沉积盆地分析的原理与应用
- 格式:docx
- 大小:10.75 KB
- 文档页数:1
常见的四种找油理论:1.沉积盆地找油论2.有效生油区控制油气田分布论3.含油气系统理论4.圈闭带控制油气聚集论一、沉积盆地找油论(一)盆地、沉积盆地、含油气盆地盆地:地球上周围被高地包围的低地,或者说岩石圈表面三维空间的凹地,充满水和空气。
地质意义上的盆地:指岩石圈表面三度空间上的凹地,其内部充填有沉积物,而且要具有时间的概念,即四维。
也就是指沉积盆地。
沉积盆地:在地质历史某一阶段形成的被水域占据的一个断陷或坳陷地带,它以负向运动占绝对优势,同时接受了足够厚的沉积物充填,形成了中间沉积厚度大,向边缘逐渐减薄的沉积体。
含油气盆地指已经发现油气田(藏)或已有油气显示的沉积盆地,以及具备油气生运聚条件的沉积盆地。
故必须具备三个条件:1.首先必须是沉积盆地;2.在漫长的地质历史时期曾经不断地沉降、接受沉积,具备油气生成与聚集的有利条件;3.在地质历史时期中曾经发生过油气生运聚,或者已经发现过油气显示或工业油气田。
(二)沉积盆地是油气生成运移和聚集的基本构造单元在人类长期的找油实践过程中,人们认识到油气不仅可以在背斜中聚集,也可以在非背斜中存在,它们必然受更高一级的沉积和构造单元控制。
油气有机生成说,以及油气运移、聚集和保存理论的建立,揭示了形成油气田(藏)的基本石油地质条件之间的内在联系,它们受一个基本地质单元——沉积盆地的控制。
世界上目前已经发现的油气田几乎都分布在各种类型的沉积盆地中。
并不是所有的沉积盆地都是含油气盆地,有没有油气,取决于沉积盆地具不具备油气生、运、聚的基本条件。
(三)沉积盆地控制油气赋存的因素油气的成藏→温度、压力及有效受热时间控制的化学动力学过程→压力、浮力和流体势所控制的流体动力学过程油气是沉积盆地形成和演化过程中生成的流体矿产, 要弄清油气形成与分布规律,必须开展盆地分析。
油气藏的形成条件包含生、储、盖、圈、运、保存和配套。
这些条件的合理的、最优化的组合将形成油气储量丰富的含油气盆地,较差的组合则形成低储量丰度甚至非含油气盆地。
关于鄂尔多斯盆地煤田沉积相的特征及分析探讨鄂尔多斯盆地含有两套含煤岩系,分别为石炭一二叠纪和侏罗纪,煤层发育,有着较大的厚度。
本文主要就鄂尔多斯盆地沉积相类型及特征和地质情况进行了分析研究,并就如何科学利用进行了探讨。
标签:鄂尔多斯盆地沉积相煤田储层特征分析随着科学技术的不断发展,勘探程度也相应不断提高,鄂尔多斯盆地是在演太平洋构造域和特提斯构造域共同影响下形成的中生代大型内陆拗陷。
其演化过程可分为早侏罗世-中侏罗世早期、中侏罗世、晚侏罗世和早白垩世4个阶段,旱侏罗世-中侏罗世早期为重要的聚煤期。
聚煤区围绕盆地沉降中心呈环带状展布,煤层层数、厚度及横向变化规律在盆地不同部位表现出不同特点。
构造转折期与有利于植物大量繁殖的古气候的有机匹配是控制煤层形成的主要因素。
所以,鄂尔多斯盆地也慢慢成为科学研究重点地区,对于构造活动比较微弱的鄂尔多斯盆地来说,开展鄂尔多斯盆地古生界沉积演化特征的研究,有利于搞清储存空间的展布规律和聚煤区丰富的地段。
鄂尔多斯盆地经过了这么些个阶段的作用,如今盆地呈一个矩形形状,南北向分布,盆内大多都是水平分布着地层,倾角在3度左右,构造并不复杂,次级构造不发育。
通过调查可以发现,盆内的盆地构造与盆缘的盆地构造有着很大的差异,并且鄂尔多斯盆地古生代以来的沉积面貌以及聚煤格局会在很大程度上受到构造格局的影响,也需要充分的考虑不同时期的活动特点。
1鄂尔多斯盆地地质特征(1)构造特征。
鄂尔多斯盆地主要是由吕梁期形成的统一固化结晶基底-太古代和古元古代变质岩与中、新元古代以后形成的盖层沉积构成,具有明显的二元结构。
因此它属于一克拉通边缘拗陷盆地。
(2)沉积背景。
鄂尔多斯盆地延长组是一套典型的内陆淡水湖泊三角洲沉积。
陆相断陷盆地的拉张裂陷作用具有阶段性、旋回性的特点,是一个不连续的幕式沉降过程,其特有的这种沉降作用控制了盆地充填物的旋回性。
(3)岩石特征。
砂岩储层中杂基的主要成分是水云母和高岭石,平均含量可达10%左右;胶结物的主要成分是硅质(石英)和碳酸盐(方解石、白云石)以及绿泥石、浊沸石等自生粘土矿物,含量约为6%。
沉降盆地地壳演化过程与沉积物源分析在地质学中,沉降盆地指的是一种地质形态,是由地壳在长时间内的沉降过程形成的凹陷区域。
沉降盆地的形成通常与构造运动有关,地壳的下沉使得周围的山脉逐渐形成,沉降盆地才得以展现。
本文将探讨沉降盆地的地壳演化过程以及分析沉积物的源。
在地壳演化过程中,沉降盆地的形成与断层运动密切相关。
断层是指地壳中岩石断裂的产物,当断层活动较为频繁时,地壳容易产生下沉现象,从而形成沉降盆地。
这种地质过程在地质历史上非常常见,形成了许多著名的沉降盆地,例如西伯利亚的祖母绿盆地和美国的科罗拉多盆地。
沉降盆地的地壳演化过程通常具有一定的时空性。
首先,地壳的下沉是一个漫长的过程,可能需要数以百万年甚至更久的时间。
其次,在地壳沉降的同时,周围地区的山脉逐渐抬高,形成了“盆山共生”的现象。
这种时空关系使得沉降盆地在地理上具有一定的特征。
沉降盆地的形成不仅与地壳演化有关,还与沉积物的源有密切的联系。
地壳沉降会导致海平面上升,使得附近的河流和河口发生变化。
沉积物源分析可以通过研究沉积物中的岩石组成、矿物成分以及化学元素等一系列信息,来追溯沉积物的来源以及沉降盆地的地质背景。
沉积物中的岩石组成可以反映沉积物的源地。
不同类型的岩石具有不同的特征,通过研究岩石组成可以判断沉积物是来自陆地还是海洋。
例如,如果沉积物中含有富含石英的砂岩,通常可以推断出其来自陆地的河流冲积作用。
矿物成分也是分析沉积物源的重要依据。
不同的地质环境中形成的岩石通常具有不同的矿物组合。
通过研究沉积物中的矿物成分,可以判断岩石的类型以及可能的产地。
例如,砂岩中含有石英、长石和云母等矿物,而碳酸盐岩中则富含方解石和白云石。
化学元素的分析也能提供有关沉积物源的线索。
不同岩石中的化学元素组成通常也有所差异,通过测量沉积物中的化学元素含量以及比值,可以推断出其来自不同的岩石类型。
例如,富含镁和铁的沉积物通常与侵入性岩石相关,而富含矽和铝的沉积物则可能与火山活动有关。
造山带沉积盆地的沉积物特征分析在地质学中,造山带沉积盆地是指位于山脉构造带附近的地区,其基底通常由造山过程中隆起的岩浆岩或变质岩构成。
这些盆地是由构造力量产生的压力和剪切力驱动的地壳变形所形成的。
造山带沉积盆地具有独特的地质特征和丰富的沉积物,通过对其沉积物特征的分析,我们可以了解其形成机制和地质演化过程。
首先,造山带沉积盆地的沉积物主要由来自周围山脉的物质组成,这包括岩石碎屑、土壤、岩浆和溶解物质等。
这些物质在运动中被侵蚀和运输到盆地中,并在盆地内沉积下来。
由于盆地的局限性和构造力量的作用,盆地内的沉积物通常形成薄层堆积,呈现出一定的层状结构。
其次,造山带沉积盆地的沉积物特征在垂直和水平方向上都具有明显的变化。
垂直方向上,沉积物呈现出从下到上的时序堆积,可以通过对上层沉积物的分析推测下一层的沉积环境和物质来源。
水平方向上,沉积物的组成和性质会随着盆地的扩张和收缩而变化,形成不同的相区和相带。
相区之间的过渡通常以不同类型的岩石或沉积物的交互界面为界,反映了不同的沉积环境和岩石类型。
此外,造山带沉积盆地的沉积物还具有明显的岩石学和沉积学特征。
岩石学特征包括岩石的成分、颗粒大小和矿物类型等。
常见的沉积岩包括砂岩、页岩、泥岩等,其中砂岩是由砂粒沉积而成的岩石,页岩是由粘土矿物沉积而成的岩石,泥岩是由粘土和颗粒细小的碎屑沉积而成的岩石。
沉积学特征包括沉积构造、沉积结构和古地理环境等。
沉积构造是指沉积物中的变形、折叠和断裂等构造特征,沉积结构是指沉积物的层理、波痕和沉积结构面等。
通过对这些岩石学和沉积学特征的分析,我们可以推测沉积物的沉积环境、沉积过程以及地质历史。
最后,造山带沉积盆地的沉积物特征还反映了地球表面的构造演化过程。
在造山过程中,山脉的隆起和侵蚀剥蚀使得盆地内的沉积物发生了复杂的变化。
通过对盆地中沉积物的分析,可以追溯地壳的运动、局部隆升和地质事件的发生。
例如,沉积物中的断裂和隆起构造可以反映出地壳的应力状态和构造活动性,而不同时期的沉积物可以揭示地质历史的变化和构造演化的时间序列。
沉积盆地演化与沉积体系分析沉积盆地是地球表面形成的一种地质结构,它是地质历史中重要的组成部分。
沉积盆地演化与沉积体系分析是研究沉积盆地形成、演化和沉积过程的重要方法和手段。
本文将以沉积盆地演化与沉积体系分析为主题,探讨其背景、原理和应用。
一、背景沉积盆地是由地质构造运动和地貌发育造成的沉积洼地,不同的地质构造和地貌特征会形成不同类型的沉积盆地。
沉积盆地的形成与地球动力学、火山活动、构造抬升、海平面波动等因素密切相关。
沉积盆地演化与沉积体系分析旨在通过研究盆地的形成演化过程,了解沉积盆地的地质历史和沉积特征,为资源勘探和环境保护提供依据。
二、原理1. 沉积盆地形成演化原理沉积盆地的形成与构造运动有着密切关系。
在板块构造运动的作用下,地壳发生抬升、陷落或拗曲等变形,形成了沉积盆地。
构造运动的类型和过程决定了沉积盆地的类型和特征。
火山活动、地震等地质灾害事件也会对沉积盆地的形成和演化产生影响。
2. 沉积体系分析原理沉积体系是沉积形成过程中沉积物在空间和时间上的整体组织。
通过对沉积体系的研究,可以了解盆地的沉积环境、沉积相、岩性特征等信息。
沉积体系分析主要通过野外地质调查、岩心取样、地震勘探等手段,结合沉积学、地球物理学和地质学等学科知识,对不同地层进行分析和解释。
三、应用沉积盆地演化与沉积体系分析在石油地质、矿产资源勘探和环境保护方面具有重要的应用价值。
1. 石油地质沉积盆地是石油形成和富集的重要地质环境,通过对沉积盆地的演化和沉积体系的分析,可以了解盆地内石油保存和运移的规律,为石油勘探提供依据。
根据盆地的构造、沉积相和沉积速度等信息,可以预测石油的分布和储量,指导勘探工作。
2. 矿产资源勘探不同类型的沉积盆地具有不同的矿产资源潜力,通过对盆地的演化和沉积体系的分析,可以确定盆地内矿产资源的分布规律和富集条件。
例如,富含煤炭、铀矿、金矿等资源的盆地,通过分析沉积体系和沉积相,可以找出矿点和矿床的分布范围,指导开采和利用。
第二节盆地分析来源 /oldweb04/show.php?artid=439盆地分析是沉积盆地研究最为重要的内容之一,早期的盆地分析研究内容较为局限,主要侧重于盆地的地层、沉积特征和岩相古地理方面的研究。
近年来,越来越多的地学者把沉积盆地作为实体进行地球动力学的综合研究,它包括了盆地形成的构造环境及其力学机制、盆地的沉积充填史、盆地热演化史以及盆地流体等方面的研究。
沉积盆地作为地球表面最基本的构造单元之一(大约占地球表面大陆2/3的面积由沉积地层组成),其不仅记录了岩石圈动力学过程和板块相互作用的历史,而且蕴藏着人类不可缺少的能源和其他矿产资源。
近年来,与盆地分析相关学科的研究和矿产资源开发极大地促进了沉积盆地的研究。
沉积盆地的动力学正在成为盆地研究领域的主要趋向,并将成为跨世纪的固体地球科学研究规划中的重要组成部分,其目的在于认识盆地的成因,进而揭示其全部演化历史中的动力学过程,并探求其内在驱动力。
一、盆地分析的概念与发展历史Conybeare(1979)认为盆地分析是指将盆地的发展序列划分成岩性的、时间地层的、生物地层的和生态的单元,进一步了解气候和沉积环境以及各单元之间的古地理关系,了解构造作用对盆地成因的影响等。
Miall(1984)指出,盆地分析是地层学、构造学和沉积学等的综合分析,其最重要的研究结果是揭示沉积盆地的古地理演化。
近年来,盆地分析的概念有了更广泛的含义,许多学者认为盆地分析是将沉积盆地作为一个完整的研究单元,以盆地演化为线索,系统地研究盆地的构造发展史、沉积充填史、埋藏史、热演化史,建立盆地演化模式,并研究油气和其他沉积矿产的学科。
总的来说,盆地分析在20世纪60年代以前处于初期发展阶段,最初只限于沉积学和岩相古地理学的研究,后来,Krumbeihe和Sloss等认识到了大地构造对盆地及其岩相起到了最根本的控制作用,并将构造与沉积作用的相互关系研究贯穿于盆地分析的各个阶段。
沉积学与盆地分析的新理论与方法沉积学是地质科学的基础学科之一,是研究沉积物的物质成分、结构构造、分类及其形成作用,以及沉积环境和分布规律的一门科学。
研究对象是沉积物和沉积作用,包括研究未曾石化和已经石化的天然沉积物及自然环境中沉积作用的过程和机理。
沉积学作为地质科学的一个分支,它与流体力学和地层古生物学密切相关,与物理学、化学、海洋学、气象学、水文学、土壤学、建筑学也有重要联系。
沉积学作为地质学中的一门分支学科在过去三十年,特别是近十几年来已取得了长足的进展,并且在科研和生产中发挥着越来越大的作用。
这是因为沉积学研究不仅涉及像地球岩石圈演化这样的基本理论问题,而且也关系到如石油、天然气、煤等能源和铁、锰铝铅锌铜等矿产资源的开发和利用,海港建设、河道疏浚、谁看防淤及环境保护等一系列实际问题的解决。
1沉积环境及其演化1.1碳酸盐和陆源碎屑混合沉积体系近年来,混合沉积机制研究的突破主要体现在以下两个方面:(1)海平面变化对混合沉积体系的影响及其环境效应。
在潮坪、潮缘和浅海滨岸带,海平面变化对混合沉积环境影响最大,可以形成广泛的混合沉积;在平坦的碳酸盐台地,海平面上升可使沉积速率增大,造成混合沉积发育,而海平面下降则导致台地浅水区缩小和台地顶部暴露,减少了混合沉积体系的机率出现;在碳酸盐缓坡,无论海平面上升还是下降,缓坡中均可见到数量不等的混合沉积。
(2)构造升降通过控制盆地类型、物源区、沉积区的分布形态以及物源供给量来控制混合沉积,对活动大陆边缘混合沉积体系的影响尤其明显。
此外,风暴流、浊流及等深流等突发事件作用,通过对原有沉积物的改造和实现跨环境搬运、再沉积而形成浅海-盆地相混合沉积;气候通过冰期-间冰期的变化影响海平面的变化和物源的供给控制混合沉积体系。
1.2事件沉积学事件沉积学是从“灾变论”复活、发展而形成的边缘学科。
风暴、不整合、季纹泥沉积、洪泛面以及大洋缺氧等事件是一系列区域性甚至洲际性事件,而磁极倒转、气候突变、构造巨变、星球撞击(陨击)、凝灰/火山灰沉降、海平面上升、冰川作用、生物绝灭等事件具全球性。
沉积盆地分析沉积盆地是由各种沉积及构造要素有机地组合在一起的包括格架和各级构成单位的整体系统, 其演化过程中各项参数的变化显示了有序性, 如充填序列和构造序列, 并受控于多重地质因素相互作用的地球动力系统。
沉积盆地分析的理论和方法正由于地质学领域多学科的最新进展而成为一种较为完整的认识系统和方法体系。
一、盆地分析主要内容盆地研究领域的下列重要进展正在推动着较完整的盆地分析科学系统的形成:(1)层序地层学以及与之密切相关的沉积体系分析、旋回和事件地层分析等为盆地充填研究带来了新的概念体系与方法;(2)构造一地层分析使盆地的构造演化与沉积充填的关系更为密切地结合起来;(3)盆地的形成机制与主要类型盆地的动力学模型, 深部地球物理研究则提供了重要支柱;(4)盆地热历史研究的理论与新技术;(5)盆地模拟技术;(6)盆地演化与地球深部背景和板块相互作用的关系;(7)盆地演化过程中油气的形成、运移与聚集以及成矿作用的关系。
沉积盆地的基本思想就是把盆地作为一个基本研究单元,进行整体解剖和综合分析。
这种旨在阐明沉积环境和气候环境,了解各地层单元形成时的沉积条件和它们之间的古地理关系,探讨构造作用对盆地成因、盆地形成期的构造格架和现今构造轮廓所施加的影响。
这种方法正符合系统中具体分析结构怎样决定系统功能的原则。
油气的形成、演化与现今存在的形式,是整个盆地演化过程中各结构要素间相互作用达到动态平衡的产物,故整体性研究对含油气盆地分析具有更重要的现实意义。
通过地质、地球物理等基础观测资料, 可对盆地进行以下五个方面的分析:沉积分析、层序地层分析、构造分析、能量场与流体系统分析、背景分析。
(一)沉积分析通过能源盆地分析的多年实践可将主要参数概括为四类:(1)沉积参数包括盆地充填的岩性特征、充填序列、沉积体系的配置等;(2)构造参数包括盆地构造架、地层厚度和分布、古构造运动面、低级别同生构造的类型和配置、充填期后形变特征等;(3)热过程参数包括同期和准同期岩浆活动,反映热历史的各项指标,如镜质体反射率,粘土矿物的变化和矿物包体测温等;(4)成矿作用参数包括矿体的质量和数量参数,以煤盆地分析为例,主要煤体分带性和煤质分带性。
#沉积盆地分析的原理与应用
##1. 引言沉积盆地是地球表面上的重要地质形态之一,由于其丰富的沉积物、特殊的地质环境以及重要的经济价值,对于沉积盆地的分析和研究具有重要意义。
本文将介绍沉积盆地分析的原理与应用,并以列点的方式展开讨论。
##2. 分析原理 - 沉积盆地演化理论:沉积盆地分析的基础是沉积盆地演化理论。
沉积盆地演化理论主要包括构造、地质、气候等因素对沉积盆地形成与演化的影响。
- 地层学:地层学是沉积盆地分析的重要工具和方法。
地层学主要研究沉积盆地中
各个地层的分布、特征、变化规律以及地层联系等。
- 沉积学:沉积学研究沉积物
的成因、性质和分布等,是分析沉积盆地的重要手段。
沉积学可以揭示沉积环境、沉积作用以及沉积过程等信息。
##3. 应用领域沉积盆地分析在以下几个领域有广泛应用:
•石油地质:沉积盆地是石油储藏的重要区域。
通过沉积盆地分析,可以揭示石油地质条件、储量分布规律,对石油勘探和开发具有重要指导意义。
•地质灾害:沉积盆地常常是地质灾害的高发区。
通过沉积盆地分析,可以研究地质灾害的成因、演化过程和预测预警等,为防灾减灾提供科学依据。
•环境地质学:沉积盆地中保存了丰富的环境信息,通过沉积盆地分析,可以研究环境变化、污染来源等,为环境保护和治理提供依据。
•水文地质学:沉积盆地在地下水资源的储存和流动中起重要作用。
通过沉积盆地分析,可以研究地下水资源的分布、充沛性和可持续利用性等,对于地下水资源管理具有重要意义。
##4. 分析方法沉积盆地分析的主要方法如下:
•剖面观测:通过野外地质调查和钻孔观测等,获取沉积盆地的剖面数据。
剖面观测可以揭示地层的分布、倾向、倾角以及岩性等信息。
•地球物理勘探:利用地震勘探、电磁勘探、重力勘探等手段,获取沉积盆地地下的构造和岩性等信息。
地球物理勘探可以揭示沉积盆地的深部结构和地质变化等。
•沉积物分析:利用化学分析、物理分析等方法,对沉积物进行分析。
沉积物分析可以获得沉积环境、沉积物来源、沉积物组成等信息。
##5. 结论沉积盆地分析是一项重要的地质研究方法,可以揭示沉积盆地的演
化历史、构造特征以及环境变化等。
沉积盆地分析在石油地质、环境地质学、地质灾害和水文地质学等领域有广泛的应用价值。
通过剖面观测、地球物理勘探和沉积物分析等方法,可以获取沉积盆地的相关数据,为科学研究和资源开发提供依据。