C语言单链表实现19个功能完全详解
- 格式:docx
- 大小:33.46 KB
- 文档页数:8
c语⾔实现通讯录管理系统(⽤链表实现)题⽬:通讯录(通过链表实现)设计并实现⼀个简易的通讯录软件,管理个⼈通讯记录。
⼀条通讯记录可包括:姓名、⼯作单位、⼿机、住宅电话、E-Mail、家庭住址等(可⾃⾏增删,但不可过少)。
该系统应实现以下基本功能:(1)增加新的通讯记录。
(2)删除已有的通讯记录。
(3)修改已有的通讯记录。
(4)浏览全部或指定(如指定姓名、⼯作单位等)的通讯记录。
(5)合理组织排列各项功能,界⾯可使⽤键盘操作。
(6)以⽂件的形式存储数据。
说明:⼤⼀时的c语⾔课设,⽤链表实现⼀个通讯录管理系统,为了美观好看,花了很多时间调整齐度,记录⼀下⼤⼀时的作业。
其主要功能是对通讯录可输⼊,显⽰,插⼊,删除,最难是可保存,这个学⽂件的时候不怎么会。
内容我⾃⼰弄了7个,名字,性别,⼯作单位,⼿机,住宅电话,E-Mail,家庭住址(其他太多其实都是⼀样的,就懒得加了)。
主要运⽤到对指针中的链表的功能和使⽤要⽐较扎实,分部列写就可以了。
实现图⽚:附上代码:1 #include <stdio.h>2 #include <string.h>3 #include <stdlib.h>4 typedef struct student5 {6char name[20];//名字7char wm[20];//性别8char work[100];//⼯作单位9char stel[20];//⼿机10char htel[20];//住宅号码11char mail[20];//E-Mail12char home[100];//家庭住址13struct student *next;14 }stu;15 stu *head;//头指针16void screen()//主菜单17 {18 printf("\n=======================================================\n");19 printf(" 欢迎来到通讯录管理系统\n\n");20 printf(" 1.输⼊数据 2.显⽰数据\n");21 printf(" 3.插⼊数据 4.删除数据\n");22 printf(" 5.查看数据 6.修改数据\n");23 printf(" 7.保存数据 8.返回主菜单\n");24 printf("\n~~~~~~输~~~~~~⼊~~~~~~9~~~~~~退~~~~~~出~~~~~~程~~~~~~序\n");25 }26void input()//输⼊数据27 {28int ans;//判断是否继续输⼊29 stu *p1,*p2;30 p1=(stu *)malloc(sizeof(stu));//申请内存来⽤31if(p1!=NULL)32 {33 printf("========输⼊数据========\n");34 head=p1;35while(1)36 {37 printf("名字:");38 scanf("%s",&p1->name);39 printf("性别:");40 scanf("%s",&p1->wm);41 printf("⼯作单位:");42 scanf("%s",&p1->work);43 printf("⼿机:");44 scanf("%s",&p1->stel);45 printf("住宅号码:");46 scanf("%s",&p1->htel);47 printf("E-Mail:");48 scanf("%s",&p1->mail);49 printf("家庭地址:");50 scanf("%s",&p1->home);51 printf("===================================\n");52 p2=p1;53 p1=(stu *)malloc(sizeof(stu));//申请下⼀个要⽤的空间54if(p1!=NULL)55 p2->next=p1;56 printf("请选择是否继续输⼊:1.继续 2.退出\n请选择:");//⽤户选择57 scanf("%d",&ans);58if(ans==1)//继续59continue;60else//退出61 {62 printf("========输⼊完毕========\n");63 p2->next=NULL;64free(p1);//将申请的的⽆⽤内存释放65break;66 }67 }68 }69 }70void look(stu *p1)//显⽰数据71 {72 printf("========显⽰数据========\n");73while(p1!=NULL)74 {75 printf("名字:%s\n",p1->name);76 printf("性别:%s\t",p1->wm);77 printf("⼯作单位:%s\t",p1->work);78 printf("⼿机:%s\t",p1->stel);79 printf("住宅号码:%s\t",p1->htel);80 printf("E-Mail:%s\t",p1->mail);81 printf("家庭住址:%s\n",p1->home);82 printf("=====================================\n");83 p1=p1->next;84 }85 printf("========显⽰完毕========\n");86 }87void insert()//插⼊数据88 {89int ans;//选择插⼊位置90char name[20];//插⼊者的名字91 printf("========插⼊数据========\n");92 stu *p1,*p2,*p3;93 p1=head;94 p3=(stu *)malloc(sizeof(stu));//申请内存95 p3->next=NULL;96 printf("请输⼊插⼊者的数据:\n");97 printf("名字:");98 scanf("%s",&p3->name);99 printf("性别:");100 scanf("%s",&p3->wm);101 printf("⼯作单位:");102 scanf("%s",&p3->work);103 printf("⼿机:");104 scanf("%s",&p3->stel);105 printf("住宅号码:");106 scanf("%s",&p3->htel);107 printf("E-Mail:");108 scanf("%s",&p3->mail);109 printf("家庭地址:");110 scanf("%s",&p3->home);111 printf("请选择插⼊位置:1.⾸位置插⼊ 2.尾部插⼊ 3.插到某⼈前⾯\n请选择:");112 scanf("%d",&ans);113switch(ans)114 {115case1://放到头指针116 p3->next=p1;117 head=p3;118break;119case2://放到尾部120while(p1->next!=NULL)121 p1=p1->next;122 p1->next=p3;123break;124case3://放到某⼈前⾯125 printf("请输⼊插到谁前⾯名字:");126 scanf("%s",name);127while(strcmp(name,p1->name)!=0)128 {129 p2=p1;130 p1=p1->next;131 }132 p2->next=p3;133 p3->next=p1;134break;135 }136 printf("========插⼊成功========\n");137 }138void deleted()//删除数据139 {140 stu *p1,*p2;141char name[20];//删除者名字142 printf("========删除数据========\n");143 printf("请输⼊要删除者的名字:");144 scanf("%s",name);145 p1=head;146if(head==NULL)//通讯录已经没数据了147 {148 printf("通讯录⾥什么也没有了。
实现单链表的各种基本运算一、实验目的了解单链表表的结构特点及有关概念,掌握单链表的各种基本操作算法思想及其实现。
二、实验内容编写一个程序,实现顺序表的各种基本运算:1、初始化单链表;2、单链表的插入;3、单链表的输出;4、求单链表的长度5、判断单链表是否为空;6、输出单链表的第i位置的元素;7、在单链表中查找一个给定元素在表中的位置;8、单链表的删除; 9、释放单链表三、算法思想与算法描述简图四、实验步骤与算法实现#include<stdio.h>#include<malloc.h>typedef char ElemType;typedef struct LNode//定义单链表{ ElemType data;struct LNode *next;}LinkList;void InitList(LinkList*&L){ L=(LinkList*)malloc(sizeof(LinkList));//创建头结点L->next=NULL;//头结点赋值为空}void DestroyList(LinkList*&L)//销毁单链表(释放单链表L占用的内存空间即逐一释放全部结点的空间){ LinkList*p=L,*q=p->next;while(q!=NULL){free(p);p=q;q=p->next;}free(p);}int ListEmpty(LinkList*L)//判线性表是否为空表ListEmpty(L){ return(L->next==NULL);}//若单链表L没有数据结点,则返回真,否则返回假。
int ListLength(LinkList*L)//求线性表的长度ListLength(L){ LinkList*p=L;int i=0;while(p->next!=NULL){i++;p=p->next;}return(i);//返回单链表L中数据结点的个数}void DispList(LinkList*L)//输出线性表DispList(L){LinkList*p=L->next;while (p!=NULL)//逐一扫描单链表L的每个数据结点,并显示各结点的data域值。
数据结构-单链表基本操作实现(含全部代码)今天是单链表的实现,主要实现函数如下:InitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。
最坏是O(n),即从头查找p之前的结点,然后删除p所指结点LocateElem(LinkList L,ElemType e) 参数:单链表L,元素e 功能:查找第⼀个等于e的元素,返回指针时间复杂度O(n)代码:/*Project: single linkeed list (数据结构单链表)Date: 2018/09/14Author: Frank YuInitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。
[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。
单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。
双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。
循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。
此外还有双向循环链表,它同时具有双向链表和循环链表的功能。
单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。
※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。
这是在C中唯⼀规定可以先使⽤后定义的数据结构。
链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。
c语言单链表头插法实现链表逆置链表是一种常用的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
在C语言中,我们可以使用单链表来实现各种操作,如插入、删除和查找等。
本文将介绍如何使用头插法实现链表的逆置。
首先,我们需要定义一个链表节点的结构体,包含数据和指向下一个节点的指针。
代码如下:```ctypedef struct Node {int data;struct Node* next;} Node;```接下来,我们需要实现链表的创建和逆置函数。
首先,创建一个空链表,并将头节点指针指向NULL。
代码如下:```cNode* createList() {Node* head = NULL;return head;}```然后,我们可以实现链表的插入函数,使用头插法将新节点插入到链表的头部。
代码如下:```cNode* insertNode(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head;head = newNode;return head;}```接下来,我们可以实现链表的逆置函数,通过遍历链表,将每个节点插入到头部,从而实现链表的逆置。
代码如下:```cNode* reverseList(Node* head) {Node* newHead = NULL;Node* temp = NULL;while (head != NULL) {temp = head->next;head->next = newHead;newHead = head;head = temp;}return newHead;}```最后,我们可以编写主函数,测试链表的逆置功能。
代码如下:```cint main() {Node* head = createList();head = insertNode(head, 1);head = insertNode(head, 2);head = insertNode(head, 3);head = insertNode(head, 4);head = insertNode(head, 5);printf("原链表:");Node* temp = head;while (temp != NULL) {printf("%d ", temp->data);temp = temp->next;}printf("\n");head = reverseList(head);printf("逆置后的链表:");temp = head;while (temp != NULL) {printf("%d ", temp->data);temp = temp->next;}printf("\n");return 0;}```运行以上代码,输出结果如下:```原链表:5 4 3 2 1逆置后的链表:1 2 3 4 5```通过以上代码,我们成功地使用C语言的单链表头插法实现了链表的逆置。
c语言中linklist的作用C语言中LinkList的作用什么是LinkListLinkList(链表)是C语言中用来存储和操作数据的一种数据结构。
它与数组相比,拥有更灵活的插入和删除操作。
链表由节点(Node)组成,每个节点包含一个数据项和一个指向下一个节点的指针。
链表的头节点是链表的起始点,尾节点则指向NULL。
LinkList的作用1.动态内存分配:链表的节点可以动态地分配和释放内存,因此链表可以根据实际需要进行动态的添加和删除操作,不受固定大小的限制。
2.插入和删除操作效率高:由于链表的特性,插入和删除操作只需要修改节点指针的指向,而不需要移动其他节点,因此链表在某些特定场景下可以比数组更高效。
3.实现高级数据结构:链表可以用来实现其他高级数据结构,比如栈(Stack)和队列(Queue),或者作为其他数据结构的底层实现。
4.提供灵活的数据结构设计:链表可以设计成单向链表、双向链表或循环链表,根据实际需求选择合适的链表结构。
LinkList的应用场景链表在许多编程问题中都有着广泛的应用,以下是一些常见的应用场景: - 线性表:链表可以实现线性表,可以用来存储和操作一组有序的数据。
- 多项式运算:链表可以用来存储和运算多项式,实现多项式的相加、相乘等操作。
- 图的表示:链表可以用来表示图的连接关系,比如邻接链表表示法。
- 高级数据结构:链表可以作为实现其他高级数据结构的基础,比如树(Tree)、图(Graph)等。
- 文件操作:链表可以用来实现文件的读取和写入操作,链表可以实现文件的增删改查等功能。
总结链表作为一种灵活和高效的数据结构,广泛应用于C语言的编程中。
通过链表,我们可以动态地分配内存,高效地进行插入和删除操作。
而且,链表还可以作为其他高级数据结构的基础实现,扩展了数据结构的功能和应用场景。
在C语言中,掌握链表的使用方法和原理,对于编写高效的程序和解决复杂的编程问题都有很大的帮助。
#include 〈stdio.h>#include <malloc。
h>#include 〈stdlib.h>/*数据结构C语言版线性表的单链表存储结构表示和实现P28—31编译环境:Dev-C++ 4。
9。
9。
2日期:2011年2月10日*/typedef int ElemType;// 线性表的单链表存储结构typedef struct LNode{ElemType data; //数据域struct LNode *next;//指针域}LNode, *LinkList;// typedef struct LNode *LinkList;// 另一种定义LinkList的方法// 构造一个空的线性表Lint InitList(LinkList *L){/*产生头结点L,并使L指向此头结点,头节点的数据域为空,不放数据的。
void *malloc(size_t)这里对返回值进行强制类型转换了,返回值是指向空类型的指针类型.*/(*L)= (LinkList)malloc(sizeof(struct LNode) );if( !(*L))exit(0);// 存储分配失败(*L)-〉next = NULL;// 指针域为空return 1;}// 销毁线性表L,将包括头结点在内的所有元素释放其存储空间。
int DestroyList(LinkList *L){LinkList q;// 由于单链表的每一个元素是单独分配的,所以要一个一个的进行释放while(*L ){q = (*L)—〉next;free(*L );//释放*L = q;}return 1;}/*将L重置为空表,即将链表中除头结点外的所有元素释放其存储空间,但是将头结点指针域置空,这和销毁有区别哦。
不改变L,所以不需要用指针。
*/int ClearList( LinkList L ){LinkList p,q;p = L—〉next;// p指向第一个结点while( p ) // 没到表尾则继续循环{q = p—>next;free( p );//释放空间p = q;}L—>next = NULL; // 头结点指针域为空,链表成了一个空表return 1;}// 若L为空表(根据头结点L—〉next来判断,为空则是空表),则返回1,// 否则返回0.int ListEmpty(LinkList L){if(L—>next ) // 非空return 0;elsereturn 1;}// 返回L中数据元素个数。
学生成绩管理以单链表作为存储结构,设计和实现某班某门课程成绩管理的完整程序。
程序要求完成如下功能:(1)创建成绩链表,学生数据包含学生的学号、姓名和成绩。
(2)可以在指定学号学生前插入学生成绩数据。
(3)可以删除指定学号的学生数据。
(4)可以计算学生的总数。
(5)可以按学号和姓名查找学生。
(6)可以显示所有学生的成绩。
(7)可以把学生成绩按从高到低的顺序排列。
此处的设计思想基本与顺序表相同,只是对保存学生成绩的线性表采用不同的存储结构实现。
本例中用到的学生数据也是程序运行时由用户从键盘输入,保存到一个单链表中。
学生结构体类型的定义与顺序表应用举例处的定义相同,用C语言描述如下:typedef struct Student /*学生类型定义*/{ int score; /*成绩*/char sno[5],sname[8]; /*学号,姓名*/}Student;当学生的学号为“#”时,也是表示数据输入的结束。
单链表中保存的数据元素均为学生Student类型,则单链表定义如下:typedef struct Node /*结点类型定义*/{ Student studentInfo; /*学生信息*/struct Node *next; /*指向后继元素的指针域*/}LinkList;对学生的成绩按从高到低排序时,使用的也是直接插入排序思想。
此外,为了排序后还能在原单链表上继续进行操作,这里是把单链表中的内容复制到一个新单链表中,对新单链表排序,原单链表不变。
下面是以单链表作为存储结构实现的学生某门课程成绩管理的完整C语言程序。
#include<string.h>#include<malloc.h>#include <stdlib.h>#include <stdio.h>typedef struct Student /*学生类型定义*/{ int score; /*成绩*/char sno[5],sname[8]; /*学号,姓名*/}Student;typedef struct Node /*结点类型定义*/{ Student studentInfo; /*学生信息*/struct Node *next; /*指向后继元素的指针域*/}LinkList;void display(LinkList *p) /*在屏幕上显示一个学生的成绩信息*/{ printf("\n\n\nno\t\tname\t\tscore: ");printf("\n%s",p->studentInfo.sno); /*打印学号*/printf("\t\t ");printf("%s",p->studentInfo.sname); /*打印姓名*/printf("\t\t ");printf("%-4d\n",p->studentInfo.score); /*打印成绩*/}void displayAll(LinkList *L) /*在屏幕上显示所有学生的成绩信息*/ { LinkList *p;p=L->next;printf("\n\n\nno\t\tname\t\tscore: ");while(p){ printf("\n%s",p->studentInfo.sno); /*打印学号*/printf("\t\t ");printf("%s",p->studentInfo.sname); /*打印姓名*/printf("\t\t ");printf("%-4d\n",p->studentInfo.score);/*打印成绩*/p=p->next;}}LinkList *inputdata( ) /*输入学生信息*/{ LinkList *s=NULL ; /*s是指向新建结点的指针*/ char sno[5]; /*存储学号的数组*/printf("\n ");printf(" no: ");scanf("%s",sno); /*输入学号*/if(sno[0]=='#') /*#结束输入*/return s;s=( LinkList *)malloc(sizeof(LinkList));strcpy(s->studentInfo.sno,sno);if(strlen(sno)>4) /*如果sno字符个数大于等于5,因为字符串没有'\0'结束标志,在读数据时将把姓名字符一起读到sno数组,因此做了如下处理*/ s->studentInfo.sno[4]='\0';printf(" name: ");scanf("%s",s->studentInfo.sname); /*输入姓名*/printf("score: ");scanf("%d",&s->studentInfo.score);/*输入成绩*/return s;}LinkList *createTailList( ) /*以尾插法建立带头结点的学生信息单链表*/{ LinkList *L,*s, *r; /*L头指针,r尾指针,s是指向新建结点的指针*/ L=( LinkList *)malloc(sizeof (LinkList)); /*建立头结点,申请结点存储空间*/r=L; /*尾指针指向头结点*/printf("\请输入学生成绩,当学号no为\"#\"时结束:\n\n ");while (1) /*逐个输入学生的成绩*/{ s=inputdata( );if(!s) break; /*s为空时结束输入*/r->next=s; /*把新结点插入到尾指针后*/r=s; /*r 指向新的尾结点*/ }r->next=NULL; /*尾指针的指针域为空*/displayAll(L); /*显示所有学生信息*/return L;}Void locateElemByno(LinkList *L, char ch[5]) /*按学号查找学生的算法*/{ LinkList *p=L->next; /*从第一个结点开始查找*/ while ( p && (strcmp(p->studentInfo.sno,ch)!=0))/*p不空且输入学号与链表中学号不等*/ p = p ->next;if (!p){ printf("\n\n\tDon't find the student!\n" );}else{ display(p); /*显示查找到的学生信息*/}}void locateElemByname(LinkList *L, char sname[8])/*按姓名查找学生的算法*/{ LinkList *p=L->next; /*从第一个结点开始查找*/ while ( p&& (strcmp(p->studentInfo.sname,sname)!=0)) /*p不空且输入姓名与链表中姓名不等*/ p = p ->next;if (!p){ printf("\n\n\tDon't find the student!\n" ); }else{display(p); /*显示查找到的学生信息*/}}int lengthList (LinkList *L) /*求学生总人数的算法*/{ LinkList * p=L->next; /* p指向第一个结点*/int j=0;while (p){ p=p->next; j++ ;} /* p所指的是第j 个结点*/return j;}void insertElem ( LinkList *L, char ch[5]) /*在带头结点的单链表L中指定学号前插入学生*/ { LinkList *p,*s;p=L; /*从头结点开始查找学号为ch的结点的前趋结点p */while ((p->next) && (strcmp(p->next->studentInfo.sno,ch)!=0))p = p ->next;s=inputdata(); /*输入欲插入学生信息*/s->next=p->next;p->next=s;}void deleteElem (LinkList *L, char ch[5]) /*删除给定学号的学生信息的算法*/{ LinkList *p,*q;p=L;while ( (p->next)&&(strcmp(p->next->studentInfo.sno,ch)!=0 )){ p=p->next; /*从头结点开始查找学号为ch的结点的前趋结点p*/}if (!p->next) /* 已经扫描到表尾也没找到*/{ printf("\n\n\tDon't find the student!\n" );}else{ q=p->next; /*q指向学号为ch的结点*/printf("\n\ndeleted student's information:");display(q);p->next=q->next; /*改变指针*/free(q); /*释放q占用空间*/printf("\n\nall student's information :");displayAll(L);}}void insertSort(LinkList *L) /*用直接插入排序思想把学生的成绩按从高到低排序,结果保存在新有序链表中,原链表不变*/{ L inkList *L1,*p; /*L1有序链表的表头,p插入位置前结点*/ LinkList *q,*s; /*q欲插入L1中的结点*/int len;len=lengthList (L) ;L1=( LinkList *)malloc(sizeof (LinkList)); /*建立头结点,申请结点存储空间*/if (L->next) /*链表L非空*/{ /*生成有序链表的第一个结点*/s=( LinkList *)malloc(sizeof (LinkList)); /*建立结点,申请结点存储空间*/strcpy(s->studentInfo .sno ,L->next->studentInfo.sno);strcpy(s->studentInfo .sname,L->next->studentInfo.sname);s->studentInfo .score =L->next->studentInfo.score;s->next =NULL;L1->next=s; /*只有原单链表的第一个结点的有序链表L1*/q=L->next->next; /*原单链表的第二个结点,q即要插入有序链表L1中的结点*/ }else{ printf("\nthe student link list is empty\n");return;}while(q) /*链表L中有结点*/{ p=L1 ; /*从链表L1的第一个结点开始比较*/while((p->next) && (p->next->studentInfo.score>=q->studentInfo.score))p=p->next ; /*查找插入位置前结点*//*生成欲插入有序链表中的结点*/s=( LinkList *)malloc(sizeof (LinkList));/*建立结点,申请结点存储空间*/strcpy(s->studentInfo .sno ,q->studentInfo.sno);strcpy(s->studentInfo .sname ,q->studentInfo.sname);s->studentInfo .score =q->studentInfo.score;if(!p->next) /*p是有序链表的最后一个结点*/{ s->next =NULL ;p->next =s;}else{ s->next =p->next ;p->next =s;}q=q->next; /*下一个欲插入有序链表的结点*/ }/*while(!q)*/displayAll(L1); /*显示生成的有序链表*/}void main(){ printf("=============================================\n\n");printf(" 带头结点的学生成绩管理程序\n\n");printf("=============================================\n\n");LinkList *L;char ch[5],sname[8];int b=1;while(b){ int a;printf("\n\n");printf(" <1>创建(带头尾插)<2>指定学号前插入<3>按学号删除\n ");printf("<4>计算学生总数<5> 按学号查找<6> 按姓名查找\n");printf(" <7>显示所有学生<8>成绩排序<9> 退出\n");printf("\n请输入功能选项:");scanf("%d",&a);switch(a){case 1:L=CreateTailList();break;case 2:printf("\n输入欲在哪个学号前插入数据:");scanf("%s",ch);insertElem(L, ch) ;break;case 3:printf("\n输入欲删除学生的学号:");scanf("%s",ch);deleteElem(L, ch) ;break;case 4:printf(" \n学生总数为:%d \n",lengthList (L) );break;case 5:printf("\n输入欲查找学生的学号:");scanf("%s",ch);locateElemByno(L, ch) ;break;case 6:printf("\n输入欲查找学生的姓名:");scanf("%s",sname);locateElemByname(L, sname );break;case 7:displayAll(L);break;case 8:insertSort(L);break;case 9:printf("\n已退出\n");b=0;break;};}}上机运行程序后,程序执行结果如图2.31(a)~(i)所示。
c语言链表的实用场景链表是一种常用的数据结构,适用于许多实际场景。
在C语言中,链表通常通过指针来实现。
下面我将介绍一些常见的使用场景,以展示链表的实际应用。
1.数据库数据库中通常需要存储大量的数据,并进行高效的增删改查操作。
链表可以用于实现数据库中的表,每个节点表示一行数据,通过指针连接各行数据。
这样的设计可以简化数据的插入和删除操作,同时支持动态内存分配。
2.文件系统文件系统是操作系统中重要的组成部分,负责管理文件和目录的存储和组织。
链表可以被用来维护文件和目录的层次结构。
每个节点表示一个文件或目录,在节点中存储文件名和其他属性,并通过指针连接父节点和子节点,实现树状的文件系统结构。
3.缓存管理缓存是提高数据读写性能的一种机制,通常使用链表来实现。
链表的头节点表示最近访问的数据,越往后的节点表示越早被访问的数据。
当需要插入新数据时,链表头部的节点会被替换为新的数据,实现了最近访问数据的缓存功能。
4.链表排序链表排序是常见的问题,主要通过链表节点之间的指针修改来实现。
排序算法可以按照节点的值进行比较和交换,从而实现链表的排序功能。
链表排序应用于许多场景,如订单排序、学生成绩排序等。
5.模拟表达式求值在编译器和计算器中,链表可以用于构建和求解表达式。
每个节点表示表达式的一个操作数或操作符,通过指针连接节点,形成表达式树。
然后可以使用树来求解表达式的值,或者进行优化和转换。
6.链表图结构链表可以用于构建图结构,每个节点表示图的一个顶点,通过指针连接顶点之间的边。
链表图结构可以用于实现路由算法、网络拓扑结构、社交网络等。
7.线性代数运算链表可以用来实现向量和矩阵等线性代数结构。
每个节点表示矩阵的一个元素,通过指针连接不同元素之间的关系。
链表可以用于矩阵乘法、矩阵求逆等运算。
8.垃圾回收在编程中,动态内存分配往往需要手动管理内存的释放。
链表可以用来管理动态分配的内存块,通过指针连接各个内存块,并进行有效的垃圾回收。
数据结构c语言版课后习题答案数据结构是计算机科学中的一个重要概念,它涉及到组织、管理和存储数据的方式,以便可以有效地访问和修改数据。
C语言是一种广泛使用的编程语言,它提供了丰富的数据结构实现方式。
对于学习数据结构的C语言版课程,课后习题是巩固理论知识和提高实践能力的重要手段。
数据结构C语言版课后习题答案1. 单链表的实现在C语言中,单链表是一种常见的线性数据结构。
它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
实现单链表的基本操作通常包括创建链表、插入节点、删除节点、遍历链表等。
答案:- 创建链表:定义一个链表结构体,然后使用动态内存分配为每个节点分配内存。
- 插入节点:根据插入位置,调整前后节点的指针,并将新节点插入到链表中。
- 删除节点:找到要删除的节点,调整其前后节点的指针,然后释放该节点的内存。
- 遍历链表:从头节点开始,使用指针遍历链表,直到达到链表尾部。
2. 二叉树的遍历二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点。
二叉树的遍历是数据结构中的一个重要概念,常见的遍历方式有前序遍历、中序遍历、后序遍历和层序遍历。
答案:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
- 层序遍历:使用队列,按照从上到下,从左到右的顺序访问每个节点。
3. 哈希表的实现哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。
它提供了快速的数据访问能力,但需要处理哈希冲突。
答案:- 哈希函数:设计一个哈希函数,将键映射到哈希表的索引。
- 哈希冲突:使用链地址法、开放地址法或双重哈希法等解决冲突。
- 插入操作:计算键的哈希值,将其插入到对应的哈希桶中。
- 删除操作:找到键对应的哈希桶,删除相应的键值对。
4. 图的表示和遍历图是一种复杂的非线性数据结构,由顶点(节点)和边组成。
数据结构C语言版上机报告:单链表序在数据结构课程中,单链表是一个重要的概念,也是C语言中常用的数据结构之一。
本次报告将深入探讨单链表的基本概念、操作方法以及应用场景,帮助读者更深入地理解和掌握这一数据结构。
一、概述1.1 单链表的定义单链表是一种线性表,它由一系列节点组成,每个节点包含两部分:数据域和指针域。
数据域用于存储数据元素,指针域用于指向下一个节点,通过指针将这些节点串联在一起,形成一个链表结构。
1.2 单链表的特点单链表具有以下特点:(1)动态性:单链表的长度可以动态地增加或减少,不需要预先分配固定大小的空间。
(2)插入和删除操作高效:在单链表中进行插入和删除操作时,只需要修改指针的指向,时间复杂度为O(1)。
(3)随机访问效率低:由于单链表采用链式存储结构,无法通过下标直接访问元素,需要从头节点开始依次遍历,时间复杂度为O(n)。
1.3 单链表的基本操作单链表的基本操作包括:创建、插入、删除、查找等。
这些操作是使用单链表时常常会涉及到的,下面将逐一介绍这些操作的具体实现方法和应用场景。
二、创建2.1 头插法和尾插法在C语言中,可以通过头插法和尾插法来创建单链表。
头插法是将新节点插入到链表的头部,尾插法是将新节点插入到链表的尾部,这两种方法各有优缺点,可以根据具体应用场景来选择。
2.2 应用场景头插法适合于链表的逆序建立,尾插法适合于链表的顺序建立。
三、插入3.1 在指定位置插入节点在单链表中,插入节点需要考虑两种情况:在链表头部插入和在链表中间插入。
通过对指针的操作,可以实现在指定位置插入节点的功能。
3.2 应用场景在实际应用中,经常会有需要在指定位置插入节点的情况,比如排序操作、合并两个有序链表等。
四、删除4.1 删除指定节点在单链表中,删除节点同样需要考虑两种情况:删除头节点和删除中间节点。
通过对指针的操作,可以实现删除指定节点的功能。
4.2 应用场景在实际应用中,经常会有需要删除指定节点的情况,比如删除链表中特定数值的节点等。
【头歌】单链表的基本操作
单链表是一种线性数据结构,由一系列节点组成,每个节点包含数据元素和一个指向下一个节点的指针。
以下是单链表的基本操作:
1. 插入操作:在单链表的指定位置插入一个新节点。
具体步骤如下:
找到要插入的位置的前一个节点;
将新节点插入到前一个节点和当前节点之间;
修改新节点的指针,使其指向当前节点;
修改前一个节点的指针,使其指向新节点。
2. 删除操作:删除单链表中的指定节点。
具体步骤如下:
找到要删除的节点的前一个节点;
将前一个节点的指针指向要删除的节点的下一个节点;
释放要删除的节点的内存。
3. 查找操作:在单链表中查找指定元素。
具体步骤如下:
从头节点开始遍历单链表;
找到与指定元素相等的节点;
返回该节点的位置。
4. 遍历操作:从头节点开始,依次访问单链表中的每个节点。
具体步骤如下:创建一个指针指向头节点;
依次访问指针所指向的每个节点,直到指针为空。
5. 打印操作:打印单链表中的所有元素。
具体步骤如下:
创建一个指针指向头节点;
依次打印指针所指向的每个节点的数据元素,直到指针为空。
以上是单链表的基本操作,通过这些操作可以对单链表进行各种操作,如插入元素、删除元素、查找元素等。
在C语言中,多线程操作单链表需要特别小心,因为这涉及到并发访问和修改共享数据的问题。
如果不正确地处理,可能会导致数据损坏或程序崩溃。
为了实现多线程操作单链表,可以使用以下方法:1. 锁机制:在访问链表之前,使用互斥锁(mutex)来保护链表,确保同一时间只有一个线程可以访问链表。
当线程需要修改链表时,需要先获取锁,然后进行修改,最后释放锁。
这样可以确保链表操作的原子性和一致性。
2. 读写锁:对于读多写少的场景,可以使用读写锁(read-write lock)。
读写锁允许多个线程同时读取链表,但只允许一个线程写入链表。
这样可以提高并发性能。
3. 条件变量:使用条件变量可以让线程等待链表发生变化。
当链表发生变化时,可以唤醒等待的线程。
这样可以避免线程频繁地检查链表是否发生变化,提高效率。
下面是一个简单的示例代码,演示了如何使用互斥锁实现多线程操作单链表:#include <stdio.h>#include <stdlib.h>#include <pthread.h>struct node {int data;struct node *next;};pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;struct node *head = NULL;void *add_node(void *arg) {pthread_mutex_lock(&mutex);struct node *new_node = (struct node *)malloc(sizeof(struct node));new_node->data = *((int *)arg);new_node->next = head;head = new_node;pthread_mutex_unlock(&mutex);return NULL;}void print_list() {pthread_mutex_lock(&mutex);struct node *p = head;while (p != NULL) {printf("%d ", p->data);p = p->next;}printf("\n");pthread_mutex_unlock(&mutex);}int main() {pthread_t tid1, tid2;int data1 = 1, data2 = 2;pthread_create(&tid1, NULL, add_node, &data1);pthread_create(&tid2, NULL, add_node, &data2);pthread_join(tid1, NULL);pthread_join(tid2, NULL);print_list(); // 输出:1 2return 0;}。
单链表的实现及其基本操作结点的引⼊链表是⼀种链式存储结构,链式存储结构的特点是⽤⼀组任意的存储单元存储数据元素。
为了能正确表⽰数据元素之间的线性关系,需引⼊结点概念。
⼀个结点表⽰链表中的⼀个数据元素,节点中除了储存数据元素的信息,还必须存放指向下⼀个节点的的指针(单、双链表的最后⼀个节点除外,它们存储的是⼀个空指针NULL)结点的结构如下图所⽰:代码如下:1 typedef struct node{2int data;3struct node* pNext;4 }Node, *PNode;View Code注:这⾥假设结点中储存的是整型 (int) 的数据单链表由多个结点依次连接⽽成,我们不难想象出它结构:我们注意到:在第⼀个结点的前⾯多了⼀个头结点,这是为了处理空表的⽅便⽽引⼊的,它的指针指向链表的第⼀个结点,⽽它的data域不存放任何信息。
单链表的基本操作1.创建链表1 PNode createList()2 {3int len, value;45 PNode pHead = (PNode)(malloc(sizeof(Node)));6 PNode pTail = pHead;7 pTail->pNext = NULL;89 printf("请输⼊你要的节点个数:");10 scanf("%d", &len);11for(int i=1;i<=len;i++){12 printf("请输⼊第%d个节点的值:", i);13 scanf("%d", &value);1415 PNode pNew = (PNode)malloc(sizeof(Node));16 pNew->data = value;17 pTail->pNext = pNew;18 pTail = pNew;19 pTail->pNext = NULL;20 }2122return pHead;23 }View Code2.遍历链表void traverse(PNode pHead){printf("遍历结果为:\n");PNode pTra = pHead;while(pTra->pNext != NULL){printf("%d ", pTra->pNext->data);pTra = pTra->pNext;}printf("\n");}View Code3.判断链表是否为空1bool isEmpty(PNode pHead)2 {3if(pHead->pNext==NULL)4return true;5else6return false;7 }View Code4.链表长度1int length(PNode pHead)2 {3int len = 0;4while(pHead->pNext!=NULL){5 pHead = pHead->pNext;6 len++;7 }8return len;910 }View Code5.插⼊结点1bool insert(PNode pHead, int pos, int val)2 {3if(pos<1 || pos>length(pHead)){4return false;5 }else{6 PNode pInsert = pHead;7for(int i=1;i<pos;i++){8 pInsert = pInsert->pNext;9 }1011 PNode pNew = (PNode)malloc(sizeof(Node));12 pNew->data = val;13 pNew->pNext = pInsert->pNext;14 pInsert->pNext = pNew;1516return true;17 }1819 }View Code6.删除结点1bool del(PNode pHead, int pos)2 {3if(pos<1 || pos>length(pHead)){4return false;5 }else{6 PNode pDel = pHead;7for(int i=1;i<pos;i++){8 pDel = pDel->pNext;9 }1011if(pos==length(pHead)){12free(pDel->pNext);13 pDel->pNext = NULL;14 }else{15 PNode pNext = pDel->pNext->pNext;16free(pDel->pNext);17 pDel->pNext = pNext;18 }1920return true;2122 }232425 }View Code7.查找节点(1)按元素值查找1 PNode locate(PNode pHead, int value)2 {3 PNode p = pHead->pNext;4while(p&&p->data!=value){ //NULL 是 05 p = p->pNext;6 }7return p;8 }View Code(2)按序号查找1 PNode get(PNode pHead, int k)2 {3 PNode p = pHead;4for(int i=1;i<=k;i++){5 p = p->pNext;6 }7return p;89 }View Code完整代码1 #include<stdio.h>2 #include<stdlib.h>3 typedef struct node{4int data;5struct node* pNext;6 }Node, *PNode;78 PNode createList();9void traverse(PNode pHead);10bool isEmpty(PNode pHead);11int length(PNode pHead);12bool insert(PNode pHead, int pos, int val);13bool del(PNode pHead, int pos);14 PNode get(PNode pHead, int k); //按序号查找15 PNode locate(PNode pHead, int value);//按值查找 1617int main(void)18 {19//test2021return0;22 }2324 PNode createList()25 {26int len, value;2728 PNode pHead = (PNode)(malloc(sizeof(Node)));29 PNode pTail = pHead;30 pTail->pNext = NULL;3132 printf("请输⼊你要的节点个数:");33 scanf("%d", &len);34for(int i=1;i<=len;i++){35 printf("请输⼊第%d个节点的值:", i);36 scanf("%d", &value);3738 PNode pNew = (PNode)malloc(sizeof(Node));39 pNew->data = value;40 pTail->pNext = pNew;41 pTail = pNew;42 pTail->pNext = NULL;43 }4445return pHead;46 }474849void traverse(PNode pHead)50 {51 printf("遍历结果为:\n");52 PNode pTra = pHead;53while(pTra->pNext != NULL)54 {55 printf("%d ", pTra->pNext->data);56 pTra = pTra->pNext;57 }58 printf("\n");59 }6061bool isEmpty(PNode pHead)62 {63if(pHead->pNext==NULL)64return true;65else66return false;67 }6869int length(PNode pHead)70 {71int len = 0;72while(pHead->pNext!=NULL){73 pHead = pHead->pNext;74 len++;75 }76return len;7778 }7980bool insert(PNode pHead, int pos, int val)81 {82if(pos<1 || pos>length(pHead)){83return false;84 }else{85 PNode pInsert = pHead;86for(int i=1;i<pos;i++){87 pInsert = pInsert->pNext;88 }8990 PNode pNew = (PNode)malloc(sizeof(Node));91 pNew->data = val;92 pNew->pNext = pInsert->pNext;93 pInsert->pNext = pNew;9495return true;96 }9798 }99100bool del(PNode pHead, int pos)101 {102if(pos<1 || pos>length(pHead)){103return false;104 }else{105 PNode pDel = pHead;106for(int i=1;i<pos;i++){107 pDel = pDel->pNext;108 }109110if(pos==length(pHead)){111free(pDel->pNext);112 pDel->pNext = NULL;113 }else{114 PNode pNext = pDel->pNext->pNext;115free(pDel->pNext);116 pDel->pNext = pNext;117 }118119return true;120121 }122123124 }125126 PNode get(PNode pHead, int k)127 {128 PNode p = pHead;129for(int i=1;i<=k;i++){130 p = p->pNext;131 }132return p;133134 }135 PNode locate(PNode pHead, int value)136 {137 PNode p = pHead->pNext;138while(p&&p->data!=value){ //NULL 是 0 139 p = p->pNext;140 }141return p;142 }View Code。
数据结构c语言版单链表心得单链表是一种常用的数据结构,它能够以链式的形式存储数据,可以动态的插入、删除等操作,非常适合于需要频繁操作数据的场景。
在C语言中,单链表的实现相对来说比较简单,但是需要掌握一些基本的指针操作技巧。
单链表的结构定义通常包含一个数据域和一个指向下一节点的指针域。
例如:```ctypedef struct Node {int data;struct Node* next;} Node;```这里我们定义了一个名为Node的结构体,其中包括一个int类型的数据域和一个指向下一个Node的指针域。
之所以要使用指针域,是因为链表不像数组那样在内存中连续存储,因此我们必须借助指针来建立节点之间的联系。
创建一个链表可以通过动态分配内存来实现,例如:```cNode* create_list() {Node* head = NULL; //头结点Node* tail = NULL; //尾结点int x;while (scanf("%d", &x) != EOF) { //读取数据直到文件末尾Node* node = (Node*)malloc(sizeof(Node)); //动态分配内存node->data = x;node->next = NULL;if (head == NULL) { //如果链表为空head = node; //头结点指向新节点}else {tail->next = node; //尾节点的指针域指向新节点}tail = node; //重置尾节点}return head;}```该函数通过使用malloc动态分配节点内存空间,然后读取数据并将其添加到链表中。
这里head和tail分别指向链表的头结点和尾结点,并且将尾结点的指针域指向新节点。
如果链表为空,则将头结点指向新节点。
遍历链表可以通过循环链表上的节点来实现,例如:```cvoid traverse_list(Node* head) {Node* node = head;while (node != NULL) { //循环链表printf("%d ", node->data);node = node->next; //指向下一个节点}}```该函数以head为参数,循环链表并输出每个节点的数据域。