蒸汽冷凝器设计.
- 格式:doc
- 大小:1.36 MB
- 文档页数:36
冷凝器设计1. 引言冷凝器是一种热传导设备,用于将气体或蒸气冷凝成液体。
它在许多领域中都有广泛的应用,如空调、冷藏设备、化工工艺等。
本文将从冷凝器的原理、设计方法和优化方案等方面进行介绍。
2. 冷凝器原理冷凝器的工作原理可以简单概括为将高温气体或蒸汽通过冷凝的方法将其冷却成液体。
冷凝器的主要功能是通过将热量传递给冷却介质,降低气体或蒸汽的温度,从而使其凝结为液体。
冷凝器的热传导过程主要包括对流传热和辐射传热。
对流传热是指通过冷却介质将热量从气体或蒸汽传递到冷凝器的壁面,而辐射传热是指通过辐射方式将热量传递。
3. 冷凝器设计方法3.1 冷凝器的类型常见的冷凝器类型主要包括管壳式冷凝器、管外冷凝器和冷凝器簇。
•管壳式冷凝器是将冷却介质和气体或蒸汽分开的一种结构,主要由壳体、管束和冷却介质组成。
•管外冷凝器是将冷却介质直接接触到气体或蒸汽的一种结构。
•冷凝器簇是多个冷凝器并联或串联连接在一起的一种结构。
3.2 冷凝器的设计参数冷凝器的设计参数包括冷凝器的换热面积、冷却介质的流速、冷凝温度差等。
根据不同的工况和要求,可以选择不同的设计参数。
3.3 冷凝器的换热计算换热计算是冷凝器设计的重要环节,主要包括冷却介质的传热系数和冷凝传热的计算。
•冷却介质的传热系数可以通过实验或流体力学计算得到。
•冷凝传热的计算可以通过传热方程和换热器表面积来进行。
4. 冷凝器优化方案在冷凝器设计过程中,为了提高冷凝效果和减小体积,可以采取一些优化措施。
4.1 改变冷凝器的结构通过改变冷凝器的结构,可以提高其换热效率。
例如采用多管道、螺旋管和多级蒸发器等结构。
4.2 优化冷却介质流动通过优化冷却介质的流动,如增加冷却介质的流速和改变流动方式,可以提高冷凝器的传热效果。
4.3 使用先进的材料选择合适的材料可以提高冷凝器的耐腐蚀性和传热性能。
5. 总结本文介绍了冷凝器的原理、设计方法和优化方案。
冷凝器设计涉及到多个方面的知识,需要综合考虑工况和要求,并根据实际情况进行优化。
蒸汽冷凝装置的设计计算4卜,7弓耄虼数斜节等蒸汽冷凝装置的设计计算中山大学力学系鄞金基.邢浩旭广东英龙水泥厂张康治王国基陈敏健丁K2乒.//(摘要)本文阐述不同压力下二次蒸汽的冷凝装置的传热机理,列出直接接触式冷凝器的传热方程,状态方程和连续性方程.导出蒸汽与冷凝水回收温度的关系.讨论饱和蒸汽与过热蒸汽的Rankine循环图.最后给出应用实例.蒸汽冷凝器在二次蒸汽余热回收和蒸汽喷射泵的级问耦合已有广泛的应用.蒸汽冷凝热交换装置有直接接触式和问接接触式及其他传热装置.本文着重讨论直接接触式的冷凝器的理论计算问题.一,直接接触式冷凝器与Rankine循环图工业上大量使用过的蒸汽包括饱和蒸汽和过热蒸汽,简称二次蒸汽.直接接触式冷凝器是二次蒸汽热能回收的重要装置.其结构特点是蒸汽与冷凝器内通人的介质(例如水或玲空气)直接接触.进行热交换.不必借助金属结构(例如排管)进行换热,常见液体(水)为介质的冷凝器.如图44(a),),(c)所示.图44(a)为液柱式冷凝器,蒸汽由下侧人口.水由上而下,在冷凝器的内部安装多孔塔板.为的是增大冷却水和蒸汽的接触面积,经过冷凝后产生的热水或过热水由下方排出;图44(b)为液膜式冷凝器,液体由上方的孔喷射形成液膜,使蒸汽与液体表面积能更充分地接触:图44(c)是喷射式冷凝器,从喷瞒喷出的雾化冷却水使蒸汽冷凝,同时引射不凝性气体从扩压管流出,因而具有抽出不凝性气体的优点.w—水入口s—蒸汽入口st一不凝气体出口圈44直接接触式燕汽砖凝器一4I一P豳45理想引擎的Rankine循环图为了说明冷凝器在二次蒸汽热能回收中的作用.我们通过理想引擎Rankine循环来说明.图45表示压力P与比容V,温度T与熵S之间关系的Rankine循环图蒸汽从状态1流出蒸汽锅炉,在理想引擎内(即不考虑损失)等熵膨胀至状态2,(见图45(a),(b)卜一2线)其总输出功为输人与输出流体焙之差值.即WII=ht-h2式中,hL——理想引擎输人节流时之焙,h广理想引擎输出之焓.由状态2输人冷凝器.若冷凝器以水为介质,则按图45(a)(b)2--3线在3处使蒸汽冷凝为饱液.冷凝器热量的变化引起熵s的减;流体所做的功用焓表示: W【2=h2-h3式中,h3——冷凝器输出饱和液体的焙.冷凝器输出的饱和液.由状态3等熵泵入蒸汽锅炉至B处.即在图45(a)(b)之3一B线,再加热至温度t:使t{,,在l处蒸发成蒸汽.而开始循环.循环曲线为l23一B一4—1.如果蒸汽在流出锅炉前梭过热.其循环曲线为e—f+3一B一-4-~c.从理想引擎输出至冷凝器的蒸汽(状态2)为二次蒸汽.若冷凝器是以气体为介质,二救蒸汽在等压条件下冷却.如果二次蒸汽是过热汽,在其冷却过程进行大量的热交换.使过热汽的温度降低至该压力下的饱和温度.称此温度为露点.此时,过热汽成为饱和蒸汽.饱和蒸汽在等压条件下,与混合汽热交换的继续,其温度降低在露点温度以下,如图45的牡态3处,出现饱和液.随着蒸汽的大量输入.在等压条件饱和液体可以大量出现.冷凝器不论是以水或气体为介质.由状态2输入的二次蒸汽在等压条件下成为饱和液体由于该压力(等压)高于大气压力,例如绝对压力为2Kg/cm.则在此压力下饱和液(水)的沸点温度为l19℃.饱和液成为过热水.水温可达l】9”C,二次蒸汽糸热回收新技术是以此为理论依据进行节能的,将在另文阉述.二,液柱式冷凝器的传热计算二次蒸汽向冷凝器传热的机理,由于蒸汽与液体界而的切应力小.所以{瘦体内部的速度榔度可以被忽略,使冷凝的热量梭液体吸收,温度迅速上升.现以液柱式}i}艟器为例说明其传热的计算.液柱式冷凝器如图46所示.液体(水)从上而下,蒸汽从下而上流动.:凝气体从上恻.(过)热水从底部排出.在进行理论分析时.假没:①液柱直径等于多孔饭的孔径:②冷一42一盛一jt暑/一.一一凝蒸汽是饱和蒸汽.液拄在一定温度T.的气体中向下流动.液往表面温度为一定值⑨忽略物理量(比较C,密度P,传热系致K)沿液柱流动方向的变化;④忽略液柱的轴向传热,根据以上的假定.液柱内部传热可被认为是在晃限长圆柱内的轴对称导热.且在同一位置.温度分布不随时间变化.选取坐标.一r0x如图47所示.传热方程”)为-.2等一+争 0式中,U广一液柱向下流图46l穰柱式冷凝器示意图翻47动速度(米/时)口——液柱的热扩散系数KI/(cf?(米/时)K——液体的导热系数(千卡/米?时?℃)C广一液体的比热(千卡/千克?℃)PI——掖体的密度(千克/米)T-一蔽柱的局部温度(℃)r,)’——分别为径向.轴向坐标求解偏微分方程①.可得液柱内温度分布的表达式如下:口÷=…州?…--..………”@式中,T.为蒸汽的饱和温度(℃):Ti为液柱的人口温度(℃);R为浓柱的半径;Jo为零次贝塞尔函数.采用用人口条件(X=0,T=T;)则常数A为而CJ.f[J.(.)]+1U)]1,1是一次贝塞尔函数.积分@式,可得x处的圆柱断面的平均温度确下式表示:~-T--T=主).等?………………@一一上U】!鼻.由于假定为液柱,液体的流量可用下式计算:V,一月’三’D’,………………………………………………………@式中,n为液桂数.D为液拄直径.直接应用④式是困难的,常使用如下的宴验公式…:.一43——=1_4_5l35();?);………………………………@’|,一躲腓去m1@式醌=ll_0.094()i………………….…………..⑦yI根据文献.在水从孔径1.0~5.0毫米的多孔板向下流动.考虑液柱表酉的素流流动的影响.0式右边第二项的系数选取为0.12.比系数0.094大21.7%. 三,蒸汽冷凝器的设计要点及应用蒸汽冷凝器的设计计算要点如下:(1)考虑蒸汽与冷却水的热量总体平衡方程,蒸汽传热量按下式计算: Q.=G(hcT广To))………………………………………………………@式中.Qs为蒸汽传热量(千卡/时);G为蒸汽的质量流量(千克/时);C.为过热水的比热(千卡/千克?℃);T.为水蒸汽的温度;T.为冷却水出口温度:h’为汽化焙(千卡/千克).冷却水从进口温度T-’经过冷凝器的热交换上升到出口的水温T.,所需要的热量为:Q】=CI?GI(TTj)..-………………………………………………...………@式中.G,为水的质量流量.由热平衡条件要求@,@两式相等,由此可决定冷却水所需的水量.但考虑不凝气体带走的热量时,热平衡方程@式要加以修正.(2)若选用液拄式冷凝器,其塔板结构如图48所示.塔内开口面积的蒸汽允许的流速为:Uolffi()”……………...P式中,u..为塔内蒸汽速度.K.I依赖于实验确定的常数.P_为蒸汽的密度.设塔板上的冷却农停留高度为H.,孔径为d,塔板的开孔效为n,贝40.4Gn一——————』一………………-0.6??d’√2gH,如果塔板开口为S.财塔径Dr一/一!L一…………@√’S’c,n’p.液幕的蒸汽允许的流速,选取一44——eoo/\T血三图48液拄A凝器的塔板(,,:置.[)”………………………………………………………@ ,式中.KI2为依赖于实验确定的常数.设液幕的面积记为F.,则Fl=LD’ff lB—HdB)…一………一一……………………一0式中,lD为堰宽H.为塔板间距,dB为塔板支持板的高度..又因为G=Pi?uI2?FI.代人l?式解得:_州-…………………………._@(3)若选用液拄式,仍髓决定塔板的层数.已给出蒸汽的饱和温度TI,液体入口温度为Ti.出口温度为T.,从经济的最佳值选取: 三;……….…一…………………:………………………….,一t.式中.由实验确定,文献”建议选取O.85,本文建议选用:0.85--0.88.从第一头塔板豺第=块塔板,用出口温廑Tl代替平均温度同时注意到X=HHl(见图4g),则由④,⑦式可得:,1一o.12(二型);.T|一TtnJ由此可得:,~.一{1—0.12()}.(Ta--Tf).……………囝-从第二块塔板到第三块塔板,出口温度为T2,同理可得::~.一{1-0-12c.(Hj-H:,:1)1.(一Tt)..……………@.p,逐次计算.直到液体出口温度低于T0,则可决定塔板数.本文阐述蒸汽冷凝器的传热机理及设计计算的要点,蒸汽冷凝器是多级蒸汽喷射泵级问耦合的重要设备.因为如果蒸汽喷射泵之间直接耦合.即将前一级喷射泵的输出接入第二级的吸人端,这时第二级喷射泵的抽吸量大为增加.导致真空度降低.无法正常1作.如果将前一级喷射泵的输出连接蒸汽冷凝器.再将冷凝器不凝气体输出端接人第二级的吸人端.这样第一级喷射泵输出大量的水蒸汽在冷凝器中冷凝.太为减少第二级喷射泵的抽吸量,使它船曝证正常工作.以下通过算例说弱冷凝器的设计计算同题.(例子)设第一级蒸汽喷射泵输出的真空度为705mmHg,含水蒸汽量-勾300公斤/时,现用20℃水进行冷凝.要求设计液柱式冷凝器.计算过程:蒸汽真空度为705mmHg,折算为绝对压力P.=7.2368×1o.mP.,T.;40”C,汽化焙h.;574千卡/公斤.已知G=300公斤/小时,水温Tt=20”12,依据lb式,r/取0.85时,可得To=37”(3.再由@式计算得传热量Q.=173100千卡/小时,及由@式算出需要的冷却水盘G】;10150公斤/小时.如果塔板的开口比S=0.4,由@式算出(下转第73页)一dE—(例子三)图,3是延时换向的一个气动系统.这可以代替电气延时电路,在一些场合下实现执行机构的延时动作.我们可以从上述三个例子中得到一些启示.(启示一)从上面举舶三个气动系统可以想到.用电气传动在某些场合上经济成本不合算.或者无法实现或者较难实现.但气动系统很容易实现所要求的功能.这说明气动技术在许多领域有其存在和发展的必要.作为气动技术方面舶工程技术人员,应该更注重从实际需要出发.开发和推广一些经济实用的气动系统.科研单位和生产厂家要注重研制和改进气动元件的性能,如上述的气动延时切换周,现在其延时切换最长时问可达3分钟.还可以达到更长的时同’这有待我们技术人员的努力.:(启示二)气动系统比较安全.不易发生火灾.气动系统抗污染能力强.不会污染环境.还具有防爆,防电磁干扰,抗振动,冲击,辐射等优点.但气压传动的致命弱点是由于空气的可压缩性使无法获得稳定的运动.此外.为了减少空气的泄漏,气压传动系统的工作压力一般不超过,~8公斤力/厘米.因此,气动元件结构尺寸大,不宜用于大功率传动.气压传动的缺点决定了它的一定的使用范围.也构成我们工作中的有利和不利的两个方面.然而,一切矛盾着的东西,都会在一定的条件下互相转化,随着具体条件的变化和气动技术本身的发展.气动技术将在经济各镊域发挥更大的作用.现在.随着气动元件性能的提高及密封条件的改善.系统工作压办200公斤力/厘米的气动系统应用也不少觅.例如,广州韬加工厂电冰箱蒸发器板的扩孔气动系统的工作压力就是200公斤力/厘米的.上面例子二也刚好避开气压传动的致命弱点.发挥它的优点.还有气压传动伺服系统可以发挥利用气体的抗温性在某些场台将比液压伺服系统优越.因为油在高温时会产生很多变化,如粘度变化等.n:接第45页).塔径DT=0.46米;塔板的开孔数n由曲式得出n=241,孔径d;0.005米;由0式算出堰宽LD=O.43米,由O式算出堰高Hw0.11米.HBr0.22米.塔板层数的计算.应用0式算得第一层输出水温TJ=28℃.应用Q式算出第二层输出水温T2=32.8℃,谣状计算第三层输出瘩温T,=35.7℃,第四层输出水温T.=37.4℃,因此塔板层数采用4层.二次蒸汽余热回收,如何设计蒸汽冷凝嚣是重要的技术关键.该冷凝器是要将经过使用的蒸汽,例如在Rankin~循环中从理想引擎输出的蒸汽,把汽相转换成为液相一一进热水.由于输出的水温T较高.依据@,@式热平衡方程的计算,需要的输入水量较少.输出水量还应包吉蒸汽温度降至露点成为过热水的水量.本文的讨论对研究余热圆收的蒸汽玲凝器的设计仍具有重要的实用意义.参考文献(1)(日)尾花英朗,热交换器设计手册(下册),徐中权译石油工业出版社.1982年版.E2)VirgiM.Faircs钟毅章译.热力学,新兴图书公司1979年版.(3)(日)中岛大岛.化学工学.V o]23.No4P235~241,1959.一73一...,..........●。
化工设计中常用冷凝器的设计选用分析摘要:目前我们常用的冷凝器是属于换热器的一种重要器材,为了提高利用冷凝器的效益应该注意产品的质量,很多施工员会在施工时将管道上增加传导性能将风传递,利用优异的散热片增大散热的面积让积累的热量可以有效流通,从而,利用风机加快空气的流通把热量带走。
关键词:化工设计;冷凝器;设计选用引言冷凝器的作用就是换热,简单的来说就是把室内的热量通过冷凝器转换到室外,让室内与外面的空气得到流通,有点新鲜空气,利用压缩机工作排出高温高压的制冷剂。
冷凝器在化工厂和生活方面都得到了广泛的运用,我们应当利用好冷凝器造福我们的社会推动社会发展,改善我们的生活。
1.1冷凝器的研究和概念随着我们生活质量的提高,对冷凝器的需求随之也开始慢慢的提升,不同的冷凝器的制冷散热功能效果不同。
最常见的其中几种是空气冷却式冷凝器很多地方已经流行使用了、化工常用的冷凝器方法是蒸汽压缩制冷的变化,通过制冷剂的流动变化和外部进行热量的交换。
冷凝器是比较重要的现代化电气,是换热器的一种产品,它能够选择性把气体存在的气流和蒸汽转化为液体流通出去。
一般的制冷电器的制冷原理就是把压缩机的工质由低温的气压压缩成为高温的气压。
我们在选择制冷器时一定要选择实用的,合理的选择和使用冷凝器,能够使冷凝器延长寿命,增长冷凝器的使用周期。
1.2 制冷原理及应用当压缩机在工作的时候会对新进入的气体进行压缩,经过压缩机的压缩过后,气体会从低压变成高压。
压缩机的很多的特点,它的制冷范围比较大,在低温的情况下都可以正常的使用,它的容量大规格多。
但是蒸汽式压缩的方法综合性能不太理想,在外界的低温环境下可靠性不是很高,制冷器成本也会增加。
利用制冷剂会对环境造成污染。
很多不同的杂质,因为杂质的不同本质上也会发生一定的变化。
1.3 制冷系统的工作原理在我们的生活中制冷器已经占领主要位置,大部分工作需要制冷系统,我们需要通过结合现场实际情况了解分析,确保制冷系统能被运用到实际工作中,既然能保证制冷系统正常运行的相应需求,还能降低各种影响的不利因素给制冷系统带来严重的干扰。
化工设计中冷凝器的设计选型摘要:冷凝器是冷却经制冷压缩机压缩后的高温制冷剂蒸汽并使之液化的热交换器。
石化工业中用冷凝器将烃类及其它化学蒸气冷凝。
本文阐述了冷凝器基本原理,并提出在化工设计中合理选择冷凝器的方法和计算冷凝器平均温差的方法。
关键词:化工设计冷凝器传热系数冷凝段过热段过冷段冷凝器是石化、炼油、化工、电力及制冷等行业工艺流程的主要设备之一。
冷凝器中的气体必须通过很长的管道,以便热量传导到空气中。
钢材、铜材等导热金属常用于输送蒸气。
为提高冷凝器的效率,通常在管道上附加散热片以加速散热。
这类冷凝器一般还要用风机迫使空气经过散热片并把热量带走。
冷凝过程在石化、炼油、化工等装置中应用广泛。
但由于设计人员对冷凝器设计中的影响因素分析不够,导致冷凝器在实际运行中达不到设计负荷。
以下就设计中选用冷凝器的问题,阐述个人的一些看法。
1 冷凝器工作原理在一般制冷机的制冷原理中,压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。
压缩机吸入从蒸发器出来的较低压力的工质蒸汽,将压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经过节流阀节流后,成为压力较低的液体,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,然后再送入蒸发器的入口,从而完成制冷循环的过程[1]。
1.1 蒸汽压缩式制冷原理蒸汽压缩制冷系统,由制冷压缩机、冷凝器、蒸发器和节流阀4个基本部件组成。
它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。
1.2 制冷系统的基本原理液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽,被压缩机吸入,压缩成高压高温的蒸汽后排入冷凝器,在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体,经节流阀节流为低压低温的制冷剂,再次进入蒸发器吸热汽化,达到循环制冷的目的。
这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。
化工原理课程设计设计题目:纯苯蒸汽冷凝器的设计指导老师:***系别:环境与安全工程系专业:安全工程班级学号:*********姓名:***目录一、设计任务: (2)1、处理能力:常压下5950kg/h的纯苯蒸汽 (2)2、设备型式:立式列管式冷凝器 (2)二、操作条件 (2)三、设计内容 (2)1、确定设计方案 (2)2、确定流体的流动空间 (2)3、计算流体的定性温度,确定流体的物性参数 (2)4、计算热负荷 (3)5、计算平均有效温度差 (3)6、选取经验传热系数k值 (3)7、估算传热面积 (3)8、结构尺寸设计 (3)(1)换热管规格、管子数、管长、管壳数的确定 (3)(2)传热管排列和分程方法 (4)(3)壳体内径内内径 (4)(4)折流板 (4)四、换热器核算 (5)1、换热器面积校核 (5)2、换热器内压降的核算 (7)五、换热器主要结构尺寸和计算结果一、设计任务:处理能力:1、常压下5950kg/h 的纯苯蒸汽 2、设备型式:立式列管式冷凝器二、操作条件1、常压下苯蒸气的冷凝温度为80.1℃,冷凝液在饱和温度下排出。
2、冷却介质:采用20℃自来水。
3、允许管程压降不大于50KPa 。
三、设计内容本设计的工艺计算如下:此为一侧流体恒温的列管式换热器的设计 1、确定设计方案 两流体的温度变化情况热流体(饱和苯蒸气)入口温度 80.1℃,(冷凝液)出口温度 80.1℃ 冷流体 水 入口温度 20℃,出口温度 40℃ 2、确定流体的流动空间冷却水走管程,苯走壳程,有利于苯的散热和冷凝。
3、计算流体的定性温度,确定流体的物性参数苯液体在定温度(80.1摄氏度)下的物性参数(查化工原理附录) ρ=815kg/,μ=3.09×Pa.s,=1.880KJ/kg.k ,ƛ=0.1255W/m.K, r=394.2kJ/kg 。
自来水的定性温度:入口温度:=20℃, 出口温度 =40℃则水的定性温度为:=(+)/2=(20+40)/2=30℃3m 410 PC 1t 2t m t 1t 2t根据热量衡算方程:=(-)得=/(-)=1.65×394.2/4.173(40-20)=7.79kg/s(式中=1.65kg/s )两流体在定性温度下的物性参数如下表计算热负荷ƍ==1.65×394.2=651.52kw 5、计算平均有效温度差 逆流温差=℃温差>50℃故选择固定管板式换热器需加补偿圈 6、选取经验传热系数k 值查《化工原理课程及设计》附录8,查的K 取430~850,暂取K=8507、估算传热面积==15.51m q 1r 2m q 2p c 2t 1t 2m q 1m q 1r 2p c 2t 1t 1m q 1r 1m q 逆m △t 43.4940)]-/(80.120)-(80.1[㏑40-80.1-20-1.80=)()(逆m t K Q S △=49.43×85010×52.65132m8、结构尺寸设计(1)换热管规格、管子数、管长、管壳数的确定选传热管,内径,外径,材料为碳钢。
酒精蒸汽冷凝器设计一、工艺条件:管程:介质:水,工作温度:进口1t =32℃,出口2t =45℃;操作压力:0.3MPa壳程:介质:酒精蒸汽,蒸汽流量:15000/Kg h ;工作温度:进口178.2T =℃,出口278.2T =℃;操作压力:0.1MPa ;二、换热器工艺设计步骤:1、查取管程和壳程物性参数,计算热负荷,按照传热学课本给出的总传热系数(按蒸汽的总传热系数计算),初步设计换热器的换热面积;2、设计换热器的结构尺寸:(1)选用换热管的直径、管长,根据上步计算的换热面积计算换热管的根数,设计管程,计算管程中流体的流速,在经验流速范围内即可;(2)选用换热管排列方式,正三角形或正方形排列,选取管心距;(3)计算壳体内径,将其圆整到换热器标准尺寸,排列换热管,确定实际换热管根数和管长,计算换热器的实际换热面积,壳程和管程的流速,确定这些流速在经验范围内;(4)选用折流板,可以选用弓形折流板,选取折流板的尺寸、布置间距、折流板数;(5)选择壳体排气和排液接管,选用253φ⨯的无缝钢管3、校核换热器的传热面积:(1)校核换热器的传热温差;(2)校核换热器的总传热系数Ka.计算管程内流体的传热膜系数:在假设管侧壁温的前提下,计算管内流速、雷诺数、选取合适的经验关联式计算相应的对流传热膜系数b.计算壳程流体的传热膜系数:在假设壳侧壁温的前提下,计算壳程内流体的流速、雷诺数、选用合适的经验关联式计算c.查取管侧和壳侧的污垢热阻d.利用总传热系数的计算公式计算换热器的总传热系数K4、根据GB151-F对换热器壁温进行校核,如果各侧壁温与实际计算的壁温相差不大(误差在20%内),则可以进行下一步计算,否则,重新进行第3步计算;5、根据3中计算出的K值计算换热器所需传热面积,与换热器实际的换热面积相比较,实际面积为所需面积的(1-1.25)倍就达到要求了,否则,重新从第2步开始计算。
冷凝器蒸发器设计计算冷凝器和蒸发器是热交换器中的两个重要部分,用于实现液体的冷凝和蒸发过程。
在冷凝器和蒸发器的设计计算中,需要考虑多个参数,如传热面积、传热系数、温度差、流体流速等。
首先,我们来看冷凝器的设计计算。
冷凝器是将气体或蒸汽冷凝为液体的设备。
在冷凝器的设计计算中,我们需要考虑的主要参数有传热面积和传热系数。
传热面积的大小决定了冷凝器的传热能力。
一般来说,传热面积越大,冷凝能力越强。
传热面积的计算可以通过以下公式进行估算:A=Q/(U×ΔTm)其中,A为传热面积,Q为冷凝能力,U为传热系数,ΔTm为平均温度差。
传热系数是冷凝器设计中另一个重要的参数。
传热系数表示单位面积的传热能力,取决于冷凝器的设计、材料、流体性质等因素。
在设计计算中,可以通过查表获得相应的传热系数。
另外,还需要考虑冷凝器的温差和流体流速。
温差是指工作介质的饱和温度和冷凝温度之间的差值,影响着传热过程中的温度梯度。
流体流速则会影响冷凝器的阻力和压降。
接下来,我们来看蒸发器的设计计算。
蒸发器是将液体蒸发为气体的设备。
在蒸发器的设计计算中,我们也需要考虑传热面积和传热系数。
同样,传热面积的大小决定了蒸发器的传热能力,可以通过上述公式进行估算。
传热系数对于蒸发器的设计同样重要。
传热系数表示单位面积的传热能力,取决于蒸发器的设计、材料、流体性质等因素。
也可以通过查表获得相应的传热系数。
除了传热面积和传热系数,还需要考虑蒸发器的温差和流体流速。
温差是指工作介质的饱和温度和蒸发温度之间的差值,影响着传热过程中的温度梯度。
流体流速同样会影响蒸发器的阻力和压降。
在冷凝器和蒸发器的设计计算中,还需要考虑其他一些因素,如材料的选择、外部环境温度、工作介质的流动性质等。
这些因素都会对设计结果产生一定的影响,需要进行综合考虑。
综上所述,冷凝器和蒸发器的设计计算需要考虑传热面积、传热系数、温度差、流体流速等多个参数。
通过合理的设计计算,可以实现冷凝和蒸发过程的高效运行,提高设备的性能和效率。
冷凝器设计计算范文
冷凝器是一种用于将气体或蒸汽冷凝成液体的设备。
它主要由管束和
外壳组成,通过将高温高压的蒸汽排放到冷凝器中,蒸汽在接触到冷凝器
表面时被冷却,最终转变为液体。
冷凝器的设计计算一般包括以下几个方面:
1.冷凝水的供应和排放:冷凝器需要足够的冷凝水来冷却蒸汽。
设计
计算时需要确定冷凝水的需求量和排放的方式,一般可以通过测量蒸汽入
口和出口的温度和流量来计算。
2.冷却面积的计算:冷凝器的冷却效果取决于冷却面积的大小。
可以
根据蒸汽入口温度、出口温度和流量来计算所需的冷却面积。
一般可以使
用传热方程来计算冷却器所需的面积。
3.管束设计:管束是冷凝器的核心部分,它承担着将蒸汽冷却成液体
的任务。
管束的设计一般包括管束材质的选择、管束的直径和长度等。
管
束的设计需要考虑传热效率、材料的耐腐蚀性等因素。
4.外壳设计:冷凝器的外壳一般是由金属材料制成,它起到保护管束
的作用。
外壳的设计需要考虑材料的强度和耐腐蚀性,以及外壳内部的泄
漏问题。
5.冷凝器的结构设计:冷凝器的结构设计包括冷凝器的布局、进出口
的位置和尺寸、泵和阀门的选择等。
结构设计需要满足冷凝器的工作要求,保证冷凝器的正常运行。
除了上述的设计计算,冷凝器的安装和维护也是关键的环节。
冷凝器通常需要定期清洗和检查,以保证其正常的工作。
此外,冷凝器的设计和使用也需要考虑环保因素,减少对环境的污染。
蒸汽冷凝器的制作方法蒸汽冷凝器是一种将蒸汽转变成液态的装置,广泛应用于化工、电力等领域的能源回收中,有着重要的作用。
本文将介绍蒸汽冷凝器的制作方法,以供读者参考。
材料准备制作蒸汽冷凝器所需要的主要材料有:•热交换器管•冷却水管•波纹管•泡沫板•不锈钢螺栓和螺母•密封胶和密封材料其中,热交换器管和冷却水管是蒸汽冷凝器的主体构成部分,波纹管则是在传热过程中起到增强传热效果的作用。
泡沫板则是用来固定和支撑内部的结构,而不锈钢螺栓和螺母则用来连接各部分构件。
制作步骤1.安装热交换器管和冷却水管首先,需要将热交换器管和冷却水管安装到蒸汽冷凝器的内部,以便在传热过程中完成冷凝。
选择合适的管道长度和直径,将其安装到内部结构中,并用不锈钢螺栓和螺母固定。
2.安装波纹管在热交换器管的内壁上,安装波纹管用来增加传热表面积,有效提高传热效率。
波纹管应该紧贴内壁,并用不锈钢螺栓和螺母固定。
3.安装内部结构在热交换器管和冷却水管之间,需要安装一个内部结构,包括泡沫板和槽式托架等。
泡沫板用于固定内部结构的位置,而槽式托架则可以起到固定管道的作用。
4.密封处理在正确安装内部结构后,需要对裂缝和缝隙进行密封处理。
用密封胶或其他密封材料填充缝隙,并确保密封完整,以避免漏水或蒸汽泄漏。
5.组装蒸汽冷凝器根据以上步骤所组装的各部分,将其组装,使用不锈钢螺栓和螺母拧紧,确保内部结构和管道的稳固。
使用在制作完蒸汽冷凝器后,在使用前需要将其内部清洗干净并检查密封性能。
随后,将冷却水供应到冷却水管中,当水流进入蒸汽冷凝器后,蒸汽就会被冷却成为液态,可以在化工、电力等领域回收能源。
结论蒸汽冷凝器是一种重要的能源回收装置,在工业生产中应用极为广泛。
本文介绍了蒸汽冷凝器的制作方法,希望可以帮助到需要制作蒸汽冷凝器的读者们。
水冷冷凝器设计1. 引言水冷冷凝器是一种常见的热交换设备,主要用于将气体或蒸汽通过冷却水冷凝成液体,以实现热能的转移和能量的回收。
本文将介绍水冷冷凝器的设计原理和一些关键要点。
2. 设计原理水冷冷凝器的设计原理基于热传导和热对流的基本原理。
当高温气体通过冷凝器时,热传导使得冷凝器内壁温度升高,而冷凝水因与内壁接触而升温,然后通过冷凝器水管带走高温。
同时,冷凝水的流动也起到了提高热能转移效率的作用。
3. 设计要点在进行水冷冷凝器设计时,应注意以下要点:3.1 冷凝器的尺寸和形状冷凝器的尺寸和形状对热能转移效率有显著影响。
一般来说,冷凝器应具有较大的表面积,并采用盘管、板翅或其他形式的热交换器结构,以增加内壁与冷凝水的接触面积,并提高热能传导效率。
3.2 冷凝器水管的设计冷凝器水管的设计应考虑水管内径、长度和排列方式等因素。
较小的水管内径和适当的长度有助于提高冷凝水的流速,增加冷却效果。
同时,合理的水管排列方式也可以提高热能传导效率。
3.3 冷凝水的流动方式和速度冷凝水的流动方式和速度直接影响热能转移效率。
通过设计合适的冷凝水流动方式和控制流速,可以确保足够的冷却效果和热能转移效率。
3.4 冷凝水的供应和排放冷凝水的供应和排放系统应具备稳定和可靠的性能,以确保冷凝器正常运行。
供应系统应保证足够的冷凝水量,排放系统应及时将产生的冷凝水排出冷凝器,以维持正常工作状态。
4. 结论水冷冷凝器的设计是一个复杂而关键的过程,需要综合考虑热传导、热对流和流体力学等多个因素。
在设计过程中,应注意冷凝器的尺寸和形状、水管设计、冷凝水流动方式和速度,以及冷凝水的供应和排放系统等要点。
通过合理设计和优化,可以提高水冷冷凝器的热能转移效率和性能。
真空系统冷凝器设计在现代工业中,真空系统冷凝器扮演着至关重要的角色,它们广泛应用于化工、制药、食品加工、电力生成等众多领域。
冷凝器的设计不仅影响着整个真空系统的性能,还直接关系到生产过程的效率与成本。
因此,设计一个高效、可靠的冷凝器是真空技术应用中的一项重要任务。
一、冷凝器的基本原理与功能冷凝器的主要功能是将气体或蒸汽冷凝成液体,同时释放出冷凝潜热。
在真空系统中,冷凝器通常与真空泵配合使用,以维持系统内的真空度。
当被抽气体进入冷凝器时,气体中的可凝性蒸汽在冷凝器表面冷却并凝结成液体,从而减少进入真空泵的气体量,保护真空泵不受蒸汽的腐蚀和污染。
二、设计考虑因素1. 热交换效率:冷凝器的热交换效率直接影响其冷凝能力。
设计时需要考虑冷凝器的材料、结构、表面积、流体流动状态等因素,以确保高效的热传递。
2. 压力损失:气体在通过冷凝器时会产生压力损失,这会影响真空系统的总体性能。
因此,设计时需要合理布局冷凝器内部的管道和翅片,以最小化压力损失。
3. 耐腐蚀性:冷凝器处理的气体中可能含有腐蚀性成分,因此冷凝器的材料选择至关重要。
必须选择能够抵抗气体腐蚀的材料,以确保冷凝器的使用寿命。
4. 维护与清洁:冷凝器在使用过程中可能会积累污垢和沉积物,影响热交换效率。
设计时需要考虑易于维护和清洁的结构,以便定期清理和保养。
三、冷凝器类型选择根据应用场景和具体需求,可以选择不同类型的冷凝器。
常见的冷凝器类型包括壳管式冷凝器、板式冷凝器、螺旋式冷凝器等。
每种类型都有其优缺点,设计时需根据实际情况进行选择。
四、设计步骤与优化1. 确定设计参数:根据真空系统的要求,确定冷凝器的设计参数,如冷凝温度、冷凝负荷、工作压力等。
2. 选择合适的冷凝器类型:根据设计参数和实际应用场景,选择最合适的冷凝器类型。
3. 进行热设计计算:根据冷凝器的类型和所选材料,进行热设计计算,确定冷凝器的尺寸、表面积、流体通道等。
4. 进行结构优化:在满足热设计要求的基础上,对冷凝器的结构进行优化,以提高其性能并降低制造成本。
乙醇冷凝器的设计报告一、引言乙醇是一种重要的有机溶剂,广泛应用于制药、燃料等领域。
在乙醇生产过程中,冷凝是一项关键的工艺,用于将乙醇蒸汽冷却并转化为液态。
乙醇冷凝器是实现这一过程的设备,本报告旨在设计和优化乙醇冷凝器,提高冷凝效率并降低能耗。
二、设计方案1. 冷凝器结构和原理:乙醇冷凝器一般由冷凝管束、冷却介质、外壳等组成。
冷凝管束是乙醇蒸汽的主要传热区域,通过将乙醇蒸汽与冷却介质接触,乙醇蒸汽会散发热量并冷凝成液态乙醇。
冷却介质通过外壳流动,吸收乙醇蒸汽的热量,并通过冷却循环系统将热量释放。
2. 设计要求:- 提高冷凝效率:冷凝器应能够迅速冷却乙醇蒸汽,并将其转化为液态,以提高乙醇产量。
- 降低能耗:冷却介质应具备良好的热传导性能,以提高冷凝效率和降低能耗。
- 稳定性:冷凝器设计应稳定可靠,不易出现故障,并便于维护和清洁。
3. 设计方法:- 采用螺旋式冷凝管束:螺旋式冷凝管束具有较大的传热面积,可以增加乙醇和冷却介质的接触面积,提高冷凝效率。
- 选择导热系数高的冷却介质:如水等,以提高乙醇蒸汽的冷却速度,降低能耗。
- 设计合理的外壳结构:保证冷却介质能够均匀流动,并充分接触冷凝管束,提高热量的传递效率。
三、设计过程及结果1. 计算冷凝器参数:通过传热方程计算冷凝器需要的传热面积、冷凝管束的数量等参数,以满足乙醇产量需求和能耗要求。
2. 选择合适的冷却介质:考虑到成本和导热性能,选择水作为冷却介质,以提高乙醇蒸汽的冷却速度。
3. 设计冷凝管束:采用螺旋式冷凝管束,通过计算确定冷凝管束的长度、直径和间距,以实现最佳的传热效果。
4. 设计外壳结构:保证冷却介质能够均匀流动,采用合适的入口和出口位置,并设置冷却循环系统,以便于热量的释放。
四、性能优化为进一步提高乙醇冷凝器的性能,可以考虑以下优化措施:1. 使用导热系数更高的冷却介质,如冷冻液,以进一步降低能耗。
2. 优化冷凝管束的结构和材质,选择表面积更大、传热效果更好的材料。
摘要根据设计条件,依据GB151和GB150及相关规范,对卧式壳程冷凝器进行了工艺计算,结构计算和强度计算。
工艺计算部分主要是根据给定的设计条件估算换热面积,从而进行冷凝器的选型,校核传热系数,计算出实际的换热面积,最后进行压力降和壁温的计算。
结构和强度的设计主要是根据已经选定的冷凝器型式进行设备内各零部件(如接管、折流板、定距管、管箱等)的设计,包括:材料的选择、具体尺寸确定、确定具体位置、管板的计算、法兰的计算、开孔补强计算等。
最后设计结果再通过装配图零件图等表现出来。
关于卧式壳程冷凝器设计的各个环节,设计说明书中都有详细的说明。
关键词:管壳式换热器卧式壳程冷凝器管板法兰AbstractAccording to the design condition, GB151 and GB150 and related norms, design a horizontal shell condenser, which included technology calculate of condenser, the structure and intensity of condenser.The technology calculation process. Mainly, the process of technology calculate is according to the given design conditions to estimate the heat exchanger area, and then, select a suitable condenser to check heat transfer coefficient ,just for the actual heat transfer area .Meanwhile the process above still include the pressure drop and wall temperature calculation . The design is about the structure and intensity of the design. This part is just on the selected type of condenser to design the condenser’s components and parts ,such as vesting ,baffled plates, the distance control tube, tube boxes. This part of design mainly include:the choice of materials,identify specific size, identify specific location, the thickness calculation of tube sheet, the thickness calculation of flange, the opening reinforcement calculation etc. In the end, the final design results through and parts drawing to display.The each aspects of the horizontal shell condenser has detailed instructions in the design manual.Key word: Shell-Tube heat exchanger; Horizontal shell condenser; Tube sheet; Flange.目录摘要 (I)Abstract (II)第1章绪论 (1)冷凝器概述 (1)冷凝器类型 (1)卧式壳程冷凝器 (1)卧式管程冷凝器 (2)立式壳程冷凝器 (2)管内向下流动的立式管程冷凝器 (3)向上流动的立式管程冷凝器 (3)冷凝器发展前景 (4)第2章工艺计算 (5)设计条件 (5)确定物性数据 (5)冷凝器的类型与流动空间的确定 (5)未考虑冬季因素 (5)估算传热面积 (5)选工艺尺寸计算 (7)冷凝器核算 (10)冬季因素考虑 (17)综合考虑 (18)估算传热面积 (19)选工艺尺寸计算 (19)冷凝器核算 (20)换热器主要结构尺寸和计算结果 (25)第3章结构设计 (26)壳体、管箱壳体和封头的设计 (26)壁厚的确定 (26)管箱壳体壁厚的确定 (27)标准椭圆封头的设计 (27)管板与换热管设计 (28)管板 (28)换热管 (29)进出口设计 (30)接管的设计 (30)接管外伸长度 (30)排气、排液管 (30)接管最小位置 (31)折流板或支持板 (32)折流板尺寸 (32)折流板和折流板孔径 (32)折流板的布置 (33)防冲挡板 (34)拉杆与定距管 (34)拉杆的结构和尺寸 (34)拉杆的位置 (35)定距管尺寸 (35)鞍座选用及安装位置确定 (35)第4章强度计算 (36)壳体、管箱壳体和封头校核 (36)壳体体校核 (36)管箱壳体校核 (36)椭圆封头校核 (37)接管开孔补强 (37)蒸汽进出口开孔补强 (37)管箱冷却水接管补强的校核 (39)膨胀节 (40)膨胀节 (40)膨胀节计算 (41)管板校核 (42)结构尺寸参数 (42)各元件材料及其设计数据 (43)管子许用应力 (44)结构参数计算 (45)法兰力矩 (46)换热管与壳体圆筒的热膨胀应变形差 (46)管箱圆筒与法兰的旋转刚度参数 (46)管子加强系数 (47)旋转刚度无量纲参数 (47)设计条件不同危险组合工况的应力计算 (48)四种危险工况的各种应力计算与校核: (50)设计值总汇 (52)第5章安装使用及维修 (53)安装 (53)维护和检修 (53)结论 (56)参考文献 (57)致谢 (58)第1章绪论冷凝器概述在蒸馏过程中,把蒸气转变成液态的装置称为冷凝器[1]。
HTRI设计实例-最实用的初学者入门教材目录第1章前言 (1)1.1 课题研究背景及意义 (1)1.2 换热器简介 (2)1.2.1 换热器分类 (2)1.2.2 管壳式换热器的结构和使用特点 (3)第2章冷凝器设计 (8)2.1 冷凝器选型 (8)2.1.1 饱和蒸汽冷凝 (8)2.1.2 含不凝气的冷凝冷却过程 (8)2.1.3 安装注意事项 (9)2.2 冷凝器设计依据 (9)2.2.1 管壳式冷凝器类型的选择 (9)2.2.2 换热器合理压降的选择 (10)2.2.3 工艺条件经验温度的选择 (10)2.2.4 管长 (10)2.2.5 管径与管壁 (11)2.2.6 折流板圆缺高度 (11)2.2.7 折流板间距 (11)2.2.8 密封条 (11)2.3 HTRI设计判据 (12)2.3.1 管壳侧流速(velocity) (12)2.3.2 设计余量(overdesign) (12)2.3.3热阻(thermal resistance) (12)2.3.4流型(flow fraction) (13)2.3.5 Window and crossflow (13)2.3.6 常见warning message及解决方法 (13)2.4 HTRI设计实例(HTRI6.0计算) (15)2.4.1 饱和蒸汽的冷凝 (15)2.4.2 含有不凝气的气体冷凝 (29)2.4.3 油气冷凝冷却 (39)第3章结论 (59)3.1 饱和蒸汽冷凝冷凝器数据 (59)3.1.1 饱和蒸汽冷凝器结构数据 (59)3.1.2 饱和蒸汽冷凝器工艺数据 (59)3.2 含不凝气的蒸汽冷凝冷凝器数据 (60)3.2.1 含不凝气的蒸汽冷凝器结构数据 (60)3.2.2 含不凝气的蒸汽冷凝器工艺数据 (60)3.3 油气冷凝冷却冷凝器数据 (61)3.3.1 油气冷凝冷却冷凝器结构数据 (61)3.3.2 油气冷凝冷却冷凝器工艺数据 (61)致谢62参考文献63第1章前言1.1 课题研究背景及意义我国的能源现状存在着两个突出的问题。
冷凝器设计计算步骤设计冷凝器是在热传导和传热方面进行的工程设计。
其设计计算步骤如下:1. 确定冷凝器类型:冷凝器有多种类型,包括空气冷凝器、水冷冷凝器和蒸汽冷凝器。
根据具体应用场景和工艺要求,选择合适的冷凝器类型。
2. 确定冷凝器制冷剂:根据冷凝器应用场景和制冷剂的性质,确定所使用的制冷剂种类。
制冷剂的性质会影响到后续设计计算。
3. 计算制冷负荷:根据冷凝器所处的环境条件,计算冷凝器需要处理的制冷负荷。
这涉及到室内和室外的温度、湿度等因素,可以使用热负荷计算软件进行估算。
4. 选择传热方式:根据冷凝器的工作原理和制冷剂的性质,选择合适的传热方式。
常见的传热方式有对流传热和辐射传热,选择合适的传热方式可以提高冷凝器的效果。
5. 计算冷凝面积:根据制冷负荷和选择的传热方式,计算所需的冷凝面积。
冷凝面积可以通过冷凝器换热系数和传热过程中的温差来计算。
6. 计算冷凝器传热系数:根据冷凝器的设计参数和制冷剂的性质,计算冷凝器的传热系数。
传热系数是冷凝器换热效率的重要指标,需要根据具体情况进行计算。
7. 选择冷凝水边界条件:根据冷凝器的设计要求,选择合适的冷凝水边界条件。
这包括冷凝水的进口温度、流量和压力等参数,需要保证冷凝水的供给能够满足冷凝器的实际工作需求。
8. 进行热力学计算:根据所选的制冷剂和制冷负荷,进行热力学计算。
这包括冷凝过程中的温度、压力和比焓等参数的计算,可以使用热力学软件进行准确的计算。
9. 进行传热计算:根据冷凝器的设计参数和制冷剂的性质,进行传热计算。
这包括冷凝器的传热面积、传热系数和传热量等参数的计算。
10. 进行流体力学计算:根据冷凝器的设计参数和制冷水的性质,进行流体力学计算。
这包括冷凝器内部的流体流动情况、压力损失和水力不平衡等参数的计算。
以上是设计冷凝器的一般步骤,具体的计算方法和参数选择需要根据具体的应用情况和设计要求进行调整。
对于特定的冷凝器设计,可能还需要考虑其他因素,如材料选择、结构设计和安装要求等。
冷凝器的设计开题报告1. 引言冷凝器是热交换器的一种,主要用于将蒸汽或气体冷凝成液体,并将热量传递给冷却介质。
冷凝器在工业生产和日常生活中有着广泛的应用,例如汽车空调系统、电力发电厂的冷却系统等。
因此,设计高效可靠的冷凝器对于提高能源利用效率和降低能源消耗具有重要意义。
本文将针对冷凝器的设计进行研究,通过分析冷凝器的工作原理以及相关研究文献,提出一个设计方案,并计划进行实验验证和性能评估。
2. 研究目标本研究的目标是设计一种高效可靠的冷凝器,以实现以下方面的性能要求:•高传热效率:冷凝器应具备较高的传热效率,以提高能源利用效率。
•稳定运行:冷凝器应在长时间运行过程中保持稳定性,不易发生故障。
•结构紧凑:冷凝器应设计紧凑,占用空间小。
•成本降低:冷凝器的设计应尽量降低成本,提高经济效益。
3. 方法和步骤3.1 理论研究首先,我们将进行冷凝器的相关理论研究。
这包括冷凝器的工作原理、传热机制以及常用的冷凝器设计方法。
通过对相关文献的阅读和理论分析,我们将建立一个冷凝器的基本理论模型,并探讨影响冷凝器性能的关键因素。
3.2 设计方案基于理论研究的结果,我们将提出一个冷凝器的设计方案。
设计方案将包括冷凝器的结构尺寸、传热面积、传热介质的选择等内容。
我们将优化设计方案,以在满足性能要求的条件下尽量降低成本。
3.3 实验验证为了验证设计方案的可行性和性能指标,我们将进行实验验证。
实验将包括冷凝器的制造和性能测试。
通过对实验结果的分析,我们将评估设计方案的可行性,并根据实验结果对设计方案进行调整和改进。
3.4 性能评估最后,我们将对设计方案进行性能评估。
性能评估将包括冷凝器的传热效率、压降、稳定性等指标的评估,并与现有的冷凝器进行比较。
通过性能评估,我们将得出设计方案的优劣,并提出改进的建议。
4. 时间计划本次研究将按照以下时间计划进行:阶段时间安排理论研究第1-2周设计方案第3-4周实验验证第5-8周性能评估第9-10周写作与总结第11-12周5. 预期结果我们希望通过本次研究,能够设计出一种高效可靠的冷凝器,并对其性能进行评估。
壳管式冷凝器设计计算壳管式冷凝器是工业领域常见的一种热交换设备,主要用于将气体或蒸汽冷凝为液体,以释放热量。
设计壳管式冷凝器需要考虑多个因素,比如热负荷计算、换热管选型、流量计算等。
下面将以一个案例为例,介绍壳管式冷凝器的设计计算。
首先,我们需要计算热负荷,即冷凝水蒸汽释放的热量。
根据能量守恒定律,冷凝水的热负荷可以通过以下公式计算:Q=m*(h1-h2)其中,Q为热负荷,m为冷凝水蒸汽的质量流量,h1为冷凝水进口焓值,h2为冷凝水出口焓值。
冷凝水蒸汽的质量流量m可以通过以下公式计算:m=Q/(h1-h2)我们可以利用水蒸汽的物性数据表,查找到相应温度下的焓值。
已知进口温度为110 °C时,焓值为2703.5 kJ/kg;出口温度为40 °C时,焓值为167.4 kJ/kg。
代入公式计算m,得到冷凝水蒸汽的质量流量m约为29.76 kg/h。
接下来,我们需要选取换热管。
根据热负荷和水蒸汽的流量,我们可以近似估计需要多少根管子。
一般情况下,每根管子的传热面积为0.35-1.0m²。
根据实际情况,我们假设每根管子的传热面积为0.5m²。
则总传热面积为:A = Q / (U * ΔTlm)其中,A为总传热面积,U为换热系数,ΔTlm为平均对数温差。
换热系数U的计算可以利用经验公式,根据流体的性质和壳管式冷凝器的设计参数进行估算。
假设我们已知换热系数U约为1500W/(m²·K)。
平均对数温差ΔTlm的计算可以通过以下公式计算:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)其中,ΔT1为水蒸汽的进口温度与冷凝水的出口温度之差,ΔT2为水蒸汽的出口温度与冷凝水的进口温度之差。
代入已知数据计算ΔTlm,约为78 °C。
代入公式计算A,约为0.48 m²。
最后,我们需要根据壳管式冷凝器的设计参数来选择合适的设备。
本科毕业设计 (论文)蒸汽冷凝器设计Design of Steam Condenser学院:机械工程学院专业班级:过程装备与控制工程装备092学生姓名:戴晓伟学号:050916105 指导教师:张志文(副教授)2013 年6 月目录1 绪论 (1)1.1 换热设备冷凝器过内外研究现状水平和发展趋势 (1)1.2 冷凝器的类型及特点 (1)2换热器的结构计算与强度校核 (3)2.1 已知条件 (3)2.2 确定管子数 (3)2.3 壳体的内径和厚度 (4)2.4拉杆的确定 (5)2.5 确定折流板 (5)2.6右端管箱的设计 (6)2.7接管和管法兰的设计 (7)2.8后端管板的设计 (10)2.9浮头盖的设计 (15)2.10右端管箱的设计 (22)2.11侧法兰的设计 (23)2.12支座的设计与选择 (27)2.13吊环螺钉的设计 (27)2.14防冲板的设计 (28)2.15滑道的设计 (28)3设备的维护与检修 (29)3.1设备的检查 (29)3.2换热器的清理和维护 (29)结论 (30)致谢 (31)参考文献 (32)1 绪论1.1换热设备冷凝器国内外发展现状冷凝器是一种用于冷却流体的换热设备。
把压缩机排出的高温高压制冷剂蒸汽,通过散热冷凝为液体制冷剂,制冷剂从蒸发器中吸收的热量,被冷凝器周围的介质所吸收。
有蒸汽冷凝器,锅炉用冷凝器等。
冷凝器常被用于空调系统,工业化工程序,发电厂及其他热交换系统中。
早期的换热器只能采用简单的结构,而且传热面积小、体积大和笨重,如蛇管式换热器等。
随着制造工艺的发展,逐步形成一种管壳式换热器;二十世纪20年代出现板式换热器,并应用于食品工业;30年代初,瑞典首次制成螺旋板换热器。
接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热;30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂;60年代左右,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展;70年代中期,在研究和发展热管的基础上又创制出热管式换热器。
尽管我国在部分重要换热器产品领域获得了突破,但我国换热器技术基础研究仍然薄弱。
与国外先进水平相比较,我国换热器产业最大的技术差距在于换热器产品的基础研究和原理研究,尤其是缺乏介质物性数据,对于流场、温度场、流动状态等工作原理研究不足。
近年来,随着我国石化、钢铁等行业的快速发展,换热器的需求水平大幅上涨,但国内企业的供给能力有限,导致换热器行业呈现供不应求的市场状态,巨大的供给缺口需要进口来弥补。
目前我国在换热器设计过程中还不能实现虚拟制造、仿真制造,缺乏自主知识产权的大型专业计算软件。
根据中华人民共和国国民经济和社会发展第十一个五年规划纲要,“十一五”期间我国经济增长将保持年均7.5%的速度。
而石化及钢铁作为支柱型产业,将继续保持快速发展的势头,预计2010年钢铁工业总产值将超过5000亿元,化工行业总产值将突破4000亿元。
这些行业的发展都将为换热器行业提供更加广阔的发展空间。
国内经济发展带来的良好机遇,以及进口产品巨大的可转化性共同预示着我国换热器行业良好的发展前景。
1.2冷凝器的类型和特点冷凝器有蒸汽冷凝器和锅炉用冷凝器。
蒸汽冷凝器这种冷凝常应用于多效蒸发器末效二次蒸汽的冷凝,保证末效蒸发器的真空度。
喷淋式冷凝器,冷水从上部喷嘴喷入,蒸汽从侧面入口进入,蒸汽与冷水充分接触后被冷凝为水,同时沿管下流,部分不凝汽体也可能被带出。
充填式冷凝器,蒸汽从侧管进入后一上面喷下的冷水相接触冷凝器里面装了满了瓷环填料,填料被水淋湿后,增大了冷水与蒸汽的接触面积,蒸汽冷凝成水后沿下部管路流出,不凝气体同上部管路被真空泵抽出,以保证冷凝器内一定的真空度。
淋水板或筛板冷凝器,目的是增大冷水与蒸汽的接触面积。
混合式冷凝器具有结构简单,传热效率高等优点,腐蚀性问题也比较容易解决。
锅炉用冷凝器,又称烟气冷凝器,锅炉使用烟气冷凝器后,可有效节约生产成本,降低锅炉的排烟温度,提高锅炉热效率。
使锅炉运行符合国家节能减排标准。
节能减排是国家“十一五”规划纲要转变经济发展方式的关键和保证,是落实科学发展观和保证经济又好又快发展的重要标志,特种设备作为耗能大户,同时也是环境污染的重要源头、加强特种设备节能减排的任务任重道远。
《国民经济和社会发展第十一个五年规划纲要》确立了单位国内生产总能源消耗降低20%左右,主要污染物排放总量减少10%为经济社会发展的约束性指标。
其是有着工业生产“心脏”之称的锅炉是我国能源消耗的大户。
高效能特种设备主要是指锅炉、压力容器中的换热设备等。
2 结构设计与强度校核2.1 已知条件表1 设计参数管程 壳程 工作介质冷却水 氢气等 工作压力0.45MPa 2.3MPa 设计压力2.5MPa3.2MPa 设计温度60C ︒ 170C ︒换热面积 49m ²两流体的温差为110C ︒>50C ︒.所以需要热补偿,可采用浮头式换热器。
2.2 确定管子数选用)(219mm ⨯φ,长为3m ,材料为10号钢管的换热管。
由换热面积)(00∆-=L d n A π得:283)1.03(019.014.349)(00=-⨯⨯=∆-=L d A n π (公式2-1) 取管子数n 为286根换热管一般不小于1.25倍的换热管外径,参照文献[1]取中心距a 为25mm. 管子采用正方形排列具体方式如下图正方形排列图1 管子的排列2.3 壳体的内径和厚度2.3.1 筒体的内径参考文献[3]筒体的内径可由下列公式计算l b a D i 2)1(+-= (公式2-2) 式中a 为换热管间距,b 位于管束中心线上的管束管子按正方形排列时n b 19.1=,l 为最外层管子的中心到壳壁的距离一般取2倍的管子外径。
mm D i 5511922)120(25=⨯⨯+-⨯=按标准圆整取筒体内径mm D i 600=2.3.2 筒体的壁厚根据设计要求筒体材料选择Q345R ,取设计压力3.2MPa 。
根据国标150-1998查得设计压力下许用Q345R 许用应力[]tσ为170MPa 。
筒体上的焊接均采用相当于双面焊的全焊透对接接头(局部无损检测),根据参考文献[2],取焊缝系数为0.85,估计厚度在8mm 到25mm ,取厚度负偏差mm C 8.01=,腐蚀裕量mm C 2.32=,mm C C C 421=+=。
计算厚度[]mm P D P c t i c 8.62.385.017026002.32=-⨯⨯⨯=-=ϕσδ (公式2-3)工艺要求需要取计算压力c p 取设计压力3.2MPa ,以下计算皆如此设计厚度mm C d 102.38.62=+=+=δδ (公式2-4) 根据文献[1]查得公称直径在400mm 到700mm 的浮头换热器壳体最小厚度不得低于8mm ,取名义厚度为14mm2.3.3 筒体的压力试验设备用于非极度危害的介质,所以不需要进行气密性试验,但需要做液压试验。
[][]8.11170170<==t σσ [][]MPa P MPa P P C t c t 3.31.041701702.325.125.1=+>=⨯⨯=⨯⨯=σσ (公式2-5) 液压试验产生的应力()()()MPa D P e e i t t 53.143414241460042=-⨯-+⨯=+=δδσ (公式2-6) []MPa MPa t 53.1431531709.09.0>=⨯=σ(公式2-7) 因此所选封头的强度足够。
2.4 拉杆与定距管的确定拉杆与管板螺纹连接的拉杆螺纹结构如下图图2 拉杆与管板的连接拉杆采用拉杆定距管结构,按文献[1]表43和表44取拉杆直径12mm ,拉杆数为8,材料使用Q235-A.拉杆结构如下图3 拉杆结构示意图根据文献[1]表45可知,拉杆公称直径为mm d 12=的拉杆,拉杆螺纹公称直径mm d n 12=,mm L a 15=,mm L b 50>,b L 取100mm 。
2=b 。
根据参考文献[1]选取219⨯φ的定距管,材料采用10号钢,长度按实际情况而定。
2.5确定折流板折流板采用单弓形折流板和环形折流板,环形折流板充当支持板,提高管子的稳定性,防止换热板产生过大的挠度。
弓形折流板的圆缺高为壳体直径的30%。
则,切去的圆缺高度为mm h 1806003.0=⨯= (公式2-8) 根据文献[1]折流板的名义外直径D=DN —4.5=600—4.5=595.5mm (公式2-9) 弓形折流板的间距取250mm 。
折流板板数块1111212503000=-=-=N (公式2-10) 根据浮头换热器的特点综合考虑弓形折流板取8块。
在左侧第一块折流板与左侧管板之间设置一块环形折流板。
折流板材料选用Q235-A弓形折流板厚度取8mm环形折流板厚度取14mm ,内圆直径335mm 。
根据文献[1]表35管空直径取19.7mm 。
2.6 右端管箱的设计2.6.1 分程隔板的设计根据文献[1]表3-1,隔板的最小厚度为8mm ,取隔板厚度10mm 。
分程隔板槽的槽深一般不小于4mm ,因此,取分程隔板槽的槽深为5mm ,宽度为12mm 。
2.6.2 封头的设计封头采用椭圆形封头,材料为Q345R 。
设计压力下许用应力170MPa 承受内压2.5MPa ,公称直径为600mm 。
封头计算厚度[]mm P D P c t c 3.55.25.085.017026005.25.02i =⨯-⨯⨯⨯=-=ϕσδ封 (公式2-11) 设计厚度m m 5.82.33.5=+=+=C d 封封δδ (公式2-12)取名义厚度和壳体一样,所以取mm n 12=δ,根据《压力容器与化工设备使用手册》上册,表2-2-6,对于内径600mm ,厚度12mm 的标准椭圆形封头,曲面高度150mm ,直边高度40mm 。
容积0.040m ³,质量45kg 。
2.6.3 封头的压力试验设备用于非极度危害的介质,所以不需要进行气压试验,但需要做液压试验。
[][]8.11170170<==t σσ [][]MPa P MPa P P c t c t 6.21.0125.31701705.225.125.1=+>=⨯⨯=⨯⨯=σσ 液压试验产生的应力()()()MPa D P e e i t t 75.1184122412600125.32=-⨯-+⨯=+=δδσ []MPa MPa t 75.1181531709.09.0>=⨯=σ因此所选封头的强度足够。
管箱短节取和封头厚度等厚,材料采用Q345R 。
2.6.4 管箱法兰的设计与选取由于设备重量较大,应该采用刚度较大的法兰连接。