高等数学(下)练习1答案
- 格式:doc
- 大小:66.50 KB
- 文档页数:2
练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。
习题1-61. 计算下列极限:(1)xx x ωsin lim 0→; 解 ωωωωω==→→x x xx x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x . (3)xx x 5sin 2sin lim 0→; 解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x . (4)x x x cot lim 0→; 解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解 2)sin (lim 2sin 2lim 2cos 1lim sin 2cos 1lim 20220200===-=-→→→→x x x x x x x x x x x x x . 或 2s i n l i m 2s i n s i n 2l i m s i n 2c o s 1l i m 0200===-→→→x x xx x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xxx n n n n n =⋅=∞→∞→22sin lim 2sin 2lim . 2. 计算下列极限:(1)xx x 10)1(lim -→;解11)(10)1()(1010})](1[lim {)](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x . (2)xx x 10)21(lim +→;解 22210221010])21(lim [)21(lim )21(lim e x x x x x x x xx =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 222])11(lim [)1(lim e xx x x x x x =+=+∞→∞→. (4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '. 证明 仅对x →x 0的情形加以证明.设ε为任一给定的正数, 由于A x g x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ1>0, 使得当0<|x -x 0|<δ1时, 恒有|g (x )-A |<ε, 即A -ε<g (x )<A +ε.由于A x h x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ2>0, 使得当0<|x -x 0|<δ2时, 恒有|h (x )-A |<ε, 即A -ε<h (x )<A +ε.取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ时,A -ε<g (x )<A +ε与A -ε<h (x )<A +ε同时成立, 又因为g (x )≤f (x )≤h (x ),所以 A -ε<f (x )<A +ε,即 |f (x )-A |<ε,因此A x f x x =→)(lim 0.证明 仅对x →x 0的情形加以证明.因为A x g x x =→)(lim 0, A x h x x =→)(lim 0, 所以对任一给定的ε>0, 存在δ>0, 使得当0<|x -x 0|<δ时, 恒有 |g (x )-A |<ε及|h (x )-A |<ε,即 A -ε<g (x )<A +ε及A -ε<h (x )<A +ε.又因为 g (x )≤f (x )≤h (x ),所以 A -ε<f (x )<A +ε,即 |f (x )-A |<ε,因此A x f x x =→)(lim 0.4. 利用极限存在准则证明:(1)111lim =+∞→nn ; 证明 因为nn 11111+<+<, 而 11l i m =∞→n 且1)11(lim =+∞→nn , 由极限存在准则I , 111lim =+∞→nn . (2)1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为πππππ+<++⋅⋅⋅++++<+2222222)1 211(n n n n n n n n n n , 而 1l i m 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 1)1 211(l i m 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2, 22+, 222++, ⋅ ⋅ ⋅ 的极限存在; 证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界.当n =1时221<=x , 假定n =k 时x k <2, 则当n =k +1时, 22221=+<+=+k k x x , 所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界. 再证明数列单调增. 因为nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增. 因为数列{x n }单调增加有上界, 所以此数列是有极限的.(4)11lim 0=+→n x x ; 证明 当|x |≤1时, 则有1+x ≤1+|x |≤(1+|x |)n ,1+x ≥1-|x |≥(1-|x |)n ,从而有 ||11||1x x x n +≤+≤-.因为 1|)|1(lim |)|1(lim 00=+=-→→x x x x , 根据夹逼准则, 有11lim 0=+→n x x . (5)1]1[lim 0=+→xx x . 证明 因为x x x 1]1[11≤<-, 所以1]1[1≤<-x x x . 又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有1]1[lim 0=+→x x x .。
《高等数学》期末练习题1答案题目部分,(卷面共有25题,100分,各大题标有题量和总分)一、选择(10小题,共30分)1-5.BCAAC 6-10.ABADC 二、填空(5小题,共10分)1.答案:π-arccos 452.答案:平面y x =上的所有点。
3.答案:-16xy4.答案:2220().d f r rdr πθ⎰⎰5.答案:1201611+-三、计算(8小题,共48分)1.答案:过点P 1021(,,)-,l 1方向向量为S 1221=-{,,},过点P 2131(,,)-,l 2方向向量为S 2421=-{,,},n S S P P =⨯==-12126012152{,,},{,,}距离为d P P n n n==⋅=Prj ||/||12152.答案:cos cos αβ==22∂∂∂∂z xzy==11,所以∂∂z n =+=222223.解:d d d u u x x u y y =+∂∂∂∂=-+⎛⎝ ⎫⎭⎪1x e y x y xx y yx sin cos d d 4.解:由z x z y x y =-==+=⎧⎨⎩220240,得D 内驻点(1,-2),且z (,)1215-=-在边界x y 2225+=上,令L x y x y x y =+-+-++-2222241025λ()由L x x L y y L x y x y =-+==++==+-=⎧⎨⎪⎩⎪2220242025022λλλ得x y =±=525, ,(()zz 5251510552515105-=--=+比较后可知,函数z 在点(,)12-处取最小值z (,)1215-=-在点(-525,处取最大值()5101552,5+=-z 。
5.解:原式1212001==⋅=⎰⎰⎰⎰dx xydy xdx ydy 6.解:212321xxI dx dy x y zdz=⎰⎰⎰2221027112168516xdx xy dy x dx ===⎰⎰⎰7.解:消z 后,可得L 的参数方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z t y t x sin 21sin 21cos 0t2πt t t t t s d d cos 21cos 21sin d 222=++=,故⎰Lsxyz d 61sin 21sin 21cos 2=⋅⋅=⎰πtdt t t 8.答案:()41122lim lim1=++=∞→+∞→n n a a n nn n ∴级数的收敛半径41=R 四、判断(2小题,共12分)1.解:设f x x x()=+⎛⎝ ⎫⎭⎪1221,于是()ln ()ln f x x x=-+22取极限lim ln ()lim ln()lim x x x f x x x xx →∞→∞→=-+=-+202222=0故lim ()x f x →∞=1,从而有lim n nn →∞+⎛⎝⎫⎭=12121,故而12211n nn +⎛⎝ ⎫⎭⎪=∞∑发散。
第一章函数的极限与连续【基本要求】1、熟练掌握基本初等函数的表达式、图形及主要性质;2、了解初等函数的概念,了解极限的直观概念(一种变化趋势),无穷小量、无穷大量的概念;3、熟练掌握函数极限四则运算法则和无穷小量的性质,掌握求极限的各种方法;4、掌握两个重要极限,会用它求有关极限问题;5、理解函数的连续性和连续函数的概念,会判断一、二类间断点,知道闭区间上连续函数的性质.第一节函数【知识要点】邻域、函数、基本初等函数、初等函数、复合函数、分段函数的概念;求定义域、值域的方法;建立函数关系.【基本训练】x+<的中心是2吗?1、邻域21答案:-22、确定函数的两要素是定义域和值域吗?答案:不是。
确定函数的两要素是定义域和对应法则。
3、函数有哪几种表示方法?答案:解析法、图示法、表格法。
4、我们常用什么方法研究函数?答案:图示法。
f x=?5、函数()答案:是y=是否为初等函数?6、函数x答案:是。
7、你能举出一个既是奇函数又是偶函数的函数吗? 答案:()0f x =.8、奇函数的图形以( )对称;偶函数的图形以( )对称. 答案:原点;y 轴. 【能力提高】 一、单项选择题:1、C2、C3、B4、C5、D 二、确定下列函数的定义域:(1)y = (2) lg(1)y x =-+答案:[)(]2112,,- 答案:()11,- (3) x y cos = (4)21arcsin 5x y +=答案:2222k ,k ,k Z ππππ⎡⎤-+∈⎢⎥⎣⎦答案:[]22,- (5)ln(sin )y x = (6) ⎩⎨⎧<<-<≤--=20301x x x x y ,,答案:()2(21)k ,k ,k Z ππ+∈ 答案:[)()1002,,- 三、下列各题中()f x 和()g x 是否相同?(1) 3223()()()f x x ,g x x == (2) 2()()f x x,g x == 答案:不同 答案:不同(3) 22()1()sin cos f x ,g x x x ==+ (4) ()()f x x ==答案:相同 答案:相同四、已知()210201113x x f x x x x -≤<⎧⎪=≤<⎨⎪-≤≤⎩,求:(05)(0)(2)f .,f ,f -. 答案:(05)1(0)2(2)1f .,f ,f -=-==五、已知1(1f x x ⎛⎫= ⎪⎝⎭,0x >,求()f x . 答案:令1u x =,1x u=. ()1111f u u u ⎛⎛=+=+ ⎝⎝= ()f x =六、已知()f x =[]1()f ,f f x x ⎛⎫⎪⎝⎭.答案:11f x ⎛⎫=⎪⎝⎭;[]()f f x ==.七、确定下列函数的奇偶性:(判定奇偶性,先要求定义域) (1) ()4cos f x x x = (2) ()1cos xf x e=答案:偶函数 答案:偶函数 (3) ()1lg1xf x x-=+ (4) ()ln f x x = 答案:奇函数 答案:非奇非偶函数八、下列各题的函数是由哪些简单函数复合而成的? (1) ()21sin 2xf x =答案:21()2,sin u f u u v ,v w,w x==== (2) ()2sin (cos3)f x x =答案:()2,sin cos ,3f u u u v,v w w x ====(3) ()f x =答案:()21ln(sin 1)2f x x =+,()21ln 1sin 2f u u,u v ,v x ==+=(4) arctan y =答案:22,arctan 1y u u v,v x ===-九、在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解: D A R O h EBC设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R直角三角形AOE 中,利用勾股定理得AE =则上底=2AE =故((22hS R h R =+=+第二节 数列的极限【知识要点】数列概念、数列极限存在的定义. 【基本训练】 1、数列是函数吗? 答案:是2、如何在数轴上和平面直角坐标系上表示数列?3、下列做法是否改变数列的敛散性?(1)任意改变数列的有限项; 不会 (2)各项同取绝对值;会 (3)各项乘以同一常数k ; 会 (4)去掉所有偶数项.会 4、如果数列{}n x 极限存在,lim n n x a →∞=,lim n n x b →∞=,则a 与b 相等吗?答案:是5、收敛的数列一定有界吗? 答案:是6、无界的数列会收敛吗? 答案:否7、有界的数列一定收敛吗? 答案:不一定 【能力提高】观察下列数列的变化趋势,对存在极限的数列,写出它的极限:(1)1(1)nn x n+-= 答案:0(2)(1)nn x n =+- 答案:不存在(3)1sinn x n = 答案:0 (4)sin n nx n= 答案:0(5)sin n x n π= 答案:0 (6)sin(2)2n x n ππ=+ 答案:1(7) cos n x n π= 答案:不存在 (8)1n x = 答案:不存在(9)2121n n nx n n-⎧⎪⎪=⎨+⎪⎪⎩ 答案:2第三节 函数的极限【知识要点】函数极限、左右极限的概念、函数极限存在与左右极限的关系. 【基本训练】1、在讨论函数极限时自变量x 的变化趋势大体分为哪两种情况? 答案:0x ,x x →∞→2、数列极限和函数极限的区别是什么?3、函数()f x 在点0x 处无定义,则函数()f x 在点0x 处一定无极限吗? 答案:不一定4、函数()f x 在点0x 处有定义,且函数()f x 在0x 处极限存在,则极限值一定为0()f x 吗? 答案:不一定5、函数()f x 在点0x 处左右极限一定相等吗?如果函数()f x 在点0x 处极限存在,它在点0x 处左右极限一定相等吗?答案:不一定;是6、如果函数()f x 在点0x 处左右极限存在且相等,函数()f x 在点0x 处极限存在吗? 答案:存在n 为奇数n 为偶数【能力提高】一、从函数的图形观察极限是否存在,若有极限等于多少? (1) 0lim cos x x →=( 1 ), 2l i m c o s x x π→=( 0 ), lim cos x x →+∞=( 不存在 ), l i m c o s x x →-∞=(不存在 );(2)0lim arctan x x →=( 0 ), 1l i m a r c t a n x x →=(4π), lim arctan x x →+∞=(2π ), l i m a r c t a n x x →-∞=(2π- ),l i m a r c t a n x x →∞=(不存在 );(3)()x f x a = (1)a >当03x ,x ,x ,x →→→+∞→-∞时; 答案:0lim 1xx a →=,33lim xx a a →=,lim xx a →+∞=+∞,lim 0xx a →-∞=.(4)当111x ,x ,x -+→→→时,2211()311x x f x x x ⎧-<=⎨+≥⎩ 的极限.答案:21lim (21)1x x -→-=,1lim (31)4x x +→+=,11lim ()14lim ()x x f x f x -+→→=≠=,1lim ()x f x →不存在.二、单项选择题: 1、C 2、D 3、B三、设函数20()0x x a x f x ex ⎧+<=⎨>⎩ 在0x →时极限存在,求常数a 的值.答案:2lim ()lim 1xx x x a a,e -+→→+==,因为函数在0x →极限存在,故左极限和右极限相等,得1a =.四、设函数1121()21xxf x -=+,讨论函数在0x →时极限是否存在.答案:11112121lim 1lim 12121xxx x xx,-+→→--=-=++,0lim ()x f x →不存在.第四节 无穷小量与无穷大量【知识要点】无穷小量、无穷大量的概念与性质、无穷小量与无穷大量的关系. 【基本训练】 1、零是无穷小量吗? 答案:是2、若lim ()x af x A →=,则在x a →时,()f x A -是无穷小量吗?答案:是3、有限个无穷小量的和、差、积仍然为无穷小量吗? 答案:是4、无穷小量的商一定是无穷小量吗? 答案:不一定5、无穷小量与有界函数之积仍然为无穷小量吗? 答案:是6、无穷大量乘任意常数一定是无穷大量吗? 答案:不一定7、无穷大量与无穷大量之差一定是无穷小量吗? 答案:不一定8、当2x →时,下列函数中不是无穷小量的是( C ). A. 38x -B. 2sin(4)x -C. 2x e- D. ln(3)x -【能力提高】一、下列函数在什么情况下是无穷小量?什么情况下是无穷大量? (1)xe -; (2)ln x ; 答案:x →+∞,xe -为无穷小; 答案:1x →,ln x 为无穷小;x →-∞,xe -是无穷大 0x +→,x →+∞,ln x 为无穷小(3)21x x +-; (4)23x x-; 答案:2x →-,21x x +-为无穷小 答案:3x →,23x x-为无穷小1x →,21x x +-为无穷大 0x →,23x x-为无穷大(5)51x -; (6)115x -. 答案:0x →,51x -为无穷小 答案:0x →,115x -为无穷小 x →+∞,51x -为无穷大x →-∞,115x -为无穷大二、当x →∞时,将()f x 表示为一个常数与无穷小量之和.(1)3321()1x f x x -=+;答案:3321lim 21x x x →∞-=+,33()21f x x =-+,在x →∞,331x -+为无穷小(2) 21()31x f x x -=+. 答案:212lim313x x x →∞-=+,25()33(31)f x x =-+,在x →∞,53(31)x -+为无穷小第五节 函数极限的运算【知识要点】函数极限的四则运算法则、两个重要极限及应用、无穷小量的比较. 【基本训练】1、下面的解法对吗?为什么?0011lim sinlim limsin 0x x x x x x x→→→=⋅= 答案:错2、下面的解法对吗?为什么?221111212lim lim lim 01111x x x ()x x x x→→→-=-=∞-∞=---- 答案:错3、当0x →时,22x x -与23x x -哪一个是更高阶的无穷小量? 答案:当0x →时,23x x -是比22x x -更高阶的无穷小量4、当1x →时,无穷小量1x -与(1)31x -,(2)21(1)2x -是否同阶?是否等价? 答案:3111lim13x x x →-=-,当1x →时,无穷小量1x -与31x -是同阶无穷小量。
高等数学学习指导及练习(下册)基础题答案第8章 空间解析几何与向量代数8.4 基 础 题8.4.1 第8章 练习1一、选择题1. 点()1,1,1关于xOy 坐标面对称的点是 ( )A. ()1,1,1-B. ()1,1,1-C. ()1,1,1---D. ()1,1,1- 2. 点()2,3,1关于原点的对称点是 ( )A. ()2,3,1--B. ()2,3,1--C. ()2,3,1-D. ()2,3,1--- 3. 点()4,3,5--与xOy 面的距离是 ( )A. 4B. 5C. 3 4. 点()4,3,5--与原点的距离是 ( )A. 4B. 5C. 5. 在z 轴上与点()4,1,7A -和点()3,5,2B -等距离的点是 ( )A. ()0,0,9B. ()0,0,9-C. 140,0,9⎛⎫ ⎪⎝⎭D. 140,0,9⎛⎫- ⎪⎝⎭6. 设358m i j k =++,247,n i j k =--34p i j k =+-则43a m n p =+-在X 轴上投影为 ( ) A. 3 B. 2 C. 5 D. 157. 设358m i j k =++,247,n i j k =--34p i j k =+-则43a m n p =+-在Y 轴上的分量为 ( ) A. 5j B. 4j - C. j D. 7j8. 已知两向量5a mi j k =+-,3b i j nk =++平行,则常数m ,n 分别为 ( )A. 115,5B. 115,5-C. 115,5-D. 115,5--高等数学(下册)学习指导及练习二.填空题1. 已知||3,a =||4,b =2,3a b π=,则||a b += .2. 已知||3,a =||4,b =2,3a b π=,则(32)(2)a b a b -+= .3. 已知(4,2,4),(6,3,2)a b =-=-,则a b ⨯= .4. 已知(4,2,4),(6,3,2)a b =-=-,则,a b = .5. 同时垂直于向量22a i j k =++和453b i j k =++的单位向量的为 .6. 已知3OA i j =+,3OB j k =+,,则OAB ∆的面积为 . 7. 已知两点(),(3,0,2)P Q ,则向量PQ 的方向角分别为 .三.计算题1. 已知a 的起点为()2,1,0,||3,a =a 的方向余弦为11cos ,cos 22αβ==,求向量a .解:2221cos 1cos cos 2γαβ=--=,cos 2γ=±,11(,,)222a a =⨯±33(,,22=. 2. 由(1,1,1)A 、(3,0,2)B 、(2,2,1)C -所确定的三角形中,求AC 边上高的长度.解:三角形的面积1122S AB AC AC h =⨯=⨯⨯,h =第8章 空间解析几何与向量代数8.4.2 第8章 练习2一、选择题1. xOz 面上的抛物线25z x =绕X 轴旋转所成的旋转曲面的方程是( ). A .225y z x += B .225x z y += C .225y z x -= D .225x z y -=2. 方程2249x y z =+所表示的曲面是 ( ).A. 椭圆抛物面B. 双曲抛物面C. 抛物面D. 椭球面3. 旋转抛物面22(04)z x y z =+≤≤在yOz 坐标面上的投影是 ( ).A .2240x y z ⎧+≤⎨=⎩ B .2(04)0z y z x ⎧≥≤≤⎨=⎩ C .2240x z y ⎧+≤⎨=⎩ D .2(04)0z x z y ⎧=≤≤⎨=⎩4. 过点(3,0,5)M -且与平面282x y z -+=平行的平面方程为 ( ).A. 281x y z --=B. 281x y z -+=C. 282x y z --=D. 282x y z -+= 5. 过Z 轴和点(3,1,2)--的平面方程 ( ).A. 30x y +=B. 30x y +=C. 80x y -=D. 82y x += 6. 过(111)(222)---,,,,,和(1,1,2)-三点的平面方程 ( ).A. 320x y z -+=B. 320x y z --=C. 320x y z +-=D. 320x y z ++= 7. 平面2250x y z -++=与xOz 坐标面的夹角余弦是 ( ). A .13 B .23 C .13- D .23-8. 过点(2,2,1)A -且与平面324x y z -+=垂直的直线方程为 ( ).A. 221312x y z --+==- B. 221312x y z --+==--C. 221312x y z -++==-- D . 221312x y z -++==二.填空题1. 向量(1,0,1)-与向量()2,0,k 垂直,则k = .高等数学(下册)学习指导及练习2. 向量()1,1,1--与向量()2,2,k -平行,则k = .3. 过点(2,2,1)A -且方向角为2,,343πππ的直线方程为 . 4. 直线300x y z x y z ++=⎧⎨--=⎩和平面10x y z --+=的夹角为 .5. 点(1,2,0)P -在平面210x y z +-+=上的投影为 .6. 点(3,1,2)P --到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离为 .三.计算题1. 求过点(1,2,1)-且与两平面21,210x y z x y z +-=+-+=平行的直线方程. 解:所求直线的方向向量为1123121i j ks i j k =-=-+-所求直线方程为: 121311x y z +--==-.2. 求两异面直线9272,431292x y z x y z -++-====--的距离. 解:记A (9,-2,0),B (0,-7,2),与两条异面直线都垂直的向量431151030292i j k n i j k =-=--+-,245Pr 735n AB s d j AB s====.第九章 多元函数微分法及其应用9.4 基 础 题9.4.1 第9章 练习1一、选择题 1.函数z =)。
高等数学习题册(上册)目录习题1-1 函数 (1)习题1-2 常用的经济函数 (5)习题2-1 极限 (9)习题2-2 无穷小与无穷大,极限运算法则 (13)习题2-3 极限存在准则,两个重要极限及无穷小的比较 (17)习题2-4 函数的连续性 (21)习题2-5 闭区间上连续函数的性质 (25)第二章综合题 (29)第二章自测题 (36)习题3-1 导数概念 (40)习题3-2 求导法则与基本初等函数求导公式(一) (44)习题3-2 求导法则与基本初等函数求导公式(二) (48)习题3-3 高阶导数 (52)习题3-4 隐函数及由参数方程所确定的函数的导数 (56)习题3-5 函数的微分 (60)习题3-6 边际与弹性 (64)第三章综合题 (68)第三章自测题 (74)习题4-1 中值定理 (78)习题4-2 洛必达法则 (82)习题4-3 导数的应用(一) (86)习题4-3 导数的应用(二) (90)习题4-4 函数的最大值和最小值及其在经济中的应用 (94)习题4-5 泰勒公式 (98)第四章综合题 (100)第四章自测题 (104)习题5-1 不定积分的概念、性质 (108)习题5-2 换元积分法(一) (112)习题5-2 换元积分法(二) (116)习题5-3 分部积分法 (120)习题5-4 有理函数的积分 (122)第五章综合题 (124)第五章自测题 (128)微积分(上)模拟试卷一 (134)微积分(上)模拟试卷二 (138)参考答案 (142)习题1-1 函数1. 填空题:(1)()x y 32log log =的定义域 。
(2)523arcsin3xx y -+-=的定义域 。
(3)xxy +-=11的反函数 。
(4)已知31122++=⎪⎭⎫ ⎝⎛+xx x x f ,则=)(x f 。
2. 设⎪⎪⎩⎪⎪⎨⎧≥<=3x , 0 3 , sin )(ππϕx x x ,求()2,6-⎪⎭⎫⎝⎛ϕπϕ,并作出函数()x ϕη=的图形。
《高等数学》期末练习题1答案题目部分,(卷面共有25题,100分,各大题标有题量和总分)一、选择(10小题,共30分)1-5.BCAAC 6-10.ABADC 二、填空(5小题,共10分)1.答案:π-arccos 452.答案:平面y x =上的所有点。
3.答案:-16xy4.答案:2220().d f r rdr πθ⎰⎰5.答案:1201611+-三、计算(8小题,共48分)1.答案:过点P 1021(,,)-,l 1方向向量为S 1221=-{,,},过点P 2131(,,)-,l 2方向向量为S 2421=-{,,},n S S P P =⨯==-12126012152{,,},{,,}距离为d P P n n n==⋅=Prj ||/||12152.答案:cos cos αβ==22∂∂∂∂z xzy==11,所以∂∂z n =+=222223.解:d d d u u x x u y y =+∂∂∂∂=-+⎛⎝ ⎫⎭⎪1x e y x y xx y yx sin cos d d 4.解:由z x z y x y =-==+=⎧⎨⎩220240,得D 内驻点(1,-2),且z (,)1215-=-在边界x y 2225+=上,令L x y x y x y =+-+-++-2222241025λ()由L x x L y y L x y x y =-+==++==+-=⎧⎨⎪⎩⎪2220242025022λλλ得x y =±=525, ,(()zz 5251510552515105-=--=+比较后可知,函数z 在点(,)12-处取最小值z (,)1215-=-在点(-525,处取最大值()5101552,5+=-z 。
5.解:原式1212001==⋅=⎰⎰⎰⎰dx xydy xdx ydy 6.解:212321xxI dx dy x y zdz=⎰⎰⎰2221027112168516xdx xy dy x dx ===⎰⎰⎰7.解:消z 后,可得L 的参数方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z t y t x sin 21sin 21cos 0t2πt t t t t s d d cos 21cos 21sin d 222=++=,故⎰Lsxyz d 61sin 21sin 21cos 2=⋅⋅=⎰πtdt t t 8.答案:()41122lim lim1=++=∞→+∞→n n a a n nn n ∴级数的收敛半径41=R 四、判断(2小题,共12分)1.解:设f x x x()=+⎛⎝ ⎫⎭⎪1221,于是()ln ()ln f x x x=-+22取极限lim ln ()lim ln()lim x x x f x x x xx →∞→∞→=-+=-+202222=0故lim ()x f x →∞=1,从而有lim n nn →∞+⎛⎝⎫⎭=12121,故而12211n nn +⎛⎝ ⎫⎭⎪=∞∑发散。
高等数学A(下)练习题一、填空题1.设k j i a43+-=,k j i b λ++=62,且a b ⊥ ,则λ= 4 ;2.设平行四边形两邻边为222a i j k =++,24b i j k =++ ,则该平行四边形的面积为3.的平面方程为03245轴且垂直于平面过=+-+z y x x 2+40y z = ;4.xoy 平面上的抛物线22y x =绕x 轴旋转生成的旋转抛物面方程为 222y +z x =;5.设y z u x =,则(1,2,3)uy∂=∂ 0 ;6.设222(,,)ln()f x y z x y z =++,则(1,2,2)gradf -= 244(,,)999- ;7.椭球面222236x y z ++=在点(1,1,1)处的法线方程为 111462x y z ---== ; 8.交换积分次序:10(,)xdx f x y dy =⎰210(,)yyd y f x y d x⎰⎰ ; 9.判别级数1n ∞=的敛散性,结论:该级数是 发散 ;10.级数01(1)(2)n n n ∞=++∑的和为 1 ;11.幂级数1nn ∞=的收敛域是 [)1,1- ;12.微分方程23(1)0dy y x dx++=的通解为 34(1)34y x C +=-+ 。
二、计算题1.()y x f z ,=由方程22222x y z z ++=确定,求2,z zx x y∂∂∂∂∂。
解:方程为:22222x y z z ++=方程两边对x 求导,得到 242x x x z z z +⋅= 整理得到: ()422x z z x -⋅=-所以: ()1224242x x z x z z --==--- 再两边对y 求导,得到 ()()221424xy y z x z z -=---方程22222x y z z ++=两边对y 求导,得到 242y y y z z z +⋅= 所以 242x y z z -=-,从而 ()()232842164242xy y z x z xy z z ---=-=---2.设22(,)z f x y x y =+,且f 具有二阶连续偏导数,求y z∂∂,xy z ∂∂∂2。