用到工农业生产领域则要求更为严格。
随着科技的发展,环境监测在农业领域的应用越来越广泛,例如要确定某些幼苗的生长特性与温度、湿度有什么样的关系等。
这些都需要利用温湿度的实时记录才能实现。
继而温湿度测量仪被广泛应用于粮仓、种植园、温室大棚、自动控制等众多领域。
可以对环境的温度和湿度进行检测和控制,以实现数据采集、温湿度调节以及超限报警等各项功能,为此设计了一种基于STC89C51单片机的温湿度测量仪。
2 系统的设计要求与设计思路2.1 本系统所要实现的功能1.能够实时、准确的显示采样温度值与湿度值。
2.对采集到的温湿度值进行存储,便于准确的判断标准值与当前值之间的差异,并采取后续措施。
2.2 本系统的设计思路在单片机构成的测控系统中,测量或控制的参数有时是一些连续变化的非电量模拟信号,如温度、湿度、压力等。
这类信号必须通过传感器转换成为电信号后,再由A/D转换器转换成为数字量信号送入单片机进行处理,最后通过LCD完成温湿度值的显示。
本系统设计的一种基于STC89C51单片机的便携式温湿度测量仪,温度的测量范围为-30℃~70℃,湿度测量范围为0~100%。
模拟温湿度传感器TDR-5首先将温湿度信号转换成电压信号后,经过12V转5V的电路对该电信号进行处理,再送入ADC0804进行A/D转化,单片机对送入的数字量信号进行处理后,通过LCD显示测量的温湿度值。
2.3 系统设计的原则要求单片机系统应具有可靠性高、操作维护方便、性价比高等特点。
高可靠性是单片机系统应用的前提,在系统设计的每一个环节,都应该将可靠性作为首要的设计准则。
提高系统的可靠性通常从以下几个方面考虑:使用可靠性高的元器件;设计电路板时布线和接地要合理;对供电电源采用抗干扰措施;输入输出通道抗干扰措施;进行软硬件滤波;系统自诊判断功能等。
在系统的软硬件设计时,应从操作者的角度考虑操作和维护方便,要尽可能减少人机交换接口,多采用操作内置或简化的方法。
单片机除体积小、功耗低等特点外,最大的优势在于高性能价格比。
一个单片机应用系统能否被广泛使用,性价比是其中一个关键因素。
因此,再设计时,除了保持高性能外,尽可能降低成本,如简化外围硬件电路,在系统性能和速度允许的情况下尽可能使用软件功能取代硬件功能等。
3 系统的硬件设计与实现3.1 系统框图系统主要由单片机模块、温湿度检测模块、显示模块、A/D 转换模块和电源模块组成,其整体框图如图1所示。
单片机模拟温湿度传感器复位模块时钟模块电源模块A/D 转换模块显示模块图3-1 系统框图3.2系统主要硬件部分设计3.2.1 STC89C51单片机STC89C51 RC/RD+系列单片机是STC 推出的新一代高速低功耗超强抗干扰的单片机[1],指令代码完全兼容传统8051单片机,它是一个40引脚的集成电路芯片,采用DIP (双列直插)形式封装。
51系列单片机:集成 8位CPU 、4K 字节ROM 、128字节RAM 、4个8位并口、1个全双工串行口、2个16位定时/计数器。
寻址范围64K ,并有控制功能较强的布尔处理器。
[1]. 主电源引脚Vcc (40脚):接+5V 电源正端. Vss (20脚):接-5V 电源地端. [2]. 外接晶体或外部振荡器引脚XTAL1(19脚):接外部晶振的一个引脚。
在单片机内部,它是一个反相放大器的输入端,这个放大器构成了片内振荡器。
当采用外部振荡器时,此引脚要接地。
XTAL2(18脚):接外部晶振的另一个引脚。
在片内接至反相放大器的输出端和内部时钟电路的输入端。
当采用外部振荡器时,此脚应接外部振荡器的输出端。
图3-2 STC89C51外形示意图[3]. 控制信号线RST/VPD(9脚):复位信号输入端,复位/掉电时内部RAM的备用电源输入端VPP(31脚):访问外部存储器允许/编程电压输入。
EA为高电平时,访问内部存储器;低电平时,访问外部存储器。
对片内EPROM编程时,此脚接21V编程电压。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如果禁止ALE的输出可在SFR8EH上置0。
此时,ALE只有在执行MOVX,MOVC指令时ALE才其作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次PSEN有效。
但在访问外部数据存储器时,这两次有效的PSEN信号将不出现。
EA|VPP:当EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时,EA将内部锁定为RESET;当EA端保持高电平时,此期间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V 编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
[4]. 多功能I/O口引脚STC89C52单片机设有4个双向I/O口(P0、P1、P2、P3),每一组I/O口线都可以独立地用作输入或输出口。
P3口同时为闪烁编程和编程校验接收一些控制信号。
表3-1 P3口第二功能各引脚功能定义管脚功能P3.0RXD 串行输入口P3.1TXD 串行输出口P3.2/INT0 外部中断0P3.3/INT1 外部中断1P3.4T0 计时器0外部输入P3.5T1 计时器1外部输入P3.6/WR 外部数据存储器写选通P3.7/RD 外部数据存储器读选通由图3-4可知,单片机集成了中央处理器(CPU)、存储器系统(RAM和ROM)、定时/计数器、并行接口、串行接口、中断系统及一些特殊功能寄存器(SFR)[2]。
他们通过内部总线紧密地联系在一起。
它的总体结构仍是通用CPU加上外围芯片的总线结构。
只是在功能部件的控制上与一般微机的通用寄存器加接口寄存器控制不同,CPU与外设的控制不再分开,采用了特殊功能寄存器集中控制,使用更方便。
内部还集成了时钟电路,只需要外接石英晶体就可形成时钟。
中央处理器CPU时钟电路ROM RAM定时/计数器ROM P1P2串行接口中断系统P0P3TXD RXD INT1INT0图3-3 单片机结构示意图CPU:由运算和控制逻辑组成,同时还包括中断系统和部分外部特殊功能寄存器。
RAM:用以存放可以读写的数据,如运算的中间结果、最终结果以及欲显示的数据。
ROM:用以存放程序、一些原始数据和表格。
I/O口:四个8位并行I/O口,既可用作输入,也可用作输出。
T/C:两个定时/记数器,既可以工作在定时模式,也可以工作在记数模式。
3.2.2 主控电路一个单片机嵌入式系统的核心,其实就是一个单片机的最小系统,或者称为最小应用系统,是指用最小的元件组成的单片机可以工作的系统。
由图2-4可知最小系统应由时钟电路和复位电路构成。
如图3-5所示,STC89C51单片机芯片内部集成了振荡电路,它是利用一个高增益反相放大器构成的振荡电路,引脚XTAL1和XTAL2分别是放大器的输入端和输出端。
外接晶体谐振器以及电容C1和C2构成并联谐振电路,接在放大器的反馈回路中,片内的放大器与作为反馈元件的片外晶体谐振器一起构成一个自激振荡器。
这个振荡器为单片机提供时序脉冲。
而采用12MHZ的晶振,主要是为了方便定时操作[3]。
图3-4 单片机最小系统电路单片机的复位是指使单片机进入初始化工作状态。
当单片机的复位引脚RESET 出现2个机器周期以上的高电平时,单片机就执行复位操作。
如果RESET持续为高电平,单片机将处于循环复位的状态。
但是单片机本身不能自动复位,必须配合相应的外部电路才能实现复位操作。
复位操作通常有两种基本形式:上电复位和开关复位。
上电复位要求接通电源后,自动实现复位操作。
开关复位则是在单片机已运行时,按下复位键后松开,也能使RESET保持一段时间的高电平,从而实现开关复位的操作。
3.2.3 串行口通信电平转换电路MCS-51单片机有一个可编程的串行接口,它是一个全双工的通信端口,可以同时接收和发送数据。
串行通信接口的优点在于使用较少的传输线即可完成数据的传输。
MCS-51的通信端口有一个接收缓冲式的串行接口,在特殊功能寄存器中有一个串行数据缓冲器寄存器,专门供存放发送和接收的数据。
RS-232C 是EIA (美国电子工业协会)1969年修订RS-232C 标准[4]。
RS-232C 定义了数据终端设备(DTE )与数据通信设备(DCE )之间的物理接口标准。
RS-232C 采取不平衡传输方式,即单端通信。
RS-232C 标准规定其高电平为+3 ~+15V ,低电平为-3V~-15V ,噪声容限为2V 。
另外,该串口标准数据线传送采用负逻辑,即低电平表示1、高电平表示0;其他控制线采用正逻辑。