0-1背包问题(分支界限法)
- 格式:docx
- 大小:8.89 KB
- 文档页数:6
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
0-1背包问题计科1班朱润华 32方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。
由此得一个解为[1,,1,1],其相应价值为22。
尽管这不是一个可行解,但可以证明其价值是最优值的上界。
分⽀界限法0-1背包问题(优先队列式分⽀限界法)输⼊要求有多组数据。
每组数据包含2部分。
第⼀部分包含两个整数C (1 <= C <= 10000)和 n (1 <= n <= 10,分别表⽰背包的容量和物品的个数。
第⼆部分由n⾏数据,每⾏包括2个整数 wi(0< wi <= 100)和 vi(0 < vi <= 100),分别表⽰第i个物品的总量和价值输出要求对于每组输⼊数据,按出队次序输出每个结点的信息,包括所在层数,编号,背包中物品重量和价值。
每个结点的信息占⼀⾏,如果是叶⼦结点且其所代表的背包中物品价值⼤于当前最优值(初始为0),则输出当前最优值 bestv 和最优解bestx(另占⼀⾏)参见样例输出测试数据输⼊⽰例5 32 23 22 3输出⽰例1 1 0 02 2 2 23 5 2 24 10 4 5bestv=5, bestx=[ 1 0 1 ]4 11 2 23 4 5 42 3 0 0⼩贴⼠可采⽤如下的结构体存储结点:typedef struct{int no; // 结点在堆中的标号int sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // 优先值 sv/sw}Node;#include<stdio.h>#include<math.h>#include<string.h>typedef struct {int no; // 结点标号int id; // 节点idint sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // sv/sw}Node;int surplusValue(int *v,int n,int y) {int sum = 0;for(int i = y; i <= n; i++) {sum += v[i];}return sum;}void qsort(Node *que,int l,int r) {int len = r - l + 1;int flag;for(int i = 0; i < len; i ++) {flag = 0;for(int j = l; j < l + len - i; j++) {if(que[j].prior < que[j+1].prior) {Node t = que[j];que[j] = que[j+1];que[j+1] = t;flag = 1;}}//if(!flag ) return;}}void branchknap(int *w,int *v,int c,int n) {int bestv = 0;int f = 0;int r = 0;Node que[3000];memset(que,0,sizeof(que));int path[15];que[0].no = 1;que[0].id = que[0].sv = que[0].sw = que[0].prior = 0;while(f <= r) {Node node = que[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;printf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp % 2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++ ;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id + 1]) <= c && surplusValue(v,n,node.id+1) + node.sv > bestv) { r++;que[r].id = node.id + 1;que[r].no = node.no*2;int id = node.id + 1;que[r].sv = node.sv + v[id];que[r].sw = node.sw + w[id];que[r].prior = que[r].sv / (que[r].sw*1.0);}if(surplusValue(v,n,node.id+2) + node.sv > bestv) {r++;que[r].id = node.id + 1;que[r].no = node.no*2 + 1;que[r].sv = node.sv;que[r].sw = node.sw;que[r].prior = node.prior;}}f++;qsort(que,f,r);}}int main() {int c,n;int w[15],v[15];while(~scanf("%d %d",&c,&n)){for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap(w,v,c,n);}return 0;}#include<stdio.h>#include<math.h>#include<string.h>typedef int bool;#define true 1#define false 0struct Node{int no; // ?áµ?±êo?int id; //jie dian idint sw; // ±3°ü?D·µá?int sv; // ±3°ü?D·µ?µdouble prior;};struct Node queuee[2000];int w[15],v[15];int bestv = 0,c,n;int path[15]; //lu jingint surplusValue(int y) {int sum = 0;for(int i = y; i <= n; i++)sum += v[i];return sum;}void qsort(int l,int r) {// printf("------\n");int len = r - l + 1;//printf("----%d %d %d-----\n",l,r,len);bool flag;for(int i = 0; i < len ; i++) {flag = false;for(int j = l; j <l+ len -i ;j++) {if(queuee[j].prior < queuee[j+1].prior) {struct Node temp = queuee[j];queuee[j] = queuee[j+1];queuee[j+1] = temp;flag = true;}//if(!flag) return;}}// printf("---排序嘻嘻---\n");//for(int i = l; i <= r;i++ )// printf("***%d : %.2lf\n",queuee[i].no,queuee[i].prior);// printf("\n------\n");}void branchknap() {bestv = 0;int f = 0;int r = 0;queuee[0].no = 1;queuee[0].id = 0;queuee[0].sv = 0;queuee[0].sw = 0;queuee[0].prior = 0;// printf("f: %d r: %d\n",f,r);while(f <= r) {struct Node node = queuee[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;//TODOprintf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp%2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id+1]) <= c && surplusValue(node.id+1) + node.sv > bestv) { r++;//printf("%d\n",(node.sw + w[node.id+1]));queuee[r].id = node.id+1;queuee[r].no = node.no*2;int id = node.id+1;queuee[r].sv = node.sv + v[id];queuee[r].sw = node.sw + w[id];queuee[r].prior = queuee[r].sv/(queuee[r].sw*1.0);//printf("进队id: %d\n",queuee[r].no) ;//printf("%d %d %d\n",id,v[id], w[id]);}if(surplusValue(node.id+2) + node.sv > bestv) {r++;queuee[r].id = node.id+1;queuee[r].no = node.no*2 + 1;queuee[r].sv = node.sv ;queuee[r].sw = node.sw ;queuee[r].prior = node.prior;//printf("进队id: %d\n",queuee[r].no) ;}}f++;qsort(f,r);}}int main() {while(~scanf("%d %d",&c,&n)){memset(queuee,0,sizeof(queuee));for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap();}return 0;}。
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。
因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。
由于程序过于简单,在这里就不再给出,用实例说明求解过程。
下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。
算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。
0—1背包问题一、实验目的学习掌握分支限定法思想。
二、实验内容用分支限定法求解0—1背包问题,并输出问题的最优解。
0—1背包问题描述如下:给定n种物品和一背包。
物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、实验条件Jdk1.5以上四、需求分析对于给定n种物品和一背包。
在容量最大值固定的情况下,要求装入的物品价值最大化。
五、基本思想:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。
六、详细设计/** Bound_Branch.java** Created on 2007年6月2日, 下午6:07** To change this template, choose Tools | Template Manager* and open the template in the editor.*/package sunfa;public class Bound_Branch {static double c;static int n;static double[]w;static double[]p;static double cw;static double cp;static int []bestX;static MaxHeap heap;//上界函数bound计算节点所相应价值的上界private static double bound(int i){double cleft=c-cw;double b=cp;while(i<=n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}//装填剩余容量装满背包if(i<=n)b+=p[i]/w[i]*cleft;return b;}//addLiveNode将一个新的活节点插入到子集树和优先队列中private static void addLiveNode(double up,double pp,double ww,int lev,BBnode par,boolean ch){//将一个新的活节点插入到子集树和最大堆中BBnode b=new BBnode(par,ch);HeapNode node =new HeapNode(b,up,pp,ww,lev);heap.put(node);}private static double bbKnapsack(){// TODO 自动生成方法存根//优先队列式分支限界法,返回最大价值,bestx返回最优解//初始化BBnode enode=null;int i=1;double bestp=0;//当前最优值double up=bound(1);//当前上界while(i!=n+1){//非叶子节点//检查当前扩展节点的右儿子子节点double wt=cw+w[i];if(wt<=c){if(cp+p[i]>bestp)bestp=cp+p[i];addLiveNode(up,cp+p[i],cw+w[i],i+1,enode,true);}up=bound(i+1);if(up>=bestp)addLiveNode(up,cp,cw,i+1,enode,false);HeapNode node =(HeapNode)heap.removeMax();enode=node.liveNode;cw=node.weight;cp=node.profit;up=node.upperProfit;i=node.level;}for(int j=n;j>0;j--){bestX[j]=(enode.leftChild)?1:0;enode=enode.parent;}return cp;}public static double knapsack(double []pp,double []ww,double cc,int []xx){ //返回最大值,bestx返回最优解c=cc;n=pp.length-1;//定义以单位重量价值排序的物品数组Element[]q=new Element[n];double ws=0.0;double ps=0.0;for(int i=1;i<=n;i++){q[i-1]=new Element(i,pp[i]/ww[i]);ps+=pp[i];ws+=ww[i];}if(ws<=c){for(int i=1;i<=n;i++)xx[i]=1;return ps;}//以单位重量排序MergeSort.mergeSort(q);//初始化数据成员p=new double[n+1];w=new double[n+1];for(int i=1;i<=n;i++){p[i]=pp[q[n-i].id];w[i]=ww[q[n-i].id];}cw=0.0;cp=0.0;bestX = new int[n+1];heap = new MaxHeap(n);double maxp = bbKnapsack();for(int i=1;i<=n;i++)xx[q[n-i].id]=bestX[i];return maxp;}public static void main(String [] args){double w[]={2,2,6,5,4};double v[]={6,3,4,5,6};double c=10;int []x = new int[5];double m = knapsack(v,w,c,x);for(int i=0;i<5;i++)System.out.print(x[i]);}}//子空间中节点类型class BBnode{BBnode parent;//父节点boolean leftChild;//左儿子节点标志BBnode(BBnode par,boolean ch){parent=par;leftChild=ch;}}class HeapNode implements Comparable{BBnode liveNode; // 活节点double upperProfit; //节点的价值上界double profit; //节点所相应的价值double weight; //节点所相应的重量int level; // 活节点在子集树中所处的层次号//构造方法public HeapNode(BBnode node, double up, double pp , double ww,int lev){ liveNode = node;upperProfit = up;profit = pp;weight = ww;level = lev;}public int compareTo(Object o) {double xup = ((HeapNode)o).upperProfit;if(upperProfit < xup)return -1;if(upperProfit == xup)return 0;elsereturn 1;}}class Element implements Comparable{int id;double d;public Element(int idd,double dd){id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}class MaxHeap{static HeapNode [] nodes;static int nextPlace;static int maxNumber;public MaxHeap(int n){maxNumber = (int)Math.pow((double)2,(double)n);nextPlace = 1;//下一个存放位置nodes = new HeapNode[maxNumber];}public static void put(HeapNode node){nodes[nextPlace] = node;nextPlace++;heapSort(nodes);}public static HeapNode removeMax(){HeapNode tempNode = nodes[1];nextPlace--;nodes[1] = nodes[nextPlace];heapSort(nodes);return tempNode;}private static void heapAdjust(HeapNode [] nodes,int s,int m){ HeapNode rc = nodes[s];for(int j=2*s;j<=m;j*=2){if(j<m&&nodes[j].upperProfit<nodes[j+1].upperProfit)++j;if(!(rc.upperProfit<nodes[j].upperProfit))break;nodes[s] = nodes[j];s = j;}nodes[s] = rc;}private static void heapSort(HeapNode [] nodes){for(int i=(nextPlace-1)/2;i>0;--i){heapAdjust(nodes,i,nextPlace-1);}}}主程序运行结果:。
分⽀限界法解决01背包问题 分⽀限界法和之前讲的回溯法有⼀点相似,两者都是在问题的解的空间上搜索问题的解。
但是两者还是有⼀些区别的,回溯法是求解在解的空间中的满⾜的所有解,分⽀限界法则是求解⼀个最⼤解或最⼩解。
这样,两者在解这⼀⽅⾯还是有⼀些不同的。
之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有⼀个解的。
下⾯就讲讲分⽀限界法的基本思想。
分⽀限界法常以⼴度优先或以最⼩消耗(最⼤效益)优先的⽅式搜索问题的解空间树。
问题的解空间树是表⽰问题解空间的⼀颗有序树,常见的有⼦集树和排列树。
分⽀限界法和回溯法的区别还有⼀点,它们对于当前扩展结点所采⽤的扩展⽅式也是不相同的。
分⽀限界法中,对于每⼀个活结点只有⼀次机会成为扩展结点。
活结点⼀旦成为了扩展结点,就⼀次性产⽣其所有的⼦结点,⼦结点中,不符合要求的和⾮最优解的⼦结点将会被舍弃,剩下的⼦结点将加⼊到活结点表中。
再重复上⾯的过程,直到没有活结点表中没有结点,⾄此完成解决问题的⽬的。
分⽀限界法⼤致的思想就是上⾯的叙述,现在就可以发现,对于结点的扩展将会成为分⽀限界法的主要核⼼。
所以,分⽀限界法常见的有两种扩展结点的⽅式,1.队列式(FIFO)分⽀限界法,2.优先队列式分⽀限界法。
两种⽅法的区别就是对于活结点表中的取出结点的⽅式不同,第⼀种⽅法是先进先出的⽅式,第⼆种是按优先级取出结点的⽅式。
两中⽅法的区别下⾯也会提到。
在背包问题中还会提到⼀个⼦树上界的概念,其实就是回溯法中的剪枝函数,只不过,分⽀限界法⾥的剪枝函数改进了⼀些,剪枝函数同样也是分⽀限界法⾥⽐较重要的东西。
下⾯就讲⼀讲01背包问题的实现。
01背包问题和前⾯讲的背包问题的区别不⼤,就是01背包问题的物品不可以只放⼊部分,01背包问题的物品只能放⼊和不放⼊两个选择,这也是名字中01的原因。
其他的和背包问题相差不⼤,这⾥也不再累述。
算法的主体是⽐较容易想的,⾸先,将数据进⾏处理,这也是上⾯讲到的第⼆种取结点的⽅式(优先队列式)。
分⽀限界法0-1背包问题-队列式⼀.分⽀限界法概述(1)分⽀限界法就是采⽤⼴度优先的策略,依次搜索活结点所有的分枝,也就额是所有的相邻结点。
在求最优解时采⽤⼀个限界函数,计算限界函数值,选择⼀个最有利的⼦节点作为扩展结点,使搜索树朝着解空间树上有最优解的分⽀推进,以便尽快找出⼀个最优解。
(2)常见的两种分⽀限界法 先进先出(FIFO)队列式:在先进先出的分⽀限界法中,⽤队列作为组织活结点表的数据结构,并按照队列先进先出的原则选择结点作为扩展结点。
优先队列(PQ):⽤优先队列作为组织活结点表的数据结构。
⼆.0-1背包问题问题:给定n种物品和⼀背包。
物品i的重量是wi,其价值为pi,背包的容量为C。
问应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?#include<iostream>#include<queue>using namespace std;const int maxn=99;int n,c;int w[maxn];int v[maxn];int bestv=0;int bestx[maxn];int total=1; //解空间中的节点数累计,全局变量struct nodetype //队列中的结点类型{int no; //结点编号,从1开始int i; //当前结点在搜索空间中的层次int w; //当前结点的总重量int v; //当前结点的总价值int x[maxn]; //当前结点包含的解向量double ub; //上界};void input(){cout<<"请输⼊物品的个数:"<<endl;cin>>n;cout<<"请输⼊每个物品的重量及价值(如5 4):"<<endl;for(int i = 1; i <= n; i++){cin>>w[i]>>v[i];}cout<<"请输⼊背包的容量:"<<endl;cin>>c;}void bound(nodetype &e) //计算分⽀结点e的上界{int i=e.i+1; //考虑结点e的余下物品int sumw=e.w;double sumv=e.v;while((sumw+w[i]<=c)&&i<=n){sumw+=w[i];sumv+=v[i];i++;}if(i<=n) //余下物品只能部分装⼊e.ub=sumv+(c-sumw)*v[i]/w[i];else e.ub=sumv;}void enqueue(nodetype e,queue<nodetype> &qu)//结点e进队qu{if(e.i==n) //到达叶⼦节点,不在扩展对应⼀个解{if(e.v>bestv) //找到更⼤价值的解{bestv=e.v;for(int j=1;j<=n;j++)bestx[j]=e.x[j];}}else qu.push(e); //⾮叶⼦结点进队}void bfs(){int j;nodetype e,e1,e2;queue<nodetype> qu;e.i=0;e.w=0;e.v=0;e.no=total++;for(j=1;j<=n;j++)e.x[j]=0;bound(e);qu.push(e);while(!qu.empty()){e=qu.front();qu.pop(); //出队结点eif(e.w+w[e.i+1]<=c) //剪枝,检查左孩⼦结点{e1.no=total++; //建⽴左孩⼦结点e1.i=e.i+1;e1.w=e.w+w[e1.i];e1.v=e.v+v[e1.i];for(j=1;j<=n;j++)e1.x[j]=e.x[j];e1.x[e1.i]=1;bound(e1); //求左孩⼦的上界enqueue(e1,qu); //左孩⼦结点进队}e2.no=total++;e2.i=e.i+1;e2.w=e.w;e2.v=e.v;for(j=1;j<=n;j++)e2.x[j]=e.x[j];e2.x[e2.i]=0;bound(e2);if(e2.ub>bestv) //若右孩⼦结点可⾏,则进队,否则被剪枝 enqueue(e2,qu);}}void output(){cout<<"最优值是:"<<bestv<<endl;cout<<"(";for(int i=1;i<=n;i++)cout<<bestx[i]<<"";cout<<")";}int main(){input();bfs();output();return0;}。
实验报告
实验名称
课程名称
姓名0-1背包问题(分支界限法)
算法设计
姜玉龙指导老师
学号刘晓敏
11100140101
评分
实验地点1C26217
一、实验目的
1•掌握0-1背包问题的分支限界法;
2进一步掌握分支限界法的基本思想和算法设计方法;
二' 实验内容(含实验原理介绍)实验日期2014年10月23 H专业
班级计算机科学与技术
11级二表1班0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
三、实验过程及步骤(包含使用软件或实验设备等情况)
1 •由0-1背包问题的最优子结构性质,
2.查找装入背包物品的
3 •边界函数
4 •书写实验报告
四、实验结果(含算法说明' 程序' 数据记录及分析等,可附页)
#include<iostream>
#include<stack>
using namespace std;
#define N 100 class
HeapNode // 定义HeapNode 结点类
{ public:
double upper,price,weight;
int level,x[N];};
double MaxBound(int i);
double Knap();
void AddLiveNode(double up,double cp,double cw,bool ch,int level);
stack<HeapNode> High; // 最大队High
double w[N],p[N]; //把物品重量和价值定义为双精度浮点数double cw,cp,c=30; 〃cw为当前重量,cp为当前价值,定义背包容量为
30
int n=3; // 货物数量为 3 int main()
{coutvv”请按顺序输入3个物品的重量:n«endl; int i;
for(i=1 ;i<=n;i++) cin»w[i];
coutvv"请按顺序输入3个物品的价值:(按回车键区分每个物品的价值)
n«endl; for(i=1 ;i<=n;i++)
ci n> >p[i]; coutvv"最大价值为:
coutvvKnap()v<endl; 〃调用knap函数输出最大价值
return 0; }
double MaxBound(int j) //MaxBound 函数求最大上界{ double
left=c-cw,b=cp; //剩余容量和价值上界
while(jv=n&&w[j]v=left) //以物品单位重量价值递减装填剩余容量
{left-=w[j]; b+=p[j]; j++;} if(jv=n)
b+=p[j]/w[j]*left; //装填剩余容量装满背包return b;}
void AddLiveNode(double up,double cp,double cw,bool ch,int lev) // 将一个新的活结点插入到子集数和最大堆High中{
HeapNode be;
be.upper=up; be.price=cp;
be.weight=cw; be」evel=lev;
if(levv=n)
High.push(be); // 调用stack 头文件的push 函数}
double Knap() 〃优先队列分支限界法,返回最大价值,bestx返回最优解{int i=1;
cw=cp=0; double
bestp=O,up二MaxBound⑴;//调用MaxBound求出价值上界,best为最优
while(1) 〃非叶子结点
{double wt=cw+w[i];
if(wt<=c) //左儿子结点为可行结点
{if(cp+p[i]>bestp) bestp=cp+p[i]; AddLiveNode(up,cp+p[i]5cw+w[i]5true,i+1);}
up=MaxBound(i+1);
if(up>=bestp) //右子数可能含最优解AddLiveNode(up,cp,cw,false5i+1);
if(High.empty()) return bestp;
HeapNode node=High.top(); // 取下一扩展结点High.pop();
cw=no de.weight;
cp=node.price;
up=node.upper;
i=node」evel;}}
五、实验思考题
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
六' 实验总结(含实验心得体会,收获与不足等)
通过这次试验是我对数据结构有了进一步的了解,可以通过算法解决实际问题(背包问题)O
2在用分支限界法实现问题时遇到了有关队列的问题,通过上网搜索,问老师得以解决。