2017年秋季学期新版新人教版九年级数学上学期22.2、用函数观点看一元二次方程同步练习28
- 格式:doc
- 大小:92.00 KB
- 文档页数:2
人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿一. 教材分析《二次函数与一元二次方程》是人教版九年级数学上册第22章的第2节,这一节内容是在学生已经学习了函数、方程等基础知识的基础上进行讲解的。
二次函数和一元二次方程是中学数学中的重要内容,也是高考的必考内容。
本节内容主要介绍了二次函数的定义、性质以及一元二次方程的解法。
通过本节内容的学习,使学生能够掌握二次函数和一元二次方程的基本概念和性质,能够运用一元二次方程解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于函数、方程等概念已经有了初步的认识。
但是,对于二次函数和一元二次方程的性质和应用可能还不是很清楚。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握二次函数和一元二次方程的概念和性质。
三. 说教学目标1.知识与技能:理解二次函数的定义和性质,掌握一元二次方程的解法,能够运用二次函数和一元二次方程解决实际问题。
2.过程与方法:通过观察、实验、探究等方法,培养学生的动手能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:二次函数的定义和性质,一元二次方程的解法。
2.教学难点:二次函数和一元二次方程的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、教学模具、实物模型等辅助教学。
六. 说教学过程1.导入:通过一个实际问题,引入二次函数和一元二次方程的概念。
2.讲解:讲解二次函数的定义和性质,演示一元二次方程的解法。
3.实践:让学生动手操作,进行实验和探究,加深对二次函数和一元二次方程的理解。
4.应用:通过解决实际问题,运用二次函数和一元二次方程的知识。
5.总结:对本节内容进行总结,强化学生的记忆。
七. 说板书设计板书设计要简洁明了,能够突出二次函数和一元二次方程的概念和性质。
22.2 二次函数与一元二次方程教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十二章“二次函数”22.2 二次函数与一元二次方程,内容包括:二次函数与一元二次方程的联系.2.内容解析解一元二次方程ax2+bx+c=0可以看作已知二次函数y=ax2+bx+c的值为0,求自变量的值.从图象上看,如果二次函数的图象与x轴有公共点,当自变量取公共点的横坐标时,函数的值为0.由此可求出相应的一元二次方程的根.当二次函数的图象与x轴有两个公共点时,相应的一元二次方程有两个不等的实数根;当二次函数的图象与x轴有一个公共点时,相应的一元二次方程有两个相等的实数根;当二次函数的图象与x 轴没有公共点时,相应的一元二次方程没有实数根.通过探究二次函数与一元二次方程的联系,进而掌握利用二次函数的图象求一元二次方程的近似解的方法。
基于以上分析,确定本节课的教学重点:二次函数与一元二次方程的联系.二、目标和目标解析1.目标1) 理解二次函数与一元二次方程之间的联系,能够利用二次函数的图象求一元二次方程的近似解。
2)通过图象理解二次函数与一元二次方程联系的过程中,体会综合运用函数解析式和函数图象的数形结合思想。
2.目标解析达成目标1)的标志是:学生能够利用二次函数的图象,通过观察与x轴交点的横坐标,确定一元二次方程的近似解.达成目标2)的标志是:在探索二次函数与一元二次方程联系的过程中,理解二次函数与x轴的公共点个数与对应的一元二次方程的实数根的数量关系.三、教学问题诊断分析探究二次函数与一元二次方程的联系的过程与函数和一元一次方程的探究过程一致,但二次函数与x 轴公共点的个数共有三种情况.需学生理解当二次函数图象与x轴有公共点时,公共点的横坐标就是相应的一元二次方程的根.基于以上分析,本节课的教学难点是:用数形结合的思想探究二次函数与一元二次方程的联系.四、教学过程设计(一)探究新知以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h (单位:m)与飞行时间t (单位:s)之间具有关系:h= 20t–5t2 .[问题一]球的飞行高度能否达到15 m? 若能,需要多少时间?[问题二]球的飞行高度能否达到20 m? 若能,需要多少时间?[问题三]结合图形,你知道为什么在问题一中有两个点符合题意,而在问题二中只有一个点符合题意?[问题四]球的飞行高度能否达到20.5 m? 若能,需要多少时间?[问题五]球从飞出到落地要用多少时间?[问题六]结合此问题,你发现二次函数与一元二次方程的联系.师生活动:教师提出问题,学生积极回答问题。
22.2 二次函数与一元二次方程》说课稿一、教材分析1、教材的地位和作用《二次函数与一元二次方程》是人教版九年级上册第22 章第二节的教学内容.它既是一次函数与一元一次方程关系的延续. 又为高中数学求一元二次不等式的解集以及三个“二次” 的关系进一步探讨奠定基础.2、重难点的确点重点:从数和形两个角度理解二次函数与一元二次方程的关系;掌握二次函数与一元二次方程的互相转化问题.难点:灵活运用二次函数与一元二次方程的关系解决问题;利用函数的图象求一元二次方程的近似解.二、目标分析知识与技能:掌握二次函数与一元二次方程的联系.数学思考:运用类比、猜想的数学方法解决实际问题.解决问题:经历探索二次函数与一元二次方程关系的过程,认识到事物的互相联系与转化.情感态度:让学生在合作探究中培养学生合作学习的良好意识和团结协作的精神.三、学情分析已形成的:1、能理解二次函数的性质、图象,有一定看图识图能力,并能画一次函数、二次函数的草图.2、能熟练求解一元一次方程与一元二次方程的根.有待形成、提升的:1、由特殊到一般的归纳总结能力.2、理解二次函数与一元二次方程的联系和研究时互相转化的数学思想及数形结合思想.3、用函数的观点解决问题的应用意识.四、教法学法分析1、教法分析在本节课中我采用情景教学法,观察发现法和探讨法为主,多媒体演示为辅的教学方法进行教学. 以学生活动为主线,引导学生在观察、操作、合作、交流等具体过程中突破本节课的难点,在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.2、学法分析通过观察发现、合作交流、归纳总结完成本节课的教学.五、教学过程(一)复习引入活动1:问题1:一次函数与一元一次方程有怎样的联系?师生活动:老师引导,学生回答,最后分别从数与形这两个角度得出一次函数与一元一次方程的关系.问题2:类比猜想一下二次函数与一元二次方程的联系?师生活动:老师展示问题,学生回答.得出当二次函数y=aX+bx+c(a工的函数值y=0时,则得到了一个一元二次方程ax2+bx+c=0(a工;0若把一元二次方程ax2+bx+c=0(a丰0)中的常量0变为变量y,则得到二次函数y=ax2+bx+c(a工.0)设计的意图:在学生已有的数学基础上,采用类比的学习方法,探索新知.(二)探究新知活动2:4问题:如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度h(单位:m)飞行时间t(单位:s)2之间具有函数关系:h= 20t-5t 2问:(1)小球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5 m ?4 小球从飞出到落地要用多少时间?师生活动:第(1)问师生共同分析,先用代数的方法解答,然后引导学生用图象法对此问进行解释和分析. 第(2)问由学生分析并展示过程,同时让学生用图象演示为什只有一个时间小球的飞行高度达到20m?接着老师又引导学生从二次函数的性质(即二次函数的最大值)来说明为什么只有一个时间?剩下的学生独立完成,学生代表分析并展示过程.设计的意图:让学生用数与形这两种不同的方法解决实际问题.活动3:小组合作问题:根据刚才例题的讲解,类比一次函数与一元一次方程的联系,现在以小组为单 位对二次函数与 x 轴的交点的横坐标与一元二次方程的根的关系进行讨论,并请代表展示 结果•二次函数的图象与 x 轴交点横坐标与一元二次方程根的关系:(1)"数”:二次函数y=ax 2+bx+c ( 0)的函数值y=0时相应的自变量的值即为一元二次方 程 ax 2+bx+c=0 (0)的根;(2) "形”:二次函数 y=ax 2+bx+c ( a * 0)的图象与 x 轴交点的横坐标.即为一元二次方程 ax 2+bx+c=0 (a丰 0)的根.设计的意图:通过学生合作交流, 得出二次函数y=ax 2+bx+c(a 丰0)的图象和x 轴交点的 横坐标与一元二次方程 ax 2+bx+c=0(a 丰0)的根的关系,同时培养学生合作学习的能力•活动4:观察发现(1 )观察二次函数①y=x 2+x-2,②y=x 2-6x+9,③y=x 2-x+1的图象,回答下列问题: 函数与x 轴的交点的个数是:① ______________ 个② _________ 个③ _________ 个• 函数与x 轴交点的横坐标为:① _________________② ____________ ③x 2+x-2=0,② X 2-6X +9=0,③ x 2-x+1=0,则元二次方程根的情况: ①厶_0,有_根 ②' _0,有_根,③△ _0,有 _______________________ 根. 一元二次方程的解是:① ___________ ,②, ③ •思考:二次函数y=a/+bx+c(a 工与)x 轴交点情况与一元二次方程 ax 2+bx+c=0(a 却的根的情况有怎样的联系?师生活动: 老师展示问题,学生观察填空•通过观察(1)与(2)的结果,对思考问题进行合作讨论设计意图:通过学生讨论、观察,得出判别式和二次函数与 系.并让学生掌握特殊到一般的学习方法 •(三) 归纳新知(2)已知一元二次方程①x 轴交点个数的情况的关 -2 -1^*11 2 X-2设计意图:培养学生语言表述能力,及用表格法归纳知识的能力。
人教版九年级数学上册22.2.1《二次函数与一元二次方程》教学设计一. 教材分析人教版九年级数学上册第22.2.1节《二次函数与一元二次方程》是整个初中数学的重要内容,也是难点内容。
本节主要介绍二次函数的性质,以及如何从二次函数图像上找到一元二次方程的根。
教材通过实例引导学生探究二次函数与一元二次方程之间的关系,培养学生的动手操作能力和抽象思维能力。
二. 学情分析九年级的学生已经掌握了函数和方程的基础知识,具备一定的逻辑思维能力和探究能力。
但是对于二次函数与一元二次方程之间的联系,还需要通过实例和操作来进一步理解和掌握。
学生在学习过程中可能对一些概念和性质的理解存在困难,需要教师耐心引导和讲解。
三. 教学目标1.理解二次函数的性质,掌握二次函数与一元二次方程之间的关系。
2.能够从二次函数图像上找到一元二次方程的根。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.二次函数的性质和图像。
2.二次函数与一元二次方程之间的关系。
3.如何从二次函数图像上找到一元二次方程的根。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数与一元二次方程之间的关系。
2.利用多媒体课件和实物模型,直观展示二次函数的图像和性质。
3.采用小组合作学习的方式,让学生在讨论和操作中掌握知识。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和答案。
3.小组合作学习的指导方案。
七. 教学过程1.导入(5分钟)利用多媒体课件展示二次函数的图像,引导学生观察和描述二次函数的性质。
2.呈现(10分钟)提出问题:二次函数与一元二次方程之间有什么关系?如何从二次函数图像上找到一元二次方程的根?3.操练(10分钟)让学生分组操作,利用实物模型和多媒体课件进行探究,尝试解答问题。
4.巩固(10分钟)教师引导学生总结二次函数的性质和一元二次方程的解法,加深学生对知识的理解。
5.拓展(10分钟)出示一些有关二次函数与一元二次方程的应用题,让学生小组合作解决问题,提高学生的应用能力。
信息技术应用------探索二次函数的性质作者姓名学校学科数学年级/班级九年级一班教材版本2011人教版课标分析教材分析学情分析二次函数的图象是它性质的直观体现,学生能正确画出函数图象,是观察并用来研究函数性质等问题的前提。
现代信息技术的合理应用,可以适度的让画函数图象更快更准确,同时让学生体会到信息技术是一种有效的认知工具,可以为学生进行自主探究提供强有力的平台,呈现以往教材和教学手段难以呈现的内容。
本章二次函数是已学过的一次函数等内容为基础的,也是一种非常基本的初等函数,是进一步学习函数知识的重要环节。
函数是数学的核心概念,也是初中数学的基本概念,学习初中阶段的函数知识,起到承上启下的作用,为学生进入高中及以后学习,奠定基础。
本节课《信息技术应用——探索二次函数性质》,位于22.2《二次函数与一元二次方程》后,介绍了利用画图软件画二次函数的图象,探究它的性质,以及利用图象解一元二次方程等内容。
通过与信息技术的有机结合,轻松快速的画出需要的二次函数图象,让抽象的问题具体化,让复杂的问题简单化,更有利于学生对知识的理解和加深。
九年级学生理解能力、理性思维都有了一定的发展,但直接面对中考的压力,具有少言甚至不言,课堂积极性不高等特点。
为了充分调动学生学习的积极性,我查阅资料,上网学习,结合课本内容,利用画图软件、信息技术教学平台、电子白板、微课、课件等各具特色的功能,精心编排设计,让学生多动手操作,多进行探究,极大提高了学生本节课的学习兴趣。
给学生带来了一节信息技术与数学课堂高度融合的“信息技术数学课”,同时让学生体会到科技对我们学习的巨大影响,激发好好学习的动力。
教学设计教学目标信息技术应用------探索二次函数的性质知识目标:1.借助计算机画图软件探索二次函数y=ax²+bx+c的增减性。
2.借助计算机软件画二次函数图象解一元二次方程。
技能目标:1.初步学会使用老师教的计算机画图软件。
22.2.3 因式分解法解一元二次方程教课目的:1.经过学生自学研究掌握运用因式分解法及其基本思想;2.能用因式分解法解一些一元二次方程。
教课要点:因式分解法解一些一元二次方程.教课难点:可以正确选择因式分解的方法.教课过程:一、出示学习目标:1.经过自学理解因式分解法及其基本思想;2.能用因式分解法解一些一元二次方程。
二、自学指导:(阅读课本P38-39 页,思虑以下问题)1.经过阅读问题掌握因式分解法;2.阅读 P39 例题思虑能用因式分解法的题目有多少种类型及解题步骤;3.模拟例题解答P40 练习 1。
三、成效检测:1、由中基层学生试试剖析10x-4.9x 2=0 的解题过程,进而总结出因式分解法的基本思想:把方程化为两个一次式的积等于0 的形式,再使这两个一次式分别等于0,进而实现降次。
3.由上层学生小结:因式分解的方法主要有哪几种?(1) 提公因式法;(注意整体思想)(2) 公式法 :a2- b2=(a+b)(a- b)、 a2± 2ab+b2=(a± b)2(3) 十字相乘法: x2+(p+q)x+pq=(x+p)(x+q)4.概括因式分解法解一元二次方程的解题步骤:(由中基层学生概括)(1)将方程右侧为零的形式;(2)将方程的左侧分解因式;(3)令每个因式为 0,获得两个一元一次方程;(4)解每个一元一次方程,即获得一元二次方程的解。
四、当堂训练:1.填空:(1)方程 x2 +x=0 的根是____;x1=0,x2=-1( 2 ) x2- 25=0的根是____;x1,2=5x =-5( 3 ) x2- 6x=- 9的根是____。
x12=x =32.解以下方程:(当堂在暗线本中达成并实时赐予评论)。
黄金分割介绍把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是[5^(1/2)-1]/2或二分之根号五减一,取其前三位数字的近似值是0.618.由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比.这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618(1-0.618)/0.618=0.618这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用.作黄金分割点的一种方法让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”.特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和.作黄金分割点的一种方法斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的.即f(n)/f(n-1)-→0.618….由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数.但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的.不仅这个由1,1,2,3,5....开始的“斐波那契数”是这样,随便选两个整数,然后按照斐波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的.一个很能说明问题的例子是五角星/正五边形.五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的.正五边形对角线连满后出现的所有三角形,都是黄金分割三角形.黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形.由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 .黄金分割点约等于0.618:1是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点.线段上有两个这样的点.利用线段上的两个黄金分割点,可以作出正五角星,正五边形等.2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割.所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分(长的一部分)对于全部之比,等于另一部分(短的一部分)对于该部分之比.而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,5/8,8/13,13/21,...近似值的.黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”.这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法.其实有关“黄金分割”,我国也有记载.虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度.经考证.欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的.因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好.就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的.在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件.正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”.黄金分割〔Golden Section〕是一种数学上的比例关系.黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.应用时一般取0.618 ,就像圆周率在应用时取3.14一样.黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边1.618倍.黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它.希腊雅典的巴特农神庙就是一个很好的例子,达·芬奇的《维特鲁威人》符合黄金矩形.《蒙娜丽莎》的脸也符合黄金矩形,《最后的晚餐》同样也应用了该比例布局.。
二次函数与一元二次方程课标解读一、课标要求人教版九年级上册22.2二次函数与一元二次方程一节,内容包括一元二次方程的根的几何意义;二次函数的图象与x轴的三种位置对应一元二次方程根的三种情况;利用二次函数的图象求一元二次方程的近似解.?义务教育数学课程标准〔 2022年版〕?对本节课相关内容提出的教学要求是:会利用二次函数的图象求一元二次方程的近似解.二、课标解读1.本节课是在研究完二次函数的概念、二次函数的图象与性质后,从函数的角度对一元二次方程重新进行分析.这种再认识不是原来水平上的回忆复习,而是站在更高的高度上,借助变量,从“静态研究〞向“动态研究〞转变,将不同的数学对象用二次函数统一起来认识,发挥函数对数与代数内容的统领作用.2.一元二次方程根的几何意义是:一元二次方程的解,是其对应二次函数的图象〔一条抛物线〕与x轴交点的横坐标.我们可以这样理解:对于二次函数的图象与x轴交点的横坐标,可以看作是一元二次方程的解;同样对于一元二次方程的解,可以看作是二次函数的图象与x轴交点的横坐标,两者是统一的.这说明一元二次方程的解可以有其几何直观表示.这种形与数的结合,可以加深对二次函数和一元二次方程的联系认识.3.二次函数的图象与x轴有三种位置关系:当时,该函数与x 轴相交〔有两个交点〕,对应的一元二次方程有两个不等的实数根;当时,该函数与x轴相切〔有且仅有一个交点〕,对应的一元二次方程有两个相等的实数根;当时,那么该函数与x轴相离〔没有交点〕,对应的一元二次方程没的实数根.4.在透彻理解一元二次方程根的几何意义的根底上,就可以用二次函数的图象求相应的一元二次方程的解.通过画二次函数的图象,根据其与x轴的公共点的横坐标,就可以得到一元二次方程根的近似值,为取得满足给定精确度的近似值,可以通过不断缩小根所在的范围来估计一元二次方程的根.教学中建议使用信息技术手段,例如解方程,只要用几何画板画出相应抛物线,显示抛物线与x轴的公共点的坐标,就能得出相应方程的根.也可以把一元二次方程化为:的形式.那么方程的根,就是二次函数和一次函数的图象的交点的横坐标.5.本节内容,无论是函数值求自变量的值,二次函数的图象与x轴的三种位置对应一元二次方程根的三种情况,还是利用二次函数的图象求一元二次方程的近似解等,都十分突出地表达了建模思想和数形结合思想.教学中,一方面要帮助学生完成好从对图象的描述到对函数变化情况的描述的转换,发挥好几何直观的作用;另一方面,应该引导学生充分体会其中蕴含的数学思想方法,进而让学生逐步学会数学地思考,增强学好数学的信心.。
26.2 用函数观点看一元二次方程
1. 已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2013的值为()
A.2011 B.2014 C.2013 D.2012
2. 根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)的一个解的范围
是()
0.09
A.3<<3.23 B.3.23<<3.24
C.3.24<x<3.25 D.3.25<x<3.26
3. 抛物线y=2(x-3)(x +2)与x轴的交点坐标为 .
4. 如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x
轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是.
5. 已知二次函数y=2x2-mx-m2,若该二次函数图象与x轴有两个公共点A,B,且A点坐
标为(1,0),求B点坐标.
参考答案
1.B
2.C
3.(3,0)、(-2,0)
4.1 2
5.解:把(1,0)代入二次函数关系式,得0=2-m-m2,∴m1=-2,m2=1.
(1)当m=-2时,二次函数关系式为y=2x2+2x-4,
令y=0,得2x2+2x-4=0,解得x=1或-2,
∴二次函数图象与x轴的两个公共点的坐标是(1,0),(-2,0).
又∵A(1,0),则B(-2,0);
(2)当m=1时,同理可得:。