数学史知识点及答案
- 格式:doc
- 大小:54.00 KB
- 文档页数:8
数学史知识点及解答1. 欧几里得算法欧几里得算法是古希腊数学家欧几里得提出的一种求最大公约数的方法。
该算法的基本原理是通过连续除法的方式,将两个数的较大数除以较小数,然后用余数替换较大数,不断重复这个过程直到余数为零。
最后一次余数不为零的除数即为这两个数的最大公约数。
例如,对于数字36和48,用欧几里得算法可以得到他们的最大公约数为12。
2. 斐波那契数列斐波那契数列是一种数学序列,起始于0和1,后续的每个数都是前两个数的和。
这个数列在数学和自然界中都有广泛的应用。
斐波那契数列的前几个数字依次为0、1、1、2、3、5、8、13、21...以此类推。
斐波那契数列的性质在组合数学、几何学和计算机科学等领域有重要的应用。
3. 哥德巴赫猜想哥德巴赫猜想是一道关于质数的未解之谜。
它由德国数学家哥德巴赫在18世纪提出,猜想的内容是:每个大于2的偶数都可以分解为两个质数之和。
虽然这个猜想在很多特殊情况下得到了证明,但至今尚未找到一个通用的证明方法。
哥德巴赫猜想是数论领域一个备受关注的问题,至今仍然是一个未解之谜。
4. 无理数的发现无理数是一类不能用两个整数的比值来表示的实数。
最早的无理数发现可以追溯到古希腊数学家毕达哥拉斯。
他们通过构造正方形的对角线,发现了无法被有理数表示的长度。
这个发现颠覆了当时数学界的观念,并为后续的数学理论奠定了坚实的基础。
著名的π(圆周率)和√2(根号2)都是无理数的例子。
5. 导数与微分导数和微分是微积分中的重要概念,由众多数学家在不同时期独立发现。
导数描述了函数曲线上某一点的斜率,可以用于求变化率、最优化问题等。
微分引入了一个新的数学对象——微分形式,使得数学分析中的计算和推理更加方便。
导数和微分在物理、经济学和工程学等领域有广泛应用。
总结:数学史上有许多重要的知识点和发现,它们不仅为数学学科本身带来了深远的影响,也推动了其他科学领域的发展。
欧几里得算法、斐波那契数列、哥德巴赫猜想、无理数的发现以及导数与微分等都是数学史上具有重要意义的内容。
数学史知识点及答案1.世界上第一个把π计算到3.1415926<n <3.1415927 的数学家是( B )A.刘徽B.祖冲之C.阿基米德D.卡瓦列利2数学史知识点及答案是( C )A.秦九韶B.杨辉C.朱世杰D.贾宪3数学史知识点及答案言( A )A.积分学早于微分学B.微分学早于积分学C.积分学与微分学同期D.不确定4.在现存的中国古代数学著作中,最早的一部是( D )A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》5.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。
A.笛卡尔公式B.牛顿公式C.莱布尼茨公式D.欧拉公式6.中国古典数学发展的顶峰时期是( D )。
A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期7.最早使用“函数”(function)这一术语的数学家是( A )。
A.莱布尼茨B.约翰·伯努利C.雅各布·伯努利D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。
A.高斯B.波尔查诺C.魏尔斯特拉斯D.柯西9.古埃及的数学知识常常记载在(A )。
A.纸草书上B.竹片上C.木板上D.泥板上10.大数学家欧拉出生于(A )A.瑞士B.奥地利C.德国D.法国11.首先获得四次方程一般解法的数学家是( D )。
A.塔塔利亚B.卡当C.费罗D.费拉利12.《九章算术》的“少广”章主要讨论(D )。
A.比例术B.面积术C.体积术D.开方术13.最早采用位值制记数的国家或民族是( A )。
A.美索不达米亚B.埃及C.阿拉伯D.印度二、填空题14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
16.二项式展开式的系数图表,三角,而数学史学者常17.欧几里得《几何原本》全书共分13 卷,包括有(5)条公理、(5)条公设。
数学史知识点和答案高一数学史知识点和答案随着人类文明的不断进步,数学作为一门科学逐渐展露头角。
它为人类提供了一种探索宇宙和解决现实问题的工具。
数学的发展历程与人类文明的历史息息相关。
本文将介绍一些数学史的知识点,帮助高一学生更好地了解数学的发展轨迹。
1. 古代数学古代数学的发展起源于古埃及和古巴比伦。
在古埃及,人们用简单的几何形状和计量单位开始了数学的研究。
他们利用数字和几何概念解决了土地测量和建筑设计等实际问题。
古巴比伦人也取得了重要的数学成就。
他们发明了用60作为基数的六十进制系统,并发展了代数学中的二次和立方方程。
2. 古希腊数学古希腊数学是数学史上一个重要的里程碑。
在古希腊,数学开始走向抽象化和理论化的道路。
毕达哥拉斯定理是古希腊数学的代表性成果之一。
它表明在直角三角形中,直角边的平方和等于斜边的平方。
此外,欧几里德的《几何原本》对几何学的发展产生了深远的影响,成为欧洲数学教育的基础。
3. 中世纪数学中世纪是欧洲数学的“黑暗时期”,数学的发展停滞不前。
但在阿拉伯世界,数学取得了巨大的进展。
阿拉伯学者将古希腊和印度的数学知识综合起来,发展了代数学和三角学。
他们引入了阿拉伯数字,计算方法的改进为现代数学的发展奠定了基础。
4. 文艺复兴时期的数学文艺复兴时期是数学的新黄金时代。
数学家们热衷于解决实际问题,如以数学方法计算天体运动和量子力学。
伽利略、牛顿和莱布尼茨等数学家的贡献使数学与自然科学产生了密切联系。
他们的成果奠定了现代数学的基础。
随着时间的推移,数学的发展越来越迅速。
今天的数学已经分为多个分支,如代数、几何、数论等。
数学对人类的日常生活和科学研究都起着重要作用。
数学的应用涵盖了技术、金融、医学和工程等各个领域。
对于数学的学习,掌握基础知识是关键。
以下是一些高一学生常见的数学问题:1. 如何求解一个二次方程的根?对于形如ax^2 + bx + c = 0的二次方程,可以使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a来求解。
数学史答案四、简答题1、阿基⽶德在数学上的主要贡献:(1)研究⼤数:《沙粒计算》填满宇宙的沙粒数相当于,他还曾⽤过相当于的⼤数。
(2)⼏何学⽅⾯:发现⼤量⽴体体积公式。
(3)数学⽅法论⽅⾯:他曾⽤“原⼦法”和“穷竭法”计算⾯积和体积;他⾸创⽤“平衡法”证明数学问题(如证明球体积公式);他还⽤“积分”求和法求⾯积和体积;他通过引⼊特征三⾓形找到求曲线的⼀般⽅法;他把求极值问题归结为求切线问题;他还采⽤类似现在的“插值法”计算螺线长度。
他的这些思想⽅法使他成为微积分的先躯。
后来微积分开创者的许多思想都源于阿基⽶德。
阿基⽶德数学研究的主要特点:①注重联系实际,将数学与⼒学、物理学等实际问题结合;②注重⽅法论,其⽅法中体现了数学思想的深度;③注重论述的精确性、严谨性,成为他那个时代的典范。
2、刘徽的主要数学贡献:(1)算术⽅⾯:①⾸次使⽤⼗进⼩数;②完善齐同术;③其它:刘徽明确提出分数的基本性质:“法实俱长,意亦等也”;他对求最⼤公约数的⽅法进⾏了理论说明;对化带分数为假分数的⽅法进⼀步明确;他还研究了各种⽐例算法。
(2)代数⽅⾯:①⾸次给出正负数定义、记法及性质;②改进解线性⽅程组的“直除法”;③提出解⽅程组的新⽅法;④研究等差数列,并给出求和公式。
(3)⼏何⽅⾯:①提出“割圆术”;②开始⼏何定理的证明;③研究了球体体积;(4)极限思想;(5)创⽴重差术。
3、⽂艺复兴时期欧洲数学的主要进展1.代数⽅程论的发展;2. 符号代数的产⽣;3.三⾓学的确⽴;4.⼏何学的新突破;5. 计算技术的重⼤进步(1)⼗进⼩数的发明(2)对数的发明(3)计算⼯具的产⽣4、举例说明《九章算术》中解线性⽅程组的“直除法”《九章算术》中的“⽅程”,实际是线性⽅程组.例如卷⼋第⼀题:“今有上⽲三秉,中⽲⼆秉,下⽲⼀秉,实三⼗九⽃;上⽲⼆秉,中⽲三秉,下⽲⼀秉,实三⼗四⽃;上⽲⼀秉,中⽲⼆秉,下⽲三秉,实⼆⼗六⽃.问上中下⽲实⼀秉各⼏何?”(⽲即庄稼,秉即捆,实即粮⾷.)依术列筹式如图4.11,它相当于三元⼀次⽅程组其中x,y,z分别为上中下三等⽲每捆打粮⾷的⽃数.按《九章算术》解法,⽤(1)式x的系数3去乘(2)的各项,得6x+9y+3z=102.(4)⽤(4)减(1)⼆次,得5y+z=24.(5)再⽤(3)×3,得3x+6y+9z=78.(6)(6)减(1),得4y+8z=39.(7)中把这种⽅法叫“直除法”,即连续相减法.它的原理与现在加减消元法⼀致,只是⽐较烦琐.6.简述卡⽡列⾥不可分量⽅法的基本思想。
千里之行,始于足下。
数学史知识点及答案讲解数学史知识点及答案讲解数学是一门古老而且重要的学科,它的发展与人类文明的进步密切相关。
下面将介绍数学史的一些知识点及答案的讲解。
1. 古代数学古代数学的发展可以追溯到古埃及、巴比伦和古希腊等文明,其中最著名的数学家是古希腊的欧几里德和阿基米德。
欧几里德的《几何原本》是一部详尽而完整的几何学著作,其中引入了许多重要的几何定理和证明方法。
阿基米德则在几何学和力学方面做出了重要贡献,特别是他的浮力定律和杠杆原理。
2. 中世纪数学中世纪数学的发展受到了基督教教义的限制,因此在这个时期数学的进展相对较慢。
然而,一些重要的数学家如斯内尔和费马还是在这个时期做出了一些突破性的工作。
斯内尔提出了无理数的概念,并证明了它的存在。
费马则发展了一种新的证明方法,称为费马大定理,在证明中使用了分析几何的技巧。
3. 近代数学近代数学的发展可以追溯到17世纪的启蒙时代,这个时期出现了许多重要的数学家和数学理论。
牛顿和莱布尼茨同时独立地发现了微积分学,这是一种用于研究曲线和函数的重要工具。
欧拉则在数学分析和图论方面做出了重要贡献,他是数学史上最多产的数学家之一,发表了大量的著作和论文。
4. 现代数学现代数学的发展可以追溯到19世纪末和20世纪初,这个时期出现了一系列重要的数学理论和概念。
高斯和黎曼对复数和复变函数的研究开创了复分析第1页/共3页锲而不舍,金石可镂。
学的发展。
庞加莱在拓扑学方面做出了重要贡献,提出了庞加莱猜想,并且开创了现代数学的基础。
其他重要的数学家还包括维尔斯特拉斯、魏尔斯特拉斯、哥尼尔和伯努利等。
5. 现代数学的应用现代数学的应用非常广泛,几乎涉及到所有的科学领域。
数学在物理学、工程学、计算机科学、经济学等领域有着重要的应用。
例如,在物理学中,数学被用来建立和解决物理定律和方程,如牛顿的运动定律和麦克斯韦方程。
在计算机科学中,数学被用来研究和设计算法和数据结构。
在经济学中,数学被用来研究和模拟经济系统,如供求关系和市场机制。
数学:数学史知识学习(三)1、名词解释数学能力正确答案:是顺利完成数学活动所具备的,而且直接影响其活动效率的一种个性心理特征,它是在数学活动过程中形成和发展起来的,并且在这类活动中表现出来的比较稳定的心理特征。
是系(江南博哥)统化了的,概括化了的哪些个体经验,是一种网络化的经验结构。
2、填空题对韦达所使用的代数符号进行改进的工作是由笛卡尔完成的,他用拉丁字母的前几个表示(),后几个表示()。
正确答案:已知量;未知量3、填空题数学史分期的依据主要有两大类,其一是根据()来分期,其一是根据()来分期;正确答案:数学学科自身的研究对象、内容结构、知识领域的演进;数学学科所处的社会、政治、经济、文化环境的变迁4、问答题简述微积分学产生的背景。
正确答案:1638年伽利略《关于两门新科学的对话》出版,为动力学奠定了基础,促使人们对动力学概念与定理作精确的数学描述。
望远镜的光程设计需要确定透镜曲面上任一点的法线和求曲线的切线,而炮弹的最大射程和求行星的轨道的近日点、近远点等涉及到求小数的最大值、最小值问题。
而求曲线所围成的面积、曲线长、重心和引力计算也将人们的兴趣激发起来。
在17世纪上半叶,几乎所有的科学大师都致力于为解决这些难题而寻求一种新的数学工具。
正是为解决这些疑难问题,一门新的学科——微积分便应运而生了。
5、填空题九章算术》的内容分九章,全书共()问,魏晋时期的数学家()曾为它作注;正确答案:246;刘徽6、填空题拉格朗日在《解析函数论》一书中,主张用()来定义导数,以此作为整个微分、积分演算的出发点而将微积分归结为“代数运算”。
正确答案:拉格朗日定理7、填空题关于古埃及数学的知识,主要来源于()。
正确答案:莱茵德纸草书和莫斯科纸草书8、名词解释巴比伦楔形文字泥板正确答案:现在我们研究巴比伦数学知识的积累最可靠的资料,它是用截面呈三角形的利器作笔,在将干而未干的胶泥板上斜刻写而成的,由于字体为楔形笔画,故称之为楔形文字泥板书。
1,18世纪主要的数学家:欧拉,雅科布•贝努力,约翰•贝努利,泰勒,麦克劳林,棣莫弗等。
2,19世纪主要的数学家:傅里叶,柯西,泊松,刘维尔,若而当,庞加莱,黎曼,魏尔斯特拉斯,克莱因,希尔伯特,切比雪夫,柯瓦列夫斯卡娅等。
3,《四元玉鉴》作者是:元代数学家朱世杰4,中国古代数学发展的顶峰时期是:宋元时期5,最早使用“函数”这一术语的是:莱布尼茨6,首次获得四次方程的一般解法的是:费拉利7,《九章算术》里“少广”指的是:开方数8,最早使用位制制计数的国家是:美索不达米亚。
他们主要用60进制。
9,希尔伯特在历史上明确提出选择和组织公里的原则:相容性,完备性,独立性10,二项展开式的系数图表在中学称为:杨辉三角。
数学史学者常称:贾宪三角。
11,欧几里得《几何原本》共有13卷,包含5条公理,5条公式12,被称为现代分析之父的数学家是:魏尔斯特拉斯。
被称为数学之王的数学家是:高斯13,第一台能做加减运算的机械式计算机是由数学家:帕斯卡在1642年发明的。
14,1900年德国的希尔伯特在巴黎国际数学大会上提出23 个尚未解决的问题。
15,首先将三次方程一般解法公开的是:卡当(意大利)首先获得四次方程一般解法的是:费拉利首先获得三次方程一般解法的是;费罗16,中国历史上最早叙述勾股定理的著作:《九章算术》中国历史上最早完成勾股定理证明的是:三国时期的赵爽17,积分学的起源早于微分学。
微积分诞生于17 世纪。
18,数学家为了研究古希腊三大尺规作图问题花费了2000 年的时间,在1882年德国数学家林德曼证明了数PI的超越性,从而确定了尺规画圆为方的不可能性。
19,世界上讲述方程最早的著作是:《九章算术》20,《数学汇编》是一部总结前人成果的著作,被认为是古希腊数学的安魂曲,作者是:帕波斯21,不属于算经十书的是:《数书九章》22,以万物皆为数为信条的古希腊学派是:毕达哥拉斯学派23,首先使用“0”来表示零的国家是:印度。
数学史知识点及答案正文:数学作为一门古老而重要的学科,在人类历史的发展中起着举足轻重的作用。
它不仅仅是一种工具,更是一种思维方式和解决问题的方法。
在数学的长时间发展过程中,不断涌现出一系列重要的数学理论和定理。
本文将介绍一些数学史的重要知识点和对应的答案。
1. 费马大定理费马大定理是数学史上的一座丰碑,由法国数学家费尔马在17世纪提出。
它阐述了当n大于2时,对于方程xⁿ + yⁿ = zⁿ没有整数解。
虽然费马在提出该定理后并未给出详细的证明,但这一问题引发了许多数学家的兴趣,并且一直成为数学界最具吸引力的问题之一。
2. 黄金分割黄金分割是一个神秘而美丽的数学概念,它常常出现在自然界和艺术中。
黄金分割比值约等于1.6180339887。
它可以通过求解 x^2 = x + 1 的正根得到。
黄金分割具有独特的美学吸引力,因此广泛应用于建筑设计、艺术创作和金融领域等。
3. 平方根的发现平方根的发现是古代数学中的一个重要成就。
最早的平方根发现可以追溯到巴比伦文化中的孟德尔逊法则。
而古希腊数学家毕达哥拉斯提出了勾股定理,揭示了直角三角形中平方根的关系。
此后,数学家们不断发展并完善了关于平方根的理论,最终形成了我们今天所熟知的平方根运算规则。
4. 导数和微积分导数和微积分是现代数学的重要分支,它们在17世纪由牛顿和莱布尼兹独立发展而成。
导数可以用于计算函数的变化率和曲线的斜率,微积分则是对连续变化的量进行研究的数学工具。
导数和微积分在物理学、工程学以及经济学等领域具有广泛的应用。
5. 贝尔特拉米数贝尔特拉米数是数学中的一个特殊数列,由意大利数学家贝尔特拉米引入。
该数列的前几个项为0、1、2、1、2、1、2……它的规律是每隔两个数重复一次1和2。
贝尔特拉米数被广泛研究,并应用于数论等领域。
6. 黎曼猜想黎曼猜想是数论中的一个重要问题,由德国数学家黎曼在19世纪提出。
该猜想关于素数的分布规律,即描述素数分布的函数具有与素数分布相关的零点。
一、单项选择题1.世界上第一个把π计算到3.1415926<n <3.1415927 的数学家是( B )A.刘徽B.祖冲之C.阿基米德D.卡瓦列利2.我国元代数学著作《四元玉鉴》的作者是( C )A.秦九韶B.杨辉C.朱世杰D.贾宪3.就微分学与积分学的起源而言( A )A.积分学早于微分学B.微分学早于积分学C.积分学与微分学同期D.不确定4.在现存的中国古代数学著作中,最早的一部是( D )A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》5.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。
A.笛卡尔公式B.牛顿公式C.莱布尼茨公式D.欧拉公式6.中国古典数学发展的顶峰时期是( D )。
A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期7.最早使用“函数”(function)这一术语的数学家是( A )。
A.莱布尼茨B.约翰·伯努利C.雅各布·伯努利D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。
A.高斯B.波尔查诺C.魏尔斯特拉斯D.柯西9.古埃及的数学知识常常记载在(A )。
A.纸草书上B.竹片上C.木板上D.泥板上10.大数学家欧拉出生于(A )A.瑞士B.奥地利C.德国D.法国11.首先获得四次方程一般解法的数学家是( D )。
A.塔塔利亚B.卡当C.费罗D.费拉利12.《九章算术》的“少广”章主要讨论(D )。
A.比例术B.面积术C.体积术D.开方术13.最早采用位值制记数的国家或民族是( A )。
A.美索不达米亚B.埃及C.阿拉伯D.印度二、填空题14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
16三角,而数学史学17.欧几里得《几何原本》全书共分13 卷,包括有(5)条公理、(5)条公设。
数学史资料附有答案第0 章数学史—人类文明的重要篇章一、数学史研究哪些内容?(P1)数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。
二、数学史通常采用哪些线索进行分期?(P9)1、按时代顺序2、按数学对象、方法等本身的质变过程3、按数学发展的社会背景三、本书对数学史如何分期?(P9)1、数学的起源与早期发展(公元前6 世纪);2、初等数学时期(公元前6 世纪-16 世纪);A.古代希腊数学(公元前6 世纪—6 世纪)B.中世纪东方数学(3 世纪—15 世纪)C.欧洲文艺复兴时期(15 世纪—16 世纪)3、近代数学时期(17 世纪-18 世纪);4、现代数学时期(1820 年至今)。
A.现代数学酝酿时期(1820’—1870)B.现代数学形成时期(1870—1940)C.现代数学繁荣时期(或称当代数学时期,1950—现在)四、近几年新编的中小学数学教材中,增加了不少数学史知识.请对这种变化的积极意义谈谈你的认识与体会.第一章数学的起源与早期发展一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?(P13)1.古埃及的象形数字(公元前3400 年左右)2.古巴比伦的楔形数字(公元前2400 年左右)3.中国的甲骨文(公元前1600 年左右)4.希腊阿提卡数字(公元前500 年左右)5.中国的算筹码(公元前500 年左右)6.印度婆罗门数字(公元前500 年左右)7.玛雅数字(?)其中除巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系二、“河谷文明”指的是什么?(P16)历史学家往往把兴起于埃及、美索不达米亚、中国、印度等地域的古代文明称为“河谷文明”。
三、古埃及数学的知识主要依据哪两部纸草书?纸草书中问题绝大部分是实用性质,但个别例外,请举例。
30.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。
答:莱布尼茨于 1646 年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进“函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。
31.写出数学基础探讨过程中所出现的“三大学派”的名称、代表人物、主要观点。
答:一,逻辑主义学派,代表人物是罗素和怀特黑德,主要观点是:数学仅仅是逻辑的一部分,全部数学可以由逻辑推导出来。
二,形式主义学派,代表人物是希尔伯特,主要观点是:将数学看成是形式系统的科学,它处理的对象不必赋予具体意义的符号。
三,直觉主义学派,代表人物是布劳维尔,主要观点是:数学不同于数学语言,数学是一种思维中的非语言的活动,在这种活动中更重要的是内省式构造,而不是公理和命题。
32.简述刘徽所生活的朝代、代表著作以及在数学上的主要成就。
答:刘徽生活在三国时代;代表著作有《九章算术注》;主要成就:算术上给出了系统的分数算法、各种比例算法、求最大公约数的方法,代数上有方程术、正负数加减法则的建立和开平方或开立方方法;在几何上有割圆术及徽率。
33.花拉子米(什么时代、什么地方的数学家、代表著作和重要贡献)。
答:花拉子米是九世纪阿拉伯数学家,代表著作有:《代数学》和《印度的计算术》;主要贡献有:提出“还原”与“对消”的解方程的基本变形法则;给出了一次和二次方程的一般解法,用几何方法给出证明;给出了四则运算的定义和法则。
34.《周髀算经》(作者,成书年代,主要成就)答:该书出版于东汉末年和三国时代,但从史上考证应成书于公元前240 年至公元前156 年之间,可能是北汉平侯张苍修订和补写而成;书中记载的数学知识主要有:分数运算、等差数列公式及一次内插公式和勾股定理在中国早期发展的情况。
35.罗巴切夫斯基的非欧几何。
答:罗巴切夫斯基于 1825 年完成专著《平行线理论和几何原理概论及证明》标志着非欧几何的诞生,该理论是对几何原理中第五公设的研究提出命题“过直线外一点与已知直线平行的直线至少有两条”,并进行严格逻辑推理,得出的几何理论。
《数学史》复习资料名词解释:1、可公度量:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
这样的两条线段为“可公度量”,即有可公度量的度量单位。
这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反应。
2、出入相补原理:一个几何图形(平面或立方体的)被分割成若干部分后,面积或体积总保持不变。
3、费马大定理:关于X、Y、Z的不定方程X n+Y n =Z n ,对于任意大于2的自然数n无非零整数解。
4、大数定律:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
P128 帕斯卡曾提出的n为正数时的二项式定理,得到所谓伯努利定理:若p是某一事件单独出现一次的概率,q是不出现该事件的概论,则在n次试验中,该事件至少出现m次的概率等于二项式(p+q)n 的展式中的从p n 项到p m q n-m 项的各项之和。
容易看出,这实际上就是概率论中最重要的定律之一——“大数定律”的最早表现形式。
5、倍立方体:就是已知一立方体,求作另一立方体,使它的体积等于已知立方体的两倍。
也即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
6、祖氏原理:P65“幂势既同,则积不容异”,即夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,若所得截面总相等,则此二几何体积相等。
它被称为“祖暅原理”。
1、简述古希腊数学的特点。
答案二:(1)追求理性和唯理的论证数学特点;(2)欧氏几何开创了公理化理论体系;(3)欧式几何形成了演绎思维的特征;总之,希腊数学是追求理性,主要以演绎几何为特征的数学。
2、简述欧几里得《原本》中所确立的公理化思想。
答:公理化思想是古希腊时期在欧氏几何中确立数学演绎范式。
这种范式要求一门学科中的每个命题必须是在它之前已建立的一些命题的逻辑结论,而所有这样的推理链的共同出发点,就是一些基本定义和被认为不证自明的基本原理——公理或公设。
数学史知识点及复习题数学是一门具有悠久历史的学科,它的发展与人类文明息息相关。
在这篇文章中,我们将探索数学史上的一些重要知识点,并提供一些相关的复习题,帮助读者更好地理解和掌握这些内容。
一、古代数学知识点1. 古代埃及数学古埃及人以其出色的建筑和测量技术而闻名。
他们开创了一些基本的数学概念和方法,包括用分数计数、解决方程以及计算三角形的面积等。
复习题:a) 埃及人如何使用分数计数?b) 如何计算一个三角形的面积?2. 古代巴比伦数学巴比伦人是古代数学的重要贡献者之一。
他们使用了一种称为“巴比伦数字”的六十进制计数系统,并提出了一些基本的代数问题和几何问题。
复习题:a) 巴比伦数字系统如何工作?b) 巴比伦人在代数和几何中有什么贡献?二、古希腊数学知识点1. 爱琴海地区的早期数学早期古希腊数学家如毕达哥拉斯、皮塔哥拉斯等人为后来的数学发展奠定了基础。
他们主要研究了几何学和数论,并提出了一些重要的定理和问题。
复习题:a) 毕达哥拉斯定理是什么?它的应用有哪些?b) 简要解释皮塔哥拉斯定理。
2. 古希腊的无穷数学柏拉图和亚里士多德等数学家对无穷进行了深入思考,并提出了一些关于无穷和数理逻辑的理论。
复习题:a) 什么是无穷?古希腊数学家如何理解无穷?b) 简要描述古希腊数学中的数理逻辑。
三、近代数学知识点1. 笛卡尔坐标系笛卡尔坐标系是数学和几何学的重要工具,它将代数和几何相结合,为后来的计算机科学和物理学等学科奠定了基础。
复习题:a) 请用简单的语言解释笛卡尔坐标系。
b) 举一个笛卡尔坐标系在实际问题中的应用例子。
2. 微积分的发展牛顿和莱布尼茨等数学家在17世纪发现了微积分学,这对于解决许多科学和工程问题至关重要。
复习题:a) 简要解释微积分的基本原理。
b) 列举一些微积分在物理学或经济学中的应用。
四、现代数学知识点1. 群论群论是现代数学的一个分支,研究的是集合与运算之间的关系。
它在代数学、物理学和密码学等领域有着广泛的应用。
一、单项选择题1.世界上第一个把π计算到3.1415926<n<3.1415927的数学家是( B )A.刘徽B.祖冲之C.阿基米德D.卡瓦列利2.我国元代数学著作《四元玉鉴》的作者是( C )A.秦九韶B.杨辉C.朱世杰D.贾宪3.就微分学与积分学的起源而言(A)A.积分学早于微分学B.微分学早于积分学C.积分学与微分学同期D.不确定4.在现存的中国古代数学著作中,最早的一部是( D )A.《孙子算经》 B.《墨经》C.《算数书》D.《周髀算经》5.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。
A.笛卡尔公式B.牛顿公式 C.莱布尼茨公式D.欧拉公式6.中国古典数学发展的顶峰时期是( D )。
A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期7.最早使用“函数”(function)这一术语的数学家是( A )。
A.莱布尼茨B.约翰·伯努利C.雅各布·伯努利D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。
A.高斯B.波尔查诺C.魏尔斯特拉斯D.柯西9.古埃及的数学知识常常记载在(A )。
A.纸草书上B.竹片上C.木板上D.泥板上10.大数学家欧拉出生于(A ) A.瑞士B.奥地利 C.德国 D.法国11.首先获得四次方程一般解法的数学家是( D )。
A.塔塔利亚B.卡当 C.费罗D.费拉利12.《九章算术》的“少广”章主要讨论( D )。
A.比例术B.面积术C.体积术D.开方术13.最早采用位值制记数的国家或民族是( A )。
A.美索不达米亚B.埃及C.阿拉伯D.印度二、填空题14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
16.二项式展开式的系数图表,三角,而数学史学者17.欧几里得《几何原本》全书共分13 卷,包括有(5)条公理、(5) 条公设。
1.简述阿基米德的生活时代、代表著作以及在数学上的主要成就。
答:阿基米德生活在古希腊亚历山大前期,代表著作有:《论球与圆柱》,《圆的度量》,《劈锥曲面与回转椭圆体》,《论螺线》,《平面图形》,《数沙器》,《抛物线图形求积法》等,阿基米德的主要成就有:用力学方法求出球体积,抛物或弓形的面积,托球体、抛物或旋转体截体和球缺体积;用穷竭法求出圆面积和一系列曲边形面积与体积;得到的近似值为22/7。
2.朱世杰(什么朝代、什么地方的人、代表著作和数学创造)。
答:朱世杰是13 世纪至14 世纪元代数学家,燕山人。
代表著作是《四元玉鉴》,其主要数学成就是求解方程的四元术、高阶等差数列研究及其在内插法上的应用。
3.简述《九章算术》的主要内容及在中国数学史上的意义。
答:《九章算术》是我国古代的一本传世数学名著,一直作为我国传统数学的代表作。
《九章算术》是以应用问题集的形式表述的,一共收入246 个问题,分为九章,分别为方田,粟米,衰分,少广,商功,均输,盈不足,方程,勾股。
标志着中国传统数学的知识体系已初步形成,对中国数学的发展的历史作用如同《几何原本》对西方数学影响一样。
4.简述笛卡尔的生活年代、所在国家、代表著作以及在数学上的主要成就。
答:笛卡尔(1596-1650)出生于法国的拉哈耶。
主要著作有《方法论》其中包括:《折光学》、《大气现象》和《几何学》。
主要成就有:开创性地用代数方法研究几何问题,把代数方程和曲线、曲面联系起来;引出了变量和函数的概念。
5.简述运筹学的建立和发展过程。
答:运筹学是运用数学方法解决生产、国防、商业和其他领域中的安排、筹划、控制、管理等有关问题的音乐数学的分支。
最早产生于二战中的英国,用以解决空防雷达信息系统与战斗机系统的协同配合问题。
不久美军也开始了类似的研究,并在战争中建有奇功。
目前运筹学已包括有数学规划论、博弈论、排队论、决策分析、图论等。
6.花拉子米(什么时代、什么地方的数学家、代表著作和重要贡献)。
数学史概论期末试题一一、单项选择题1.世界上第一个把π计算到3.1415926<n <3.1415927 的数学家是( B )A.刘徽B.祖冲之C.阿基米德D.卡瓦列利2.我国元代数学著作《四元玉鉴》的作者是( C )A.秦九韶B.杨辉C.朱世杰D.贾宪3.就微分学与积分学的起源而言( A )A.积分学早于微分学B.微分学早于积分学C.积分学与微分学同期D.不确定4.在现存的中国古代数学著作中,最早的一部是( D )A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》5.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。
A.笛卡尔公式B.牛顿公式C.莱布尼茨公式D.欧拉公式6.中国古典数学发展的顶峰时期是( D )。
A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期7.最早使用“函数”(function)这一术语的数学家是( A )。
A.莱布尼茨B.约翰·伯努利C.雅各布·伯努利D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。
A.高斯B.波尔查诺C.魏尔斯特拉斯D.柯西9.古埃及的数学知识常常记载在(A )。
A.纸草书上B.竹片上C.木板上D.泥板上10.大数学家欧拉出生于(A )A.瑞士B.奥地利C.德国D.法国11.首先获得四次方程一般解法的数学家是( D )。
A.塔塔利亚B.卡当C.费罗D.费拉利12.《九章算术》的“少广”章主要讨论(D )。
A.比例术B.面积术C.体积术D.开方术13.最早采用位值制记数的国家或民族是( A )。
A.美索不达米亚B.埃及C.阿拉伯D.印度二、填空题14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
16三角,而数学史学17.欧几里得《几何原本》全书共分13 卷,包括有(5)条公理、(5)条公设。
18.两千年来有关欧几里得几何原本第五公设的争议,导致了非欧几何的诞生。
19.阿拉伯数学家花拉子米的《代数学》第一次给出了一次和二次方程的一般解法,并用__几何___方法对这一解法给出了证明。
20.被称为“现代分析之父”的数学家是(柯西),被称为“数学之王”的数学家是(高斯)。
21.第一台能做加减运算的机械式计算机是数学家帕斯卡于1642 年发明的。
22.1900年,德国数学家希尔伯特在巴黎国际数学家大会上提出了(23)个尚未解决的数学问题,在整个二十世纪,这些问题一直激发着数学家们浓厚的研究兴趣。
23.首先将三次方程一般解法公开的是意大利数学家(卡当),首先获得四次方程一般解法的数学家是(费拉利)。
24.欧氏几何、罗巴契夫斯基几何都是三维空间中黎曼几何的特例,其中欧氏几何对应的情形是曲率恒等于零,罗巴契夫斯基几何对应的情形是曲率为负常数。
25.中国历史上最早叙述勾股定理的著作是《周髀算经》,中国历史上最早完成勾股定理证明的数学家是三国时期的(赵爽)。
三、简答题26.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。
答:莱布尼茨于1646 年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进“函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。
27.写出数学基础探讨过程中所出现的“三大学派”的名称、代表人物、主要观点。
答:一,逻辑主义学派,代表人物是罗素和怀特黑德,主要观点是:数学仅仅是逻辑的一部分,全部数学可以由逻辑推导出来。
二,形式主义学派,代表人物是希尔伯特,主要观点是:将数学看成是形式系统的科学,它处理的对象不必赋予具体意义的符号。
三,直觉主义学派,代表人物是布劳维尔,主要观点是:数学不同于数学语言,数学是一种思维中的非语言的活动,在这种活动中更重要的是内省式构造,而不是公理和命题。
28.中国古代最早对勾股定理作出证明的数学家是三国时期的赵爽。
请作出赵爽证明勾股定理的“弦图”,并叙述其证明方法。
29.《周髀算经》(作者,成书年代,主要成就)答:该书出版于东汉末年和三国时代,但从史上考证应成书于公元前240 年至公元前156 年之间,可能是北汉平侯张苍修订和补写而成;书中记载的数学知识主要有:分数运算、等差数列公式及一次内插公式和勾股定理在中国早期发展的情况。
30. 简述学习数学史的意义。
31.简述刘徽所生活的朝代、代表著作以及在数学上的主要成就。
答:刘徽生活在三国时代;代表著作有《九章算术注》;主要成就:算术上给出了系统的分数算法、各种比例算法、求最大公约数的方法,代数上有方程术、正负数加减法则的建立和开平方或开立方方法;在几何上有割圆术及徽率。
32.用《九章算术》中的盈不足术解下面问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何”?33.中国古代最早对勾股定理作出证明的数学家是三国时期的赵爽。
请作出赵爽证明勾股定理的“弦图”,并叙述其证明方法。
边长为的正方形可以看作是由4个直角边分别为、,斜边为的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
数学史概论期末试题二一、单项选择题1.世界上讲述方程最早的著作是( A )A.中国的《九章算术》B.阿拉伯花拉子米的《代数学》C.卡尔丹的《大法》D.牛顿的《普遍算术》2.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为( B )。
A.托勒玫B.帕波斯C.阿波罗尼奥斯D.丢番图3.美索不达米亚是最早采用位值制记数的民族,他们主要用的是( A )。
A.六十进制B.十进制C.五进制D.二十进制4.“一尺之棰,日取其半,万世不竭”出自我国古代名著( B )。
A.《考工记》B.《墨经》C.《史记》D.《庄子》5.下列数学著作中不属于“算经十书”的是( A )。
A.《数书九章》B.《五经算术》C.《缀术》D.《缉古算经》6.微积分诞生于( C )。
A.15 世纪B.16 世纪C.17 世纪D.18 世纪7.以“万物皆数”为信条的古希腊数学学派是( D )。
A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派8.最早记载勾股定理的我国古代名著是( A )。
A.《九章算术》B.《孙子算经》C.《周髀算经》D.《缀术》9.首先使用符号“0”来表示零的国家或民族是( A )。
A.中国B.印度C.阿拉伯D.古希腊10.在《几何原本》所建立的几何体系中,“整体大于部分”是( D )。
A.定义B.定理C.公设D.公理11.刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是( B )。
A.3.1B.3.14C.3.142D.3.141592612.费马对微积分诞生的贡献主要在于其发明的( C )。
A.求瞬时速度的方法B.求切线的方法C.求极值的方法D.求体积的方法13.祖冲之的代表作是(C )A.《考工记》B.《海岛算经》C.《缀术》D.《缉古算经》二、填空题14.《九章算术》内容丰富,全书共有(九)章,大约有(246(个问题。
15.世界上第一个把π计算到3.1415926<π<3.1415927 的数学家是(祖冲之)。
16.亚力山大晚期一位重要的数学家是(帕波斯),他唯一的传世之作《数学汇编》是一部荟萃总结前人成果的典型著作。
17.古希腊亚历山大时期的数学家阿波罗尼兹在前人工作的基础上创立了相当完美的圆锥曲线理论,其著作《圆锥曲线》代表了希腊演绎几何的最高成就。
18.发现不可公度量的是古希腊毕德哥拉斯学派,该发现导致了数学史上的第一次数学危机。
19.我国的数学教育有悠久的历史,(隋唐)代开始在国子寺里设立“算学”,唐至五代代则在科举考试中开设了数学科目,叫“明算科”。
20.《几何基础》的作者是(希尔伯特),该书所提出的公理系统包括(五)组公理。
21.用“分割法”建立实数理论的数学家是(戴德金),该理论建立于(19)世纪。
22.费马大定理证明的最后一步是英国数学家(怀尔斯)于1994 年完成的,他因此于1996 年获得了(沃尔夫)奖。
23.“幂势既同,则积不容异”是我国古代数学家(刘徽)首先明确提出的,这一原理在西方文献中被称作(卡瓦列利)原理。
24.创造并首先使用“阿拉伯数码”的国家或民族是(印度),而首先使用十进位值制记数的国家或民族则是(中国)。
25.哥德巴赫猜想是(德)国数学家哥德巴赫于18 世纪在给数学家(欧拉)的一封信中首次提出的。
26.阿基米德通常用(平衡)法发现求积公式,然后用(穷竭)法进行严格的证明。
27.古希腊的三大著名几何问题是化圆为方、倍立方和三等分角。
三、简答题28.简述阿基米德的生活时代、代表著作以及在数学上的主要成就。
答:阿基米德生活在古希腊亚历山大前期,代表著作有:《论球与圆柱》,《圆的度量》,《劈锥曲面与回转椭圆体》,《论螺线》,《平面图形》,《数沙器》,《抛物线图形求积法》等,阿基米德的主要成就有:用力学方法求出球体积,抛物或弓形的面积,托球体、抛物或旋转体截体和球缺体积;用穷竭法求出圆面积和一系列曲边形面积与体积;得到的近似值为22/7。
29.简述《九章算术》的主要内容及在中国数学史上的意义。
答:《九章算术》是我国古代的一本传世数学名著,一直作为我国传统数学的代表作。
《九章算术》是以应用问题集的形式表述的,一共收入246 个问题,分为九章,分别为方田,粟米,衰分,少广,商功,均输,盈不足,方程,勾股。
标志着中国传统数学的知识体系已初步形成,对中国数学的发展的历史作用如同《几何原本》对西方数学影响一样。
30.简述运筹学的建立和发展过程。
答:运筹学是运用数学方法解决生产、国防、商业和其他领域中的安排、筹划、控制、管理等有关问题的音乐数学的分支。
最早产生于二战中的英国,用以解决空防雷达信息系统与战斗机系统的协同配合问题。
不久美军也开始了类似的研究,并在战争中建有奇功。
目前运筹学已包括有数学规划论、博弈论、排队论、决策分析、图论等。
31.简述费马大定理的内容。
费马大定理:当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解。
32.论述东方古代数学和西方古代数学各自的主要特征、对现代数学的影响,及学习数学史的意义。