离心泵参数及曲线
- 格式:ppt
- 大小:79.01 KB
- 文档页数:6
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
离心泵特性曲线实验报告一、目的:掌握离心泵特性曲线(H —Q 曲线,N —Q 曲线,η—Q 曲线)的测定方法。
二、设备简图:三、原理:1.流量测定:流量采用体积法,用电子流量计进行测量。
2.扬程:扬程采用离心泵出口压力表及进口真空表进行测量。
gP g P Z H VM ρρ++∆= 式中:H ——离心泵扬程m ;Z ∆——离心泵出口压力表中心到进口真空表测点之间的高差m ; V M P P +——离心泵出口压力表与真空压力表读值(MPa )。
3.功率:功率采用马达天平法进行测量。
将电机转子固定于轴承上,使电机定子可自由转动,当定子线圈通入电流时,定子与转子之间便产生一个感应力矩M ,该力矩使定子和转子按不同方向各自旋转。
若在定子上安装一套测力矩装置,使之对定子作用一反向力矩M ,当定子不动时,二力矩相等。
因此,只要测读测力表读数及力臂的长度,便可求出感应力矩M ,该力矩与转子旋转角度的乘积即为电机的输出功率。
转子旋转的角速度ω可通过测速表测量求得。
ωM N = FL M = 602nπω= 式中: N ——电机的输出功率w ;M ——电机与转子之间的感应力矩Nm ; ω——转子的旋转角速度l/S ; F ——力传感器读数; L ——力臂的长度m ; n ——电机的转速。
4.效率:效率等于离心泵的有效功率与电机的输出功率或轴功率之比,即: %100⨯=NgQHρη式中: η——离心泵的效率; ρ——水的密度 1000kg/m 3。
四、实验步骤及注意事项:1、实验前检查试验台的准备状况,确保水泵及电机连接螺栓紧固。
用手转动水泵联轴器,确认转动正常。
2、关闭水泵压水管阀门,打开入水管阀门及计量水箱的放水阀门。
3、启动水泵,将压水管阀门开到最大,为便于测量扬程,调节吸水管阀门至真空表读值为0.03MPa ,在以后的实验过程中,吸水管阀门开度固定不动。
4、逐次关小阀门,同时实测P M 、P V 、Q 、F 、n 各值并记录。
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
离心泵的曲线
离心泵的曲线是用来描述离心泵性能的一种图形表示。
它展示了离心泵在不同工况下的流量、扬程和效率之间的关系。
通常,离心泵的曲线包括以下几个主要参数:
1. 流量-Q:表示单位时间内通过泵的液体体积。
通常以立方米每小时(m³/h)或升每秒(L/s)来表示。
2. 扬程-H:表示泵能够提供的压力。
通常以米(m)为单位。
3. 效率-η:表示泵转化输入功率为输出功率的能力。
通常以百分比形式表示。
离心泵的曲线通常由以下几条线组成:
1. H-Q曲线(等速曲线):在恒定转速下,流量与扬程之间的关系曲线。
当流量增大时,扬程会逐渐降低。
2. η-Q曲线(效率曲线):在恒定转速下,效率与流量之间的关系曲线。
通常在设计流量附近效率较高,而在低流量和高流量处效率较低。
3. NPSHr曲线(净正吸入头曲线):表示给定流量下泵要求的最低净正吸入头。
当净正吸入头低于该值时,泵可能会产生气穴或性能下降。
4. NPSHa曲线(净正吸入头可利用余量曲线):表示给定流量下实际系统提供的净正吸入头与NPSHr之间的差值。
当可利用余量大于零时,系统运行正常。
不同型号和尺寸的离心泵有不同的曲线特征,根据具体工程要求选择合适的泵型和工作点是非常重要的。
离心泵及管路特性曲线测定
离心泵是一种常用的流体机械,用于输送液体和气体。
离心泵的特性曲线测定是为了了解泵的性能和工作条件,以便在实际应用中选择和调整泵的工作状态。
离心泵的特性曲线主要包括流量-扬程特性曲线和效率-流量特
性曲线。
流量-扬程特性曲线测定:测定离心泵在不同转速下的流量和
扬程之间的关系。
实验中,通过改变泵的转速和出口阀门的开度,测量不同工况下的流量和扬程。
根据实验数据,可以绘制出泵的流量-扬程特性曲线,描述泵在不同工况下的工作状态。
效率-流量特性曲线测定:测定离心泵在不同流量下的效率。
实验中,通过改变泵的转速和出口阀门的开度,测量不同工况下的效率。
根据实验数据,可以绘制出泵的效率-流量特性曲线,描述泵在不同流量下的能量转换效率。
离心泵和管路特性曲线测定还可以包括压力-流量特性曲线和
功率-流量特性曲线的测定。
这些特性曲线给出了泵和管路在
不同工况下的工作状态和性能指标,可以作为选择和调整泵的参考依据。
关于离心水泵性能曲线与参数!一、关于离心水泵参数之间必须遵从的关系:1、能量关系:机械能守恒原理:功率N ∝扬程H ³流量Q2、流体动力学原理:A、阻力矩M正比流速v的平方:M ∝ v^2B、速度头与水头的转换关系(流速v的平方与扬程H的转换关系):v^2 /2∝gHC、流量与管网阻力R的关系:H ∝流量Q^23、运动学关系:线速度与角速度成正比 v ∝ω4、功能关系:A、功率N = 转矩M³角速度ωB、功率N ∝角速度ω的立方:N ∝ω^3二、各种曲线:1、流量-扬程曲线(Q-H)2、流量-功率曲线(Q-N)3、流量-效率曲线(Q-η)4、流量-气蚀余量曲线(Q-(NPSH)r)5、意义:A、性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程、功率、效率和气蚀余量值;B、这一组参数称为工作状态,简称工况或工况点;C、离心泵取高效率点工况称为最佳工况点;D、最佳工况点一般为设计工况点;E、一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近;F、在实践中选高效率区间运行、即节能、又能保证泵正常工作,因此了解泵的性能参数相当重要。
要分清几个过程的前提条件:1、管网曲线一定时:1)系统压力增大,流量增大,压力与流量的平方成正比,即H ∝流量Q^22)是一个系统功率增大的过程,或者说泵机转速提高的过程,变频频率升高的过程; 3)管网曲线是一个二次曲线;4)就相当于电路电阻R一定,电压变化、电流变化、功率变化的情况;2、改变管网曲线,增大流量:1)相关物理过程例如打开出水龙头时;2)改变管网曲线减小管网阻力R,系统流量增大,压力减小很少认为恒定,3)压力恒定,系统流量与功率成正比,流量增大,功率增大,电机转子转速在稳定区速度梢微降低,负荷增大;4)这就是泵的实际运行状态,流量大,功率大,流量小功率小,例如风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小;5)风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小,此时转子转速在稳定区速度梢微升高,负荷减轻;6)如果这时改变出水管径,就等于改变流量,改变电机运行功率,这就是改变出水管径改变流量的原理;7)相当于电路的电压不变,电阻R变化时,电流、功率变化的情况;3、泵机功率不变:1)相关物理过程如灭火水枪;2)用减小出水管截面,增大管网阻力R,减小流量、增大压力,泵机功率不变;3)目的在于增大压力,增大出口水流速度等;4)也是管网改造,减小流量、增大扬程、不增大系统功率的方法的原理;5)这个过程H-Q曲线,是上翘的双曲线形,流量与压力反比降低,或压力与流量反比升高的曲线;6)这个过程相当于恒流源电路中,外电路变阻器的电阻增大时,电流减小、电压升高、功率不变的情形;1、管网曲线一定时:这种运行情况适宜封闭式流体循环系统;2、改变管网曲线,调节流量:1)这是大部分风机、供水泵的正常工作状态;2)在这种状态下运行时,忽略压力的变化既恒压;3)在这种状态下运行时,流量与电机输出功率成正比,既风门大功率大、风门小功率小,所以用风门调节风量大小并不浪费电。