离心泵的性能参数与特性曲线
- 格式:doc
- 大小:420.50 KB
- 文档页数:4
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
离心泵的曲线【实用版】目录1.离心泵的特性曲线定义与含义2.离心泵特性曲线的主要参数3.离心泵特性曲线的作用与应用4.离心泵最高效率的工况点正文离心泵是一种广泛应用于工业、农业、建筑等领域的流体输送设备。
离心泵的特性曲线是描述其工作性能的重要参数,通过对特性曲线的分析,可以确定泵在不同工况下的运行状态,从而保证泵的高效、稳定运行。
本文将从离心泵的特性曲线定义与含义、主要参数、作用与应用以及最高效率的工况点等方面进行详细阐述。
一、离心泵的特性曲线定义与含义离心泵的特性曲线是指在一定转速下,扬程(h)、轴功率(n)、效率(η)以及允许吸上真空高度(hs)等参数随流量(q)变化的函数关系曲线。
这些曲线用以表示离心泵在不同流量下的工作性能,有助于我们了解泵的运行状况并确定其工作范围。
二、离心泵特性曲线的主要参数离心泵特性曲线主要包括以下四个参数:1.扬程(h):表示泵能提供的流体压力能力,是泵的重要性能参数之一。
2.轴功率(n):表示泵驱动电机所需的功率,与流量、扬程和效率等因素有关。
3.效率(η):表示泵将输入的机械能转换为流体动能的效果,是评价泵性能优劣的重要指标。
4.允许吸上真空高度(hs):表示泵能承受的最大真空度,与泵的结构、转速等有关。
三、离心泵特性曲线的作用与应用离心泵特性曲线在实际应用中具有重要作用,主要表现在以下几个方面:1.确定泵的工作状态:通过特性曲线,可以在不同流量点找出对应的扬程、功率、效率和汽蚀余量值,这一组参数称为泵的工作状态,简称工况或离心泵工况点。
2.保证泵的高效运行:通过选择合适的工况点,可以使泵在高效率下运行,降低能耗,提高输送效率。
3.防止泵的汽蚀现象:特性曲线可以帮助我们确定泵的允许吸上真空高度,避免泵在吸上过程中产生汽蚀,影响泵的正常运行。
4.指导泵的选型与安装:特性曲线可以为泵的选型、安装和调试提供重要依据,确保泵在不同工况下都能稳定、高效地运行。
四、离心泵最高效率的工况点离心泵最高效率的工况点是指泵在运行时,效率达到最大值的流量点。
离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
它是离心泵的基本的性能曲线。
比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。
比转速在80~150之间的离心泵具有平坦的性能曲线。
比转数在150以上的离心泵具有陡降性能曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
上述曲线都是在一定的转速下,以试验的方法求得的。
不同的转速,可以通过公式进行换算。
在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。
通常,把这一组相对应的参数称为工作状况,简称工况或工况点。
对于离心泵最高效率点的工况称为最佳工况点。
泵在最高效率点工况下运行是最理想的。
但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。
要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。
为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。
我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。
我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。
为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。
各类型的泵均有各自的型谱,使用户选用水泵十分方便。
每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。
同一口径的泵扬程也按一定的间隔变化。
ISO 2858规定了标准的型谱。
离心泵特性曲线压头、流量、功率和效率是离心泵的主要性能参数。
这些参数之间的关系,可通过实验测定。
离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。
以供使用部门选泵和操作时参考。
特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产4B20型离心泵在n=2900r/min时特性曲线。
图上绘有三种曲线,即1.H-Q曲线H-Q曲线表示泵的流量Q和压头H的关系。
离心泵的压头在较大流量范围内是随流量增大而减小的。
不同型号的离心泵,H-Q曲线的形状有所不同。
如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。
2.N-Q曲线N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。
显然,当Q=0时,泵轴消耗的功率最小。
因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。
3.η-Q曲线η-Q曲线表示泵的流量Q和效率η的关系。
开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。
该曲线最大值相当于效率最高点。
泵在该点所对应的压头和流量下操作,其效率最高。
所以该点为离心泵的设计点。
选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。
但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。
高效率区的效率应不低于最高效率的92%左右。
泵在铭牌上所标明的都是最高效率下的流量,压头和功率。
离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。
二.离心泵的转数对特性曲线的影响离心泵的特性曲线是在一定转速下测定的。
当转速由n1改变为n2时,其流量、压头及功率的近似关系为,,(2-6)式(2-6)称为比例定律,当转速变化小于20%时,可认为效率不变,用上式进行计算误差不大。
二、离心泵的性能参数与特性曲线1.离心泵的主要性能参数(1)离心泵的流量(送液能力)——单位时间内泵排到管路系统中的液体体积。
符号:v q ,单位:m ³/h 或m ³/s 。
其大小主要取决于泵的结构、尺寸和转速等。
(2)离心泵的扬程(泵的压头) ——泵对单位重量(1N )的液体所提供的有效能量。
符号:H ,单位:m 液柱。
扬程的确定: 实验测定:如图所示泵出、入口截面间垂直距离为0h 泵吸入口处真空表的读数真p 泵出口处压力表的读数表P在此两截面1与2间列柏努利方程得损H gp g u Z H g p g u Z +++=+++ρρ2222121122式中损H 为两截面间管路中的压头损失,由于两表所在截面间的管路很短,因而损H 值很小,可忽略不计。
故上式可简化为guu gp p h H gu u g p p p p h H 222122021220-+++=-+--++=ρρ真表真大大表)()(讨论:①泵的扬程等于泵出口的总压头减去泵入口的总压头;② d 1↓, u 1↑,H 功↓,一般d 1> d 2 ; ③当d 1 = d 2 时, gp p h H ρ真表++=0例:用清水测定某离心泵的主要特性。
实验装置如附图所示。
当调节出口阀使管路流量为25m 3/h 时,泵出口处压力表读数为0.28MPa (表压),泵入口处真空表读数为0.025MPa ,测得泵的轴功率为3.35kW ,电机转速为2900转/分,真空表与压力表测压截面的垂直距离为0.5m 。
试求该泵在此流量下泵的压头H 、有效功率有p 和总效率η。
(3量。
符号:有p ,单位:W 或kW 。
有效功率为: Hg q p v ρ=有泵的轴功率——指泵轴所需的功率即电动机传给泵轴的功率。
符号:轴p ,单位:W 或kW , 则轴p 为: ηρgH q p v 功轴=(4)离心泵的效率 ——有效功率和泵的轴功率之比。
离心泵的性能参数与特性曲线
离心泵的性能参数与特性曲线泵的性能及相互之间的关系就是选泵与进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线就是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数
1、流量
离心泵的流量就是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸与转速有关。
2、压头(扬程)
离心泵的压头就是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率
离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头与流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即
(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0、85~0、95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积与方向变化的局部阻力,以及叶轮通道中的环流与旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0、8~0、9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0、96~0、99之间。
离心泵的总效率由上述三部分构成,即
η=ηvηhηm
(2-14)
离心泵的效率与泵的类型、尺寸、加工精度、液体流量与性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N
由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率就是指液体在单位时间内从叶轮获得的能量,则有
Ne = HgQρ
(2-15) 式中
Ne------离心泵的有效功率,W;
Q--------离心泵的实际流量,m3/s;
H--------离心泵的有效压头,m。
由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即
(2-16)
式中
N----轴功率,kW。
(二)离心泵的特性曲线
离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。
在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q等曲线,列入产品样本或说明书中,供使用部门选泵与操作时参考。
各种型号的离心泵都有其本身独有的特性曲线,且不受管路特性的影响。
但它们都具有一些共同的规律:
(1)离心泵的压头一般随流量加大而下降(在流量极小时可能有例外),这一点与离心泵的基本方程式相吻合。
(2)离心泵的轴功率在流量为零时为最小,随流量的增大而上升。
故在启动离心泵时,应关闭泵出口阀门,以减小启动
电流,保护电机。
停泵时先关闭出口阀门主要就是为了防止高压液体倒流损坏叶轮。
(3)额定流量下泵的效率最高。
该最高效率点称为泵的设计点,对应的值称为最佳工况参数。
离心泵铭牌上标出的性
能参数即就是最高效率点对应的参数。
离心泵一般不大可能恰好在设计点运行,但应尽可能在高效区(在最高效率的
92%范围内,如图中波折号所示的区域)工作。
(三)影响离心泵性能的因素分析与性能换算
影响离心泵的性能的因素很多,其中包括液体性质(密度ρ与粘度μ等)、泵的结构尺寸(如D2与β2)、泵的转速n等。
当这些参数任一个发生变化时,都会改变泵的性能,此时需要对泵的生产厂家提供的性能参数或特性曲线进行换算。
1.液体物性的影响
(1)密度的影响
离心泵的流量、压头均与液体密度无关,效率也不随液体密度而改变,因而当被输送液体密度发生变化时,H-Q与η-Q曲线基本不变,但泵的轴功率与液体密度成正比。
此时,N-Q曲线不再适用,N需要用式2-16重新计算。
(2)粘度的影响
当被输送液体的粘度大于常温水的粘度时,泵内液体的能量损失增大,导致泵的流量、压头减小,效率下降,但轴功率增加,泵的特性曲线均发生变化。
当液体运动粘度γ大于20cSt(厘沲)时,离心泵的性能需按下式进行修正,即
(2-17) 式中
cQ、cH、cη——分别为离心泵的流量、压头与效率的校正系数,其值从图2-13、2-14查得;
Q、H、η——分别为离心泵输送清水时的流量,压头与效率;
Q’、H’、η’——分别为离心泵输送高粘度液体时的流量,压头与效率。
粘度系数换算图就是在单级离心泵上进行多次试验的平均值绘制出来的,用于多级离心泵时,应采用每一级的压头。
两图均适用于牛顿型流体,且只能在刻度范围内使用,不得外推。
图2-13中的QS表示输送清水时的额定流量,单位为m3/min。
粘度系数换算图的使用方法见例2-3。
2.离心泵转速的影响
由离心泵的基本方程式可知,当泵的转速发生改变时,泵的流量、压头随之发生变化,并引起泵的效率与功率的相应改变。
当液体的粘度不大,效率变化不明显,不同转速下泵的流量、压头与功率与转速的关系可近似表达成如下各式,即
(2-18) 式中
Q1、H1、N1------转速为n1时泵的性能;
Q2、H2、N2------转速为n2时泵的性能;
式2-18称为离心泵的比例定律。
其适用条件就是离心泵的转速变化不大于±20%。
3.离心泵叶轮直径的影响
当离心泵的转速一定时,泵的基本方程式表明,其流量、压头与叶轮直径有关。
对于同一型号的泵,可换用直径较小的叶轮(除
叶轮出口其宽度稍有变化外,其它尺寸不变),此时泵的流量、压头与功率与叶轮直径的近似关系为
(2-19) 式中
Q’、H’、N’------转速为D2’时泵的性能;
Q、H、N------转速为D2时泵的性能;
式2-19称为离心泵的切割定律。
其适用条件就是固定转速下,叶轮直径的车削不大于±5%D2。