C语言中链表的创建
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
c语言哈希链表C语言中的哈希链表是指使用哈希函数将数据分散存储在链表中,以提高查找数据的效率。
下面是一个简单的实现,以展示如何使用哈希链表来存储数据:```c#include <stdio.h>#include <stdlib.h>#define SIZE 10// 定义链表节点结构typedef struct Node {int key;int value;struct Node* next;} Node;// 定义哈希表结构typedef struct {Node* table[SIZE];} HashTable;// 创建新节点Node* createNode(int key, int value) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->key = key;newNode->value = value;newNode->next = NULL;return newNode;}// 初始化哈希表void initHashTable(HashTable* ht) {for (int i = 0; i < SIZE; i++) {ht->table[i] = NULL;}}// 计算哈希值int hash(int key) {return key % SIZE;}// 向哈希表中插入数据void insert(HashTable* ht, int key, int value) { int index = hash(key);Node* newNode = createNode(key, value); if (ht->table[index] == NULL) {ht->table[index] = newNode;} else {Node* current = ht->table[index];while (current->next != NULL) {current = current->next;}current->next = newNode;}}// 从哈希表中查找数据int lookup(HashTable* ht, int key) { int index = hash(key);Node* current = ht->table[index]; while (current != NULL) {if (current->key == key) {return current->value;}current = current->next;}return -1; // 数据不存在}int main() {HashTable ht;initHashTable(&ht);// 插入数据insert(&ht, 1, 10);insert(&ht, 2, 20);insert(&ht, 3, 30);// 查找数据int value = lookup(&ht, 2);if (value != -1) {printf("Value: %d\n", value);} else {printf("Data not found\n");}return 0;}```这段代码创建了一个大小为10的哈希表,使用取模运算来计算哈希值,然后将数据插入哈希表中。
c语言中链表的定义C语言中链表的定义链表是一种常用的数据结构,它是由一系列节点组成的,每个节点包含一个数据元素和一个指向下一个节点的指针。
链表可以用来存储任意类型的数据,而且它的大小可以动态地增加或减少,非常灵活。
在C语言中,链表的定义通常包括两个部分:节点结构体和链表结构体。
节点结构体定义如下:```typedef struct node {int data; // 数据元素struct node *next; // 指向下一个节点的指针} Node;```这里定义了一个名为Node的结构体,它包含两个成员变量:data和next。
其中,data用来存储节点的数据元素,next用来指向下一个节点的指针。
注意,这里的next是一个指向Node类型的指针,这样才能实现链表的连接。
链表结构体定义如下:```typedef struct list {Node *head; // 指向链表头节点的指针Node *tail; // 指向链表尾节点的指针int size; // 链表的大小} List;```这里定义了一个名为List的结构体,它包含三个成员变量:head、tail和size。
其中,head和tail分别指向链表的头节点和尾节点,size表示链表的大小。
通过这两个结构体的定义,我们就可以创建一个链表了。
下面是一个简单的例子:```int main() {List list = {NULL, NULL, 0}; // 初始化链表Node *node1 = (Node*)malloc(sizeof(Node)); // 创建第一个节点node1->data = 1; // 设置节点的数据元素node1->next = NULL; // 设置节点的指针list.head = node1; // 将节点1设置为链表的头节点list.tail = node1; // 将节点1设置为链表的尾节点list.size++; // 链表大小加1// 创建更多的节点...return 0;}```在这个例子中,我们首先初始化了一个空链表,然后创建了第一个节点,并将它设置为链表的头节点和尾节点。
单链表结构体定义单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
在C语言中,可以使用结构体来定义单链表的节点。
我们需要定义一个表示单链表节点的结构体。
该结构体包含两个成员变量:一个用于存储数据的数据域,和一个指向下一个节点的指针域。
```struct ListNode {int data; // 数据域struct ListNode* next; // 指针域};```接下来,我们可以使用该结构体来创建单链表。
首先,我们需要定义一个指向链表头节点的指针。
```struct ListNode* head = NULL;```在链表为空时,头指针指向NULL。
当我们向链表中插入新的节点时,需要进行一些操作。
我们需要创建一个新的节点,并为其分配内存空间。
```struct ListNode* newNode = (struct ListNode*)malloc(sizeof(struct ListNode));```然后,我们可以给新节点的数据域赋值。
```newNode->data = value;```接下来,我们需要将新节点插入到链表中。
如果链表为空,那么新节点将成为链表的头节点。
```if (head == NULL) {head = newNode;newNode->next = NULL;}```如果链表不为空,我们需要将新节点插入到链表的末尾。
```struct ListNode* current = head;while (current->next != NULL) {current = current->next;}current->next = newNode;newNode->next = NULL;```通过以上操作,我们可以将新节点成功插入到链表中。
如果我们想要插入节点的位置不是链表末尾,而是中间的某个位置,我们同样可以根据需要进行相应的操作。
[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。
单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。
双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。
循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。
此外还有双向循环链表,它同时具有双向链表和循环链表的功能。
单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。
※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。
这是在C中唯⼀规定可以先使⽤后定义的数据结构。
链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。
链表c语言经典例题
链表是计算机科学中的经典数据结构之一,常用于存储和操作动态数据。
以下是一些常见的链表例题,可以帮助理解链表的基本操作和应用。
1. 链表的创建:
- 创建一个空链表。
- 创建一个包含指定节点值的链表。
2. 链表的插入操作:
- 在链表的头部插入一个节点。
- 在链表的尾部插入一个节点。
- 在指定位置插入一个节点。
3. 链表的删除操作:
- 删除链表的头节点。
- 删除链表的尾节点。
- 删除指定数值的节点。
4. 链表的查找操作:
- 查找链表中指定数值的节点。
- 查找链表的中间节点。
5. 链表的逆序操作:
- 反转整个链表。
- 反转链表的前 N 个节点。
- 反转链表的一部分区间内的节点。
6. 链表的合并操作:
- 合并两个有序链表,使其有序。
- 合并 K 个有序链表,使其有序。
7. 链表的环检测:
- 判断链表中是否存在环,若存在,则返回环的起始节点。
8. 链表的拆分操作:
- 将一个链表按照奇偶位置拆分成两个链表。
以上是一些链表的经典例题,通过解答这些例题,可以加深对链表结构和基本操作的理解。
在编写对应的 C 语言代码时,需要注意链表节点的定义、指针的使用以及内存的动态分配和释放等问题。
c语言链表的创建方法在C语言中,链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个值和一个指向下一个节点的指针。
链表可以动态地添加或删除节点,因此在许多应用程序中被广泛使用。
链表的创建方法大致可以分为以下几个步骤:1. 定义一个节点结构体链表的节点通常包含一个值和一个指针,指针指向下一个节点。
因此,我们需要定义一个结构体来表示节点:```struct Node {int data;struct Node* next;};```其中,`data`表示节点的值,`next`表示指向下一个节点的指针。
2. 创建第一个节点创建第一个节点时,我们需要先分配一段内存,然后将节点的值和指针都赋值为NULL:```struct Node* head = NULL;head = (struct Node*)malloc(sizeof(struct Node));head->data = 1;head->next = NULL;```这里我们使用了`malloc`函数来分配内存,并将返回的指针强制转换为`struct Node*`类型,然后将节点的值和指针赋值为1和NULL。
3. 添加新节点添加新节点时,我们需要先找到链表的末尾,然后在末尾添加新节点:```struct Node* newNode = NULL;newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = 2;newNode->next = NULL;struct Node* current = head;while (current->next != NULL) {current = current->next;}current->next = newNode;```这里我们定义了一个新节点`newNode`,然后遍历链表找到末尾节点,将末尾节点的指针指向新节点。
数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。
2、掌握单链表的创建、插入、删除、查找等操作的实现方法。
3、通过实际编程,提高对数据结构和算法的理解和应用能力。
二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
指针域用于指向下一个节点,从而形成链表的链式结构。
单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。
2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。
3、删除节点:根据给定的条件删除链表中的节点。
4、查找节点:在链表中查找满足特定条件的节点。
四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。
若内存分配失败,则提示错误信息并返回`NULL`。
成功分配内存后,初始化头节点的数据域和指针域。
(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。
1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。
数据结构c语言版创建单链表的代码单链表作为常用的线性结构之一,常常用于解决以链式方式存储数据的问题。
创建单链表需要掌握一些基础的数据结构知识以及对C语言的熟练运用。
接下来,本文将分步骤地阐述数据结构C语言版创建单链表的代码。
第一步,定义单链表结构体并定义节点类型。
在C语言中,我们可以通过结构体的方式定义单链表,其中结构体中包含两个成员变量,分别为存储数据的data和指向下一个节点的指针next。
对于节点类型,我们可以使用typedef对节点类型进行定义,例如:```struct ListNode {int data;struct ListNode *next;};typedef struct ListNode ListNode;```在以上代码中,我们首先定义了一个结构体ListNode作为单链表的元素类型,其中包含存储数据的data和指向下一个元素的指针next。
接着我们使用typedef将结构体ListNode定义为仿函数ListNode,从而使其更加方便使用。
第二步,初始化单链表。
在创建单链表之前,我们需要先将单链表的头指针初始化为NULL,表示当前链表为空。
具体代码如下:```ListNode *createLinkedList() {ListNode *head = NULL;return head;}```以上代码中,函数createLinkedList用于创建并初始化单链表,其中head表示单链表头指针,我们将其初始化为NULL。
第三步,向单链表中添加元素。
在单链表中添加元素需要借助于指针的指向关系。
具体来说,我们需要先创建新的节点,将其数据添加到节点中,然后将新节点的next指针指向之前的头节点,最后将头指针指向新节点。
具体过程如下:```ListNode *addListNode(ListNode **head, int val) {ListNode *newNode = (ListNode *)malloc(sizeof(ListNode)); newNode->data = val;newNode->next = *head;*head = newNode;return *head;}```在以上代码中,函数addListNode接收一个指向头指针的指针head,以及需要添加的元素值val。
createlist在c语言中的用法在C语言中,createlist(创建列表)是一种常见的操作,用于创建一个链表或数组来存储一组相关的数据。
它可以用于各种应用场景,如管理学生信息、存储商品列表等。
下面将介绍createlist在C语言中的用法。
创建列表可以通过两种方式实现:链表和数组。
链表是通过节点之间的指针连接来实现的,而数组是一块连续的内存空间。
在选择使用链表还是数组之前,我们需要根据具体的需求分析来选择合适的数据结构。
如果需要动态添加或删除元素,并且不需要事先知道列表的大小,那么链表是个不错的选择。
创建链表的过程包括定义一个节点结构体和使用指针将节点连接起来。
首先,我们定义一个节点的结构体,包含两个成员变量:数据和指向下一个节点的指针。
例如:```ctypedef struct Node {int data;struct Node* next;} Node;```然后,需要创建一个头节点,并将头节点的next指针指向空。
头节点不存储数据,只是为了方便链表的操作。
例如:```cNode* createList() {Node* head = (Node*)malloc(sizeof(Node));if (head != NULL) {head->next = NULL;}return head;}```接下来,我们可以通过遍历链表,在末尾添加节点来创建一个新的链表。
例如,向链表中添加一个元素:```cvoid addNode(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));if (newNode != NULL) {newNode->data = data;newNode->next = NULL;Node* current = head;while (current->next != NULL) {current = current->next;}current->next = newNode;}}```创建链表后,可以通过遍历链表并输出每个节点的数据来验证列表是否正确创建。
c语言list定义C语言中的List(链表)定义和使用链表(List)是一种常见的数据结构,它在C语言中被广泛使用。
链表是由节点(Node)组成的,每个节点包含数据以及指向下一个节点的指针。
相比于数组,链表的长度可以动态调整,更加灵活。
1. 链表的定义与结构在C语言中,我们可以使用结构体来定义链表的节点。
一个简单的链表节点定义如下:```cstruct Node {int data; // 存储的数据struct Node* next; // 指向下一个节点的指针};```2. 创建链表要创建一个链表,我们首先需要定义一个指向链表头部的指针,通常称为头指针(head)。
创建一个空链表的步骤如下:```cstruct Node* head = NULL; // 初始化头指针为空```3. 插入节点链表的插入操作通常包括在链表的头部或尾部插入节点,以及在指定位置插入节点。
下面是几个常见的插入操作示例:在链表头部插入节点:```cstruct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); // 创建新节点newNode->data = 1; // 设置新节点的数据newNode->next = head; // 将新节点的next指针指向当前头节点head = newNode; // 更新头指针,使其指向新节点```在链表尾部插入节点:```cstruct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); // 创建新节点newNode->data = 2; // 设置新节点的数据newNode->next = NULL; // 将新节点的next指针设置为NULL,表示链表的末尾struct Node* cur = head;while (cur->next != NULL) {cur = cur->next; // 遍历链表,找到最后一个节点}cur->next = newNode; // 将新节点连接到最后一个节点的next 指针上```在指定位置插入节点:```cstruct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); // 创建新节点newNode->data = 3; // 设置新节点的数据struct Node* cur = head;while (cur->data != 2) {cur = cur->next; // 遍历链表,找到要插入节点的位置}newNode->next = cur->next; // 将新节点的next指针指向原位置的节点cur->next = newNode; // 将新节点连接到指定位置的节点的next指针上```4. 删除节点删除链表中的节点通常包括删除头节点、尾节点以及指定位置的节点。
冒泡排序链表c语言冒泡排序是一种简单而常用的排序算法,它可以用于对链表进行排序。
在本文中,我们将介绍如何使用C语言实现冒泡排序链表,并解释算法的原理和步骤。
让我们来了解一下冒泡排序的基本原理。
冒泡排序通过多次遍历待排序的元素,比较相邻的两个元素的大小,并根据需要交换它们的位置。
通过这样的比较和交换,最大(或最小)的元素会逐渐“冒泡”到列表的末尾(或开头),从而实现排序。
在链表中实现冒泡排序的思路与数组类似,但需要注意的是,我们无法像数组那样通过下标直接访问链表中的元素。
因此,在链表中进行元素比较和交换时,我们需要修改节点之间的连接关系。
下面是使用C语言实现冒泡排序链表的步骤:1. 遍历链表,确定链表的长度。
这一步是为了确定需要进行多少次排序遍历。
2. 写一个循环,循环次数为链表的长度减1。
每次循环都进行一次完整的遍历和排序。
3. 在每次遍历中,从链表的头部开始,比较相邻节点的值。
如果前一个节点的值大于后一个节点的值,则交换它们的位置。
4. 重复步骤3,直到遍历到链表的倒数第二个节点。
这样可以确保在每次遍历后,链表的最后一个节点都是当前遍历范围内的最大(或最小)值。
5. 重复步骤2和步骤3,直到完成所有的排序遍历。
此时,链表中的元素已经按照从小到大(或从大到小)的顺序排列好了。
以下是冒泡排序链表的C语言代码实现:```c#include <stdio.h>// 定义链表节点的结构体typedef struct Node {int data;struct Node* next;} Node;// 冒泡排序链表的函数void bubbleSortList(Node* head) {if (head == NULL || head->next == NULL) {return;}int len = 0;Node* cur = head;while (cur != NULL) {len++;cur = cur->next;}for (int i = 0; i < len - 1; i++) {cur = head;for (int j = 0; j < len - i - 1; j++) {if (cur->data > cur->next->data) { int temp = cur->data;cur->data = cur->next->data; cur->next->data = temp;}cur = cur->next;}}}// 打印链表的函数void printList(Node* head) {Node* cur = head;while (cur != NULL) {printf("%d ", cur->data);cur = cur->next;}printf("\n");}int main() {// 创建链表Node* head = (Node*)malloc(sizeof(Node)); Node* node1 = (Node*)malloc(sizeof(Node)); Node* node2 = (Node*)malloc(sizeof(Node)); Node* node3 = (Node*)malloc(sizeof(Node)); head->data = 3;node1->data = 2;node2->data = 4;node3->data = 1;head->next = node1;node1->next = node2;node2->next = node3;node3->next = NULL;// 打印排序前的链表printf("排序前的链表:");printList(head);// 对链表进行冒泡排序bubbleSortList(head);// 打印排序后的链表printf("排序后的链表:");printList(head);return 0;}```在上面的代码中,我们首先定义了一个链表节点的结构体,其中包含一个整型数据成员和一个指向下一个节点的指针成员。
数据结构C语言版上机报告:单链表序在数据结构课程中,单链表是一个重要的概念,也是C语言中常用的数据结构之一。
本次报告将深入探讨单链表的基本概念、操作方法以及应用场景,帮助读者更深入地理解和掌握这一数据结构。
一、概述1.1 单链表的定义单链表是一种线性表,它由一系列节点组成,每个节点包含两部分:数据域和指针域。
数据域用于存储数据元素,指针域用于指向下一个节点,通过指针将这些节点串联在一起,形成一个链表结构。
1.2 单链表的特点单链表具有以下特点:(1)动态性:单链表的长度可以动态地增加或减少,不需要预先分配固定大小的空间。
(2)插入和删除操作高效:在单链表中进行插入和删除操作时,只需要修改指针的指向,时间复杂度为O(1)。
(3)随机访问效率低:由于单链表采用链式存储结构,无法通过下标直接访问元素,需要从头节点开始依次遍历,时间复杂度为O(n)。
1.3 单链表的基本操作单链表的基本操作包括:创建、插入、删除、查找等。
这些操作是使用单链表时常常会涉及到的,下面将逐一介绍这些操作的具体实现方法和应用场景。
二、创建2.1 头插法和尾插法在C语言中,可以通过头插法和尾插法来创建单链表。
头插法是将新节点插入到链表的头部,尾插法是将新节点插入到链表的尾部,这两种方法各有优缺点,可以根据具体应用场景来选择。
2.2 应用场景头插法适合于链表的逆序建立,尾插法适合于链表的顺序建立。
三、插入3.1 在指定位置插入节点在单链表中,插入节点需要考虑两种情况:在链表头部插入和在链表中间插入。
通过对指针的操作,可以实现在指定位置插入节点的功能。
3.2 应用场景在实际应用中,经常会有需要在指定位置插入节点的情况,比如排序操作、合并两个有序链表等。
四、删除4.1 删除指定节点在单链表中,删除节点同样需要考虑两种情况:删除头节点和删除中间节点。
通过对指针的操作,可以实现删除指定节点的功能。
4.2 应用场景在实际应用中,经常会有需要删除指定节点的情况,比如删除链表中特定数值的节点等。
c语言链表定义链表是一种非常基础的数据结构,它的定义可以用多种编程语言来实现,其中最为常见的就是C语言。
本文将着重介绍C语言的链表定义。
第一步:首先,我们需要定义一个链表节点的结构体,用来存储链表中每个节点的数据信息以及指向下一个节点的指针。
具体代码如下所示:```struct ListNode {int val;struct ListNode *next;};```在这个结构体中,我们定义了两个成员变量,一个是表示节点值的val,一个是表示指向下一个节点的指针next。
其中,节点值可以是任意类型的数据,而指针next则是一个指向结构体类型的指针。
第二步:我们需要定义链表的头节点,通常会将头节点的指针定义为一个全局变量,方便在程序的不同部分中都能够访问。
这个头节点的作用是指向链表的第一个节点,同时也充当了哨兵节点的作用,使得链表的操作更加方便。
具体代码如下所示:```struct ListNode *list_head = NULL;```在这个全局变量中,我们定义了一个指向链表头节点的指针list_head,并将它初始化为NULL,表示目前链表为空。
第三步:链表的基本操作主要包括创建、插入、删除和遍历等。
我们将逐一介绍它们的定义方法。
1. 创建链表创建链表时,我们需要动态地分配内存,以保证每个节点的空间都是连续的而不会被覆盖。
具体代码如下所示:```struct ListNode *create_list(int arr[], int n) {struct ListNode *head = NULL, *tail = NULL;for (int i = 0; i < n; i++) {struct ListNode *node = (struct ListNode*)malloc(sizeof(struct ListNode));node->val = arr[i];node->next = NULL;if (head == NULL) {head = node;tail = node;} else {tail->next = node;tail = node;}}return head;}```在这个代码中,我们首先定义了链表的头节点head和尾节点tail,并将它们初始化为空。
c语言单链表头插法单链表是一种常见的数据结构,是一种线性表,是由一系列节点组成的,每个节点都包含一个数据和一个指向下一个节点的指针。
在C语言中,我们可以使用结构体来定义一个节点,例如:```cstruct Node {int data;struct Node* next;};```上述代码定义了一个名为Node的结构体,它包含两个成员,一个是整型的数据data,另一个是指向下一个节点的指针next。
在使用单链表头插法创建链表时,我们首先需要定义一个头节点,它不存储任何数据,仅用作链表的标记。
然后,我们可以通过以下步骤来插入新的节点:1. 创建一个新节点,并为其分配内存空间。
```cstruct Node* newNode = (struct Node*)malloc(sizeof(struct Node));```上述代码使用malloc函数为新节点分配内存空间。
2. 将新节点的数据赋值。
```cnewNode->data = value;```上述代码将新节点的data成员设置为value。
3. 将新节点的next指针指向头节点的next指针所指向的节点。
```cnewNode->next = head->next;```上述代码将新节点的next指针指向头节点的next指针指向的节点,即将新节点插入到头节点之后。
4. 将头节点的next指针指向新节点。
```chead->next = newNode;```上述代码将头节点的next指针指向新节点,即将新节点设置为链表的第一个节点。
完整的头插法创建链表的函数如下:```cstruct Node* createList(int values[], int n) {struct Node* head = (struct Node*)malloc(sizeof(struct Node));head->next = NULL;for (int i = 0; i < n; i++) {struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = values[i];newNode->next = head->next;}return head;}```上述代码中的createList函数接受一个整型数组values和一个整数n作为参数,返回一个头指针。
C语言区块链编程了解如何在C语言中实现区块链相关功能C语言区块链编程区块链是一种分布式、去中心化的数据库结构,被广泛应用于加密货币和分布式应用领域。
在这篇文章中,我们将介绍如何在C语言中实现区块链相关的功能。
一、区块链基础概念在开始编程之前,让我们先了解区块链的基础概念。
区块链由一个个区块组成,每个区块存储着一定数量的数据,并通过哈希值链接到前一个区块。
这种链式结构保证了区块链的安全性和防篡改性。
区块中的数据可以是交易记录、智能合约代码或其他任何需要可靠存储的信息。
而区块链的共识机制(如PoW或PoS)确保了数据的一致性和安全性。
二、C语言实现区块链下面,我们将介绍一种简化版本的C语言实现区块链的方法。
1. 定义区块结构我们首先定义一个区块的结构,在C语言中可以使用结构体来实现:```c#include <stdint.h>typedef struct {uint32_t index;uint32_t timestamp;uint32_t data;uint32_t previousHash;uint32_t hash;} Block;```在这个结构体中,我们定义了区块的索引、时间戳、数据、前一个区块的哈希值以及当前区块的哈希值。
2. 生成区块哈希为了保证区块链的安全性,我们需要使用哈希函数来生成区块的哈希值。
这里我们使用SHA256算法作为示例:```c#include <openssl/sha.h>void generateHash(Block *block) {unsigned char hash[SHA256_DIGEST_LENGTH];SHA256_CTX sha256;SHA256_Init(&sha256);SHA256_Update(&sha256, block, sizeof(Block));SHA256_Final(hash, &sha256);memcpy(&block->hash, hash, SHA256_DIGEST_LENGTH);}```在这个示例中,我们使用了OpenSSL库中的SHA256算法来生成哈希值。
下面是一个示例的C语言代码,展示了如何使用链表来存储学生信息:```c#include <stdio.h>#include <stdlib.h>#include <string.h>// 定义学生结构体typedef struct Student {int id;char name[100];struct Student* next;} Student;// 创建新学生节点Student* createStudent(int id, const char* name) {Student* student = (Student*)malloc(sizeof(Student));student->id = id;strcpy(student->name, name);student->next = NULL;return student;}// 插入学生节点到链表尾部void insertStudent(Student** head, int id, const char* name) {Student* student = createStudent(id, name);if (*head == NULL) {*head = student;} else {Student* current = *head;while (current->next != NULL) {current = current->next;}current->next = student;}}// 打印链表中的学生信息void printStudents(Student* head) {Student* current = head;while (current != NULL) {printf("Student ID: %d, Name: %s\n", current->id, current->name);current = current->next;}}// 释放链表节点的内存void freeStudents(Student* head) {Student* current = head;while (current != NULL) {Student* next = current->next;free(current);current = next;}}int main() {Student* head = NULL;// 插入学生节点insertStudent(&head, 1, "Alice");insertStudent(&head, 2, "Bob");insertStudent(&head, 3, "Charlie");// 打印学生信息printStudents(head);// 释放链表节点的内存freeStudents(head);return 0;}```这个示例代码定义了一个`Student` 结构体,每个结构体包含一个学生的学号`id` 和姓名`name`,以及一个指向下一个学生节点的指针`next`。
C语言数据类型的使用
struct student //这里struct是保留字,student是结构体名;它们合起来就是结构体类型名{ int num;
char name[20];
char sex;
int age;
float score;
char addr[30];
}; //{}之间是结构体成员表
struct student student1, student2; //用以上的结构体类型名定义两个变量
struct student stu[20]; //用以上的结构体类型名定义一个20个元素的数组
以上说明也可缩写成:
struct student
{ int num;
char name[20];
char sex;
int age;
float score;
char addr[30];
}student1, student2, stu[20];
使用typedef定义类型
typedef struct
{ int num;
char name[20];
char sex;
int age;
float score;
char addr[30];
}STUDENT; //定义一个结构类型名
STUDENT student1, student2, stu[20]; //用结构类型名定义变量
结构变量的引用
student1.num=12;
=”马大哈”;
stu[10].score=88;
stu[1].sex=’M’;
student1.addr=”北京市丰台区富丰路7号”;
看typedef的使用
typedef int INTEGER;
typedef float REAL;
typedef int ARR[10];
新类型名的引用
INTEGER i, j;
REAL a, b;
ARR s, t; //这里s, t是有10个元素的数组
简单链表
#define NULL 0
struct student
{long num;
float score;
struct student *next;
};
main()
{struct student a,b,c, *head, *p;
a.num=99101; a.score=89.5;
b.num=99103; b.score=90;
c.num=99107; c.score=85;
head=&a;
a.next=&b;
b.next=&c;
c.next=NULL;
p=head;
do
{cout<<p->num<<p->score;
p=p->next;
} while (p!=NULL);
}
建立动态链表
两个重要函数
malloc——申请分配某个长度的内存区。
格式:void *malloc(unsigned size) calloc——申请n个某长度的内存区。
格式:void *calloc(unsigned n, unsigned size) free——释放某个内存区。
格式:void free(void *p)
#define NULL 0
#define LEN sizeof(struct student)
struct student
{long num;
float score;
struct student *next;
};
int n;
struct student *creat(void)
{struct student *head;
struct student *p1, *p2;
n=0;
p1=p2=(struct student *)malloc(LEN);
scanf(p1->num, p1->score);
head=NULL;
while (p1->num!=0)
{n++;
if (n==1) head=p1;//插入链表上的第一个结点else p2->next=p1;//插入链表上的其他结点
p2=p1;
p1=(struct student *)malloc(LEN);
scanf(p1->num, p1->score);
}
p2->next=NULL;
return(head);
}。