2018年数学同步优化指导(北师大版选修2-2)练习:第4章 2 微积分基本定理 活页作业16 Word版含解析
- 格式:doc
- 大小:149.72 KB
- 文档页数:5
阶段质量评估(二) 变化率与导数(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若lim Δx →f (x 0)-f (x 0+Δx )Δx=1,则f ′(x 0)等于( )A .32B .23C .1D .-1解析:原等式即-lim Δx →0f (x 0+Δx )-f (x 0)Δx=-f ′(x 0),也就是f ′(x 0)=-1.答案:D2.若对于任意x ,有f ′(x )=4x 3,f (1)=3,则此函数的解析式为( ) A .f (x )=x 4-1 B . f (x )=x 4-2 C .f (x )=x 4+1D .f (x )=x 4+2解析:∵f ′(x )=4x 3,∴f (x )=x 4+k . 又f (1)=3,∴k =2.∴f (x )=x 4+2. 答案:D3.f (x )=3-x ,则f ′(0)=( )A .1B .log 3eC .ln 3D .-ln 3解析:∵f ′(x )=(3-x )′=3-x ln 3·(-x )′=-3-x ln 3, ∴f ′(0)=-30ln 3=-ln 3. 答案:D4.函数f (x )=e x cos x 的图像在点(0,f (0))处的切线的倾斜角为( ) A .0 B .π4C .1D .π2解析:∵f ′(x )=(e x cos x )′ =(e x )′cos x +e x (cos x )′ =e x cos x -e x sin x ,∴k =f ′(0)=e 0cos 0-e 0sin 0=1. ∴倾斜角为π4.答案:B5.抛物线y =x 2+bx +c 上点(1,2)处的切线与其平行线bx +y +c =0间的距离为( ) A .24B .22C .322D . 2解析:由抛物线过点(1,2),得b +c =1,又f ′(1)=2+b ,即2+b =-b ,∴b =-1. ∴c =2.∴所求切线方程为x -y +1=0.∴两平行直线x -y -2=0和x -y +1=0之间的距离为d =|-2-1|12+12=32=322.答案:C6.若f (x )=log 3(2x -1),则f ′(3)=( ) A .23B .2ln 3C .23ln 3D .25ln 3解析:f ′(x )=[log 3(2x -1)]′=(2x -1)′(2x -1)ln 3=2(2x -1)ln 3,∴f ′(3)=25ln 3.答案:D7.抛物线y =14x 2在点Q (2,1)处的切线方程为( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0解析:∵y ′=12x ,∴在点Q 处的切线斜率k =12×2=1.∴切线方程为y -1=x -2,即x-y -1=0.答案:A8.函数f (x )=x 3-2x +3的图像在x =1处的切线与圆x 2+y 2=8的位置关系是( ) A .相切B .相交且过圆心C .相交但不过圆心D .相离解析:切线方程为x -y +1=0,圆心到直线的距离为12=22<22,所以直线与圆相交但不过圆心.答案:C9.曲线y =e -x -e x 的切线的斜率的最大值为( )A .2B .0C .-2D .-4解析:y ′=k =-e -x -e x =-(e -x +e x )=-⎝⎛⎭⎫e x +1e x ≤-21e x·e x =-2, 当且仅当1e x =e x ,即x =0时,等号成立.答案:C10.下列图像中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图像,则f (-1)等于( )A .-13B .13C .73D .-13或73解析:∵f (x )=13x 3+ax 2+(a 2-1)x +1,∴f ′(x )=x 2+2ax +a 2-1. ∴函数f ′(x )的图像开口向上. ∵a ≠0,∴其图像为第③个图. 由图像特征可知f ′(0)=0,且-a >0, ∴a =-1.∴f (x )=13x 3-x 2+1.∴f (-1)=-13-1+1=-13.答案:A11.(2015·重庆七校联考卷)已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1,f (1))处切线的斜率是( )A .2B .1C .3D .-2 解析:由f (x )=2f (2-x )-x 2+8x -8两边求导得,f ′(x )=2f ′(2-x )×(-1)-2x +8. 令x =1,得f ′(1)=2f ′(1)×(-1)-2+8⇒f ′(1)=2,∴k =2. 答案:A12.已知函数f (x )=x 2的图像在点A (x 1,f (x 1))与点B (x 2,f (x 2))处的切线互相垂直,并交于点P ,则点P 的坐标可能是( )A .⎝⎛⎭⎫-32,3 B .(0,-4)C .(2,3)D .⎝⎛⎭⎫1,-14 解析:由题意知,A (x 1,x 21),B (x 2,x 22), f ′(x )=2x ,则过A ,B 两点的切线斜率k 1=2x 1,k 2=2x 2.又切线互相垂直,∴k 1k 2=-1,即x 1x 2=-14.两条切线方程分别为l 1:y =2x 1x -x 21,l 2:y =2x 2x -x 22,联立得(x 1-x 2)[ 2x -(x 1+x 2)]=0, ∵x 1≠x 2,∴x =x 1+x 22.代入l 1,解得y =x 1x 2=-14.答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.已知曲线y 1=2-1x 与y 2=x 3-x 2+2x 在x =x 0处切线的斜率的乘积为3,则x 0的值为__________.解析:由题知y 1′=1x 2,y 2′=3x 2-2x +2,所以两曲线在x =x 0处切线的斜率分别为1x 20,3x 20-2x 0+2,所以3x 20-2x 0+2x 20=3,所以x 0=1.答案:114.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2,则函数y =f (x )的解析式为________.解析:设f (x )=a (x -m )2(a ≠0), 则f ′(x )=2a (x -m )=2ax -2am =2x +2. ∴a =1,m =-1.∴f (x )=(x +1)2=x 2+2x +1. 答案:f (x )=x 2+2x +1 15.函数f (x )=mx 2m+n的导数为f ′(x )=4x 3,则m +n =________.解析:∵f ′(x )=m (2m +n )x 2m +n -1=4x 3,∴⎩⎪⎨⎪⎧ m (2m +n )=4,2m +n -1=3,解得⎩⎪⎨⎪⎧m =1,n =2.∴m +n =3. 答案:316.(2015·陕西高考卷)设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析:曲线y =e x 在点(0,1)处的切线斜率k =y ′=e x |x =0=1;由y =1x ,可得y ′=-1x 2.因为曲线y =1x (x >0)在点P 处的切线与曲线y =e x 在点(0,1)处的切线垂直,故-1x 2P=-1,解得x P =1.由y =1x,得y P =1,故所求点P 的坐标为(1,1).答案:(1,1)三、解答题(本大题共6小题,共70分)17.(10分)点P 是曲线y =x 3-3x +23上的任意一点,且点P 处切线的倾斜角为α,求α的取值范围.解:∵k =tan α=y ′=3x 2-3≥-3, ∴tan α≥- 3.又α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 18.(12分)设f (x )=(ax +b )sin x +(cx +d )cos x ,试确定常数a ,b ,c ,d ,使得f ′(x )=x cos x .解:f ′(x )=[(ax +b )sin x +(cx +d )cos x ]′ =[(ax +b )sin x ]′+[(cx +d )cos x ]′ =(ax +b )′sin x +(ax +b )(sin x )′+ (cx +d )′cos x +(cx +d )(cos x )′ =a sin x +(ax +b )cos x +c cos x - (cx +d )sin x=(a -cx -d )sin x +(ax +b +c )cos x =x cos x ,∴⎩⎪⎨⎪⎧a -d -cx =0,ax +b +c =x .∴a =d =1,b =c =0. 19.(12分)已知函数f (x )=12x 2-a ln x (a ∈R ).若函数f (x )的图像在x =2处的切线方程为y =x +b ,求a ,b 的值.解:∵f ′(x )=x -ax(x >0),f (x )在x =2处的切线方程为y =x +b ,斜率为1, ∴⎩⎪⎨⎪⎧2-a ln 2=2+b ,2-a 2=1.解得a =2,b =-2ln 2.20.(12分)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解:由7x -4y -12=0得y =74x -3.当x =2时,y =12,∴f (2)=12.①f ′(x )=a +b x 2,∴f ′(2)=74.②由①②得⎩⎨⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,∴f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,故切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x 得y =x =2x 0,故切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为 12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.21.(12分)已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图像为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1.即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2- 2 ]∪(1,3)∪[2+2,+∞).22.(12分)已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ),若x ∈[0,1],f (x )图像上任意一点处切线的斜率为k ,当|k |≤1时,求a 的取值范围.解:∵f ′(x )=-3x 2+2ax , ∴k =f ′(x )=-3x 2+2ax .由|k |≤1知|-3x 2+2ax |≤1(0≤x ≤1),即⎪⎪⎪⎪-3⎝⎛⎭⎫x -a 32+a23≤1在x ∈[0,1]上恒成立.又f ′(0)=0, ∴①当a3<0,即a <0时,-3+2a ≥-1,即a ≥1.故无解;②当0≤a3≤1,即0≤a ≤3时,⎩⎪⎨⎪⎧a 23≤1,-3+2a ≥-1,解得1≤a ≤3; ③当a3>1,即a >3时,-3+2a ≤1得a ≤2,此时无解.综上知1≤a ≤ 3.∴a 的取值范围为[1, 3 ].。
[A 基础达标]1.下列定积分的值等于1的是( ) A. ⎠⎛01x d xB. ⎠⎛01(x +1)d xC. ⎠⎛011d xD. ⎠⎛0112d x 解析:选C. ⎠⎛01x d x =12x 2|10=12, ⎠⎛01(x +1)d x =⎝⎛⎭⎫12x 2+x |10=32, ⎠⎛011d x =x |10=1,⎠⎛0112d x =12x |10=12. 2.设f (x )=⎩⎪⎨⎪⎧x 2,0≤x ≤1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.34 B.45 C.56D .不存在解析:选C. ⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3|10+⎝⎛⎭⎫2x -12x 2|21 =13+⎝⎛⎭⎫4-2-2+12=56. 3. ⎠⎜⎛0π3⎝⎛⎭⎫1-2sin 2θ2d θ的值为( )A .-32B .-12C .12D .32解析:选D. ⎠⎜⎛0π3⎝⎛⎭⎫1-2sin 2θ2d θ=⎠⎜⎛0π3cos θd θ=sin θ⎪⎪⎪⎪π30=32,故选D. 4.已知函数f (a )=⎠⎛0a sin x d x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π2等于( )A .1B .1-cos 1C .0D .cos 1-1解析:选B.f ⎝⎛⎭⎫π2=⎠⎜⎛0π2sin x d x =-cos x ⎪⎪⎪⎪π20=1, f ⎝⎛⎭⎫f ⎝⎛⎭⎫π2=f (1)=⎠⎛01sin x d x =-cos x |10=1-cos 1. 5.若⎠⎛12(x -a )d x =⎠⎜⎜⎛03π4cos 2x d x ,则a =( )A .-1B .1C .2D .4解析:选C.⎠⎛12(x -a )d x =⎝⎛⎭⎫12x 2-ax |21=32-a , ⎠⎜⎜⎛03π4cos 2x d x =12sin 2x ⎪⎪⎪⎪3π40=-12, 所以32-a =-12,解得a =2,故选C.6.若⎠⎛1a ⎝⎛⎭⎫2x +1x d x =3+ln 2,则正数a 的值为________. 解析:⎠⎛1a ⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|a 1=a 2+ln a -1=3+ln 2, 所以a 2-1=3,ln a =ln 2,得a =2. 答案:27.已知2≤⎠⎛12(kx +1)d x ≤4,则实数k 的取值范围为________.解析:⎠⎛12(kx +1)d x =⎝⎛⎭⎫12kx 2+x |21=(2k +2)-⎝⎛⎭⎫12k +1=32k +1, 所以2≤32k +1≤4,解得23≤k ≤2.答案:⎣⎡⎦⎤23,28.设f (x )=kx +b ,若⎠⎛01f (x )d x =2,⎠⎛12f (x )d x =3.则f (x )的解析式为________.解析:由⎠⎛01(kx +b )d x =2,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪1=2, 即12k +b =2,①由⎠⎛12(kx +b )d x =3,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪21=3, 即(2k +2b )-⎝⎛⎭⎫12k +b =3. 所以32k +b =3,②由①②联立解得,k =1,b =32,所以f (x )=x +32.答案:f (x )=x +329.设f (x )=ax 2+bx +c (a ≠0),f (1)=4,f ′(1)=1,⎠⎛01f (x )d x =196,求f (x ).解:因为f (1)=4,所以a +b +c =4,① f ′(x )=2ax +b ,因为f ′(1)=1,所以2a +b =1,②⎠⎛01f (x )d x =⎝⎛⎭⎫13ax 3+12bx 2+cx |1=13a +12b +c =196,③ 由①②③可得a =-1,b =3,c =2, 所以f (x )=-x 2+3x +2.10.计算⎠⎛-33(|2x +3|+|3-2x |)d x .解:设y =|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ⎝⎛⎭⎫x ≤-32,6⎝⎛⎭⎫-32<x <32,4x ⎝⎛⎭⎫x ≥32,则⎠⎛-33(|2x +3|+|3-2x |)d x=⎠⎛-3-32(-4x )d x +⎠⎜⎛-32326d x +⎠⎛3234x d x=(-2x 2)⎪⎪⎪⎪-32-3+6x ⎪⎪⎪32-32+2x 2⎪⎪⎪332=-2×⎝⎛⎭⎫-322-(-2)×(-3)2+6×32-6×⎝⎛⎭⎫-32+2×32-2×⎝⎛⎭⎫322=45. [B 能力提升]11.已知f (a )=⎠⎛01(2ax 2-a 2x )d x ,则函数f (a )的最大值为( )A.19 B.29 C .-19D .-29解析:选B.f (a )=⎠⎛01(2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2|10=-12a 2+23a ,由二次函数的性质,可得f (a )max=-12×⎝⎛⎭⎫232+⎝⎛⎭⎫232=29. 12.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =________.解析:因为⎠⎛01f (x )d x 是常数,所以f ′(x )=2x ,所以可设f (x )=x 2+c (c 为常数),所以x 2+c =x 2+2⎝⎛⎭⎫13x 3+cx |10,解得c =-23, ⎠⎛01f (x )d x =⎠⎛01(x 2+c )d x =⎠⎛01⎝⎛⎭⎫x 2-23d x =⎝⎛⎭⎫13x 3-23x |10=-13. 答案:-1313.已知⎠⎛-11(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t(x 3+ax +3a -b )d x 为偶函数,求a ,b . 解:因为f (x )=x 3+ax 是奇函数, 所以⎠⎛-11(x 3+ax )d x =0,所以⎠⎛-11(x 3+ax +3a -b )d x=⎠⎛-11(x 3+ax )d x +⎠⎛-11(3a -b )d x=0+(3a -b )[1-(-1)] =6a -2b ,所以6a -2b =2a +6,即2a -b =3.① 又f (t )=⎠⎛t (x 3+ax +3a -b )d x =⎣⎡⎦⎤x 44+ax 22+(3a -b )x |t 0=t 44+at 22+(3a -b )t 为偶函数, 所以3a -b =0.② 由①②得a =-3,b =-9.14.(选做题)已知f ′(x )是f (x )在(0,+∞)上的导函数,满足xf ′(x )+2f (x )=1x 2,且⎠⎛12[x 2f (x )-ln x ]d x =1.(1)求f (x )的解析式;(2)当x >0时,证明不等式2ln x ≤e x 2-2. 解:(1)由xf ′(x )+2f (x )=1x 2得x 2f ′(x )+2xf (x )=1x ,即[x 2f (x )]′=1x,所以x 2f (x )=ln x +c (c 为常数), 即x 2f (x )-ln x =c . 又⎠⎛12[x 2f (x )-ln x ]d x =1,即⎠⎛12c d x =1,所以cx |21=1, 即2c -c =1, 所以c =1.所以x 2f (x )=ln x +1, 所以f (x )=ln x +1x 2.(2)证明:由第一问知f (x )=ln x +1x 2(x >0), 所以f ′(x )=1x×x 2-2x (ln x +1)x 4=-2ln x -1x 3, 当f ′(x )=0时,x =e -12,f ′(x )>0时,0<x <e -12,f ′(x )<0时,x >e -12,所以f (x )在(0,e -12)上递增,在(e -12,+∞)上递减. 所以f (x )max =f (e -12)=e2,所以f (x )=ln x +1x 2≤e2,即2ln x ≤e x 2-2.由Ruize收集整理。
学习目标 1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.知识点 微积分基本定理(牛顿—莱布尼茨公式)思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则ʃ10(2x +1)d x 与F (1)-F (0)有什么关系?答案 由定积分的几何意义知,ʃ10(2x +1)d x =12×(1+3)×1=2,F (1)-F (0)=2,故ʃ10(2x +1)d x =F (1)-F (0).思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )?答案 不唯一.根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,都有[F (x )+c ]′=F ′(x )+c ′=f (x ).梳理 (1)微积分基本定理①条件:f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ); ②结论:ʃb a f (x )d x =F (b )-F (a );③符号表示:ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).(2)常见的原函数与被积函数关系①ʃb a C d x =Cx |b a (C 为常数).②ʃb a x n d x =1n +1xn +1|b a (n ≠-1); ③ʃb a sin x d x =-cos x |b a ; ④ʃb a cos x d x =sin x |b a ;⑤ʃb a 1xd x =ln x |b a (b >a >0); ⑥ʃb ae x d x =e x |b a ; ⑦ʃb a a x d x =⎪⎪a x ln a ba (a >0且a ≠1);⑧3223=b ax x ⎰(b >a >0).类型一 求定积分命题角度1 求简单函数的定积分 例1 求下列定积分.(1)ʃ10(2x +e x)d x ;(2)ʃ21(1x -3cos x )d x ; (3)π220(sin cos )d 22-;x xx ⎰(4)ʃ30(x -3)(x -4)d x .解 (1)ʃ10(2x +e x )d x =(x 2+e x )|1=(1+e 1)-(0+e 0)=e.(2)ʃ21(1x -3cos x )d x =(ln x -3sin x )|21 =(ln2-3sin2)-(ln1-3sin1) =ln2-3sin2+3sin1. (3)∵(sin x 2-cos x 2)2=1-2sin x 2cos x2=1-sin x ,∴π220(sin cos )d 22-x x x ⎰=π20(1sin )d -x x ⎰π20(cos )|=+x x=(π2+cos π2)-(0+cos0)=π2-1. (4)∵(x -3)(x -4)=x 2-7x +12, ∴ʃ30(x -3)(x -4)d x=ʃ30(x 2-7x +12)d x=(13x 3-72x 2+12x )|30 =(13×33-72×32+12×3)-0=272. 反思与感悟 (1)当被积函数为两个函数的乘积或乘方形式时一般要转化为和的形式,便于求得函数F (x ).(2)由微积分基本定理求定积分的步骤 ①求被积函数f (x )的一个原函数F (x ); ②计算函数的增量F (b )-F (a ). 跟踪训练1 计算下列定积分.(1)ʃ21(x -x 2+1x)d x ; (2)π2220(cos sin )d 22-;x xx ⎰(3)ʃ94x (1+x )d x .解 (1)ʃ21(x -x 2+1x)d x =(12x 2-13x 3+ln x )|21 =(12×22-13×23+ln2)-(12-13+ln1) =ln2-56.(2)π2220(cos sin )d 22-x x x ⎰ =π20cos d x x ⎰π20sin | 1.==x(3)ʃ94x (1+x )d x =ʃ94(x +x )d x =(23x 32+12x 2)|94=(23×932+12×92)-(23×432+12×42)=2716. 命题角度2 求分段函数的定积分例2 (1)求函数f (x )=⎩⎪⎨⎪⎧sin x (0≤x <π2),1(π2≤x ≤2),x -1(2<x ≤4)在区间[0,4]上的定积分;(2)求定积分ʃ20|x 2-1|d x .解 (1)⎠⎛04f (x )d x =π222π042sin d 1d (1)d x x x x ⎰⎰⎰++-=(-cos x )⎪⎪⎪⎪ π20+x ⎪⎪⎪⎪2π2+(12x 2-x )⎪⎪⎪42=1+(2-π2)+(4-0)=7-π2.(2)∵|x 2-1|=⎩⎪⎨⎪⎧1-x 2,x ∈[0,1),x 2-1,x ∈[1,2],又(x -x 33)′=1-x 2,(x 33-x )′=x 2-1,∴ʃ20|x 2-1|d x =ʃ10|x 2-1|d x +ʃ21|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=(x -x 33)|10+(x 33-x )|21=1-13+83-2-13+1=2.反思与感悟 分段函数的定积分的求法(1)利用定积分的性质转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.跟踪训练2 (1)f (x )=⎩⎪⎨⎪⎧1+2x ,0≤x ≤1,x 2,1<x ≤2,求ʃ20f (x )d x .解 ʃ20f (x )d x=ʃ10(1+2x )d x +ʃ21x 2d x=(x +x 2)|10+13x 3|21 =2+73=133.(2)求ʃ2-2|x 2-x |d x 的值.解 ∵|x 2-x |=⎩⎪⎨⎪⎧x 2-x ,-2≤x <0,x -x 2,0≤x ≤1,x 2-x ,1<x ≤2,∴ʃ2-2|x 2-x |d x=ʃ0-2(x 2-x )d x +ʃ10(x -x 2)d x +ʃ21(x 2-x )d x=(13x 3-12x 2)|0-2+(12x 2-13x 3)|10+(13x 3-12x 2)|21 =143+16+56=173. 类型二 利用定积分求参数例3 (1)已知t >0,f (x )=2x -1,若ʃt 0f (x )d x =6,则t =________.(2)已知2≤ʃ21(kx +1)d x ≤4,则实数k 的取值范围为________. 答案 (1)3 (2)[23,2]解析 (1)ʃt 0f (x )d x =ʃt 0(2x -1)d x =t 2-t =6, 解得t =3或-2,∵t >0,∴t =3. (2)ʃ21(kx +1)d x =⎪⎪⎝⎛⎭⎫12kx 2+x 21=32k +1. 由2≤32k +1≤4,得23≤k ≤2.引申探究1.若将例3(1)中的条件改为ʃt 0f (x )d x =f (t2),求t .解 由ʃt 0f (x )d x =ʃt 0(2x -1)d x =t 2-t , 又f (t2)=t -1,∴t 2-t =t -1,得t =1.2.若将例3(1)中的条件改为ʃt 0f (x )d x =F (t ),求F (t )的最小值. 解 F (t )=ʃt 0f (x )d x =t 2-t =(t -12)2-14(t >0),当t =12时,F (t )min =-14.反思与感悟 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.跟踪训练3 (1)已知x ∈(0,1],f (x )=ʃ10(1-2x +2t )d t ,则f (x )的值域是________.(2)设函数f (x )=ax 2+c (a ≠0).若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.答案 (1)[0,2) (2)33解析 (1)f (x )=ʃ10(1-2x +2t )d t =(t -2xt +t 2)|10=-2x +2(x ∈(0,1]). ∴f (x )的值域为[0,2).(2)∵ʃ10f (x )d x =ʃ10(ax 2+c )d x =⎪⎪⎝⎛⎭⎫13ax 3+cx 10=a 3+c . 又f (x 0)=ax 20+c ,∴a 3=ax 20,即x 0=33或-33.∵0≤x 0≤1,∴x 0=33.1.若ʃa 1(2x +1x )d x =3+ln2,则a 的值是( ) A .5B .4C .3D .2 答案 D解析 ʃa 1(2x +1x )d x =ʃa 12x d x +ʃa 11xd x =x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln2,解得a =2. 2.π230(12sin )d 2θθ-⎰等于( )A .-32B .-12C.12D.32答案 D 解析π230(12sin )d 2θθ-⎰=π30cos d θθ⎰=sin θ⎪⎪⎪⎪π3=32.3.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,ʃ10f (x )d x =-2.求a ,b ,c 的值. 解 ∵f (-1)=2,∴a -b +c =2, ① f ′(x )=2ax +b ,f ′(0)=b =0,②ʃ10f (x )d x =ʃ10(ax 2+c )d x =⎪⎪⎝⎛⎭⎫13ax 3+cx 10=13a +c =-2, ③由①②③可得a =6,b =0,c =-4.4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算:⎠⎛0πf (x )d x .解 ⎠⎛0πf (x )d x =ππ2π02()d ()d f x x f x x +⎰⎰=ππ2π02(42π)d cos d -x x x x +⎰⎰,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x . 所以ππ2π02(42π)d cos d -x x x x +⎰⎰=(2x 2-2πx )⎪⎪⎪⎪ π20+sin x ⎪⎪⎪⎪ππ2 =-12π2-1,即⎠⎛0πf (x )d x =-12π2-1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.课时作业一、选择题1.ʃ21(e x+1x )d x 等于( ) A .e 2-ln2 B .e 2-e -ln2 C .e 2+e +ln2 D .e 2-e +ln2答案 D解析 ʃ21(e x +1x )=(e x +ln x )|21 =(e 2+ln2)-(e +ln1)=e 2-e +ln2. 2.ʃ0-4|x +2|d x 等于( )A .ʃ0-4(x +2)d xB .ʃ0-4(-x -2)d xC .ʃ-2-4(x +2)d x +ʃ0-2(-x -2)d xD .ʃ-2-4(-x -2)d x +ʃ0-2(x +2)d x答案 D解析 ∵|x +2|=⎩⎪⎨⎪⎧x +2,-2≤x ≤0,-x -2,-4≤x <-2,∴ʃ0-4|x +2|d x =ʃ-2-4(-x -2)d x +ʃ0-2(x +2)d x .故选D.3.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1答案 B解析 因为S 1=ʃ21x 2d x =13x 3|21=13×23-13=73, S 2=ʃ211xd x =ln x |21=ln2, S 3=ʃ21e x d x =e x |21=e 2-e =e(e -1).又ln2<lne =1,且73<2.5<e(e -1),所以ln2<73<e(e -1),即S 2<S 1<S 3.4.若ʃk 0(2x -3x 2)d x =0,则正数k 的值为( )A .0B .1C .0或1D .2答案 B解析 ʃk 0(2x -3x 2)d x =x 2-x 3|k 0=k 2-k 3=0,解得k =1或0(舍去).5.若函数f (x )=x m +nx 的导函数是f ′(x )=2x +1,则ʃ21f (-x )d x 等于( ) A.56 B.12 C.23 D.16答案 A解析 ∵f ′(x )=mx m -1+n =2x +1,∴m =2,n =1. 则f (x )=x 2+x ,∴ʃ21f (-x )d x =ʃ21(x 2-x )d x=(13x 3-12x 2)|21=56. 6.已知f (a )=ʃ10(2ax 2-a 2x )d x ,则函数f (a )的最大值为( )A.19B.29C .-19D .-29 答案 B解析 f (a )=ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10=-12a 2+23a , 由二次函数的性质,可得f (a )max =-(23)24×(-12)=29.7.若f (x )=x 2+2ʃ10f (x )d x ,则ʃ10f (x )d x 等于( )A .-1B .-13C.13 D .1答案 B解析 ∵f (x )=x 2+2ʃ10f (x )d x ,∴ʃ10f (x )d x =(13x 3+2x ʃ10f (x )d x )|10=13+2ʃ10f (x )d x , ∴ʃ10f (x )d x =-13. 二、填空题8.ʃa -a (x cos x -5sin x +2)d x =________. 答案 4a解析 ∵ʃa -a x cos x =0, ∴ʃa -a (x cos x -5sin x +2)d x =ʃa -a (-5sin x +2)d x =(5cos x +2x )|a -a =4a .9.已知f (x )=3x 2+2x +1,若ʃ1-1f (x )d x =2f (a )成立,则a =________. 答案 -1或13解析 ʃ1-1f (x )d x =(x 3+x 2+x )|1-1=4,2f (a )=6a 2+4a +2,由题意得6a 2+4a +2=4,解得a =-1或13.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +ʃa 03t 2d t ,x ≤0,若f [f (1)]=1,则a =____________. 答案 1解析 因为x =1>0,所以f (1)=lg1=0.又当x ≤0时,f (x )=x +ʃa 03t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1, 解得a =1.11.已知α∈[0,π2],则当ʃα0(cos x -sin x )d x 取最大值时,α=________. 答案 π4解析 ʃα0(cos x -sin x )d x=sin α+cos α-1=2sin(α+π4)-1.∵α∈[0,π2],则α+π4∈[π4,34π],当α+π4=π2,即α=π4时,2sin(α+π4)-1取得最大值.三、解答题12.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,求f (x )的解析式. 解 ∵f (x )是一次函数, ∴设f (x )=ax +b (a ≠0),∴ʃ10f (x )d x =ʃ10(ax +b )d x =ʃ10ax d x +ʃ10b d x =12a +b =5, ʃ10xf (x )d x =ʃ10x (ax +b )d x=ʃ10(ax 2)d x +ʃ10bx d x =13a +12b =176. ∴⎩⎨⎧12a +b =5,13a +12b =176,解得⎩⎪⎨⎪⎧a =4,b =3.∴f (x )=4x +3.13.已知函数f (x )=ʃx 0(at 2+bt +1)d t 为奇函数,且f (1)-f (-1)=13,试求a ,b 的值. 解 f (x )=ʃx 0(at 2+bt +1)d t =(a 3t 3+b 2t 2+t )| x 0=a 3x 3+b 2x 2+x . ∵f (x )为奇函数,∴b2=0,即b =0.又∵f (1)-f (-1)=13,∴a 3+1+a 3+1=13. ∴a =-52. 四、探究与拓展14.已知ʃ20f (x )d x =8,则ʃ20[f (x )-2x ]d x =________.答案 4解析 ∵ʃ20x d x =12×2×2=2, ∴ʃ20[f (x )-2x ]d x =ʃ20f (x )d x -2ʃ20x d x =8-2×2=4.15.已知f (x )=ʃx -a (12t +4a )d t ,F (a )=ʃ10[f (x )+3a 2]d x ,求函数F (a )的最小值. 解 因为f (x )=ʃx -a (12t +4a )d t =(6t 2+4at )|x -a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2,F (a )=ʃ10[f (x )+3a 2]d x =ʃ10(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x )|10=2+2a +a 2=a 2+2a +2=(a +1)2+1≥1.所以当a =-1时,F (a )取到最小值为1.。
北师大版 2018 年高中数学选修 2-2 同步优化指导练习含答案模块综合测评( : 120 分分: 150 分)一、 (本 共 12 小 ,每小5 分,共 60 分 )1. 复数 z = 1+2-)(其中 i 虚数 位 ), z 2+ 3 z 的虚部 (iA . 2iB . 0C .- 10D . 2解析:∵ z = 1+ 2 =1- 2 2 =- - 2- i 2i ,∴ z = (1- 2i) 3- 4i , z =1+ 2i.∴ z + 3 z =- 3- 4i + 3(1+2i) = 2i.∴虚部 2.答案: D2. 察一列数的特点: 1,2,2,3,3,3,4,4,4,4,⋯, 第 100 是 ()A . 10B . 13C .14D . 100解析: ∵ 1+ 13 × 13= 91,2∴从第 92 开始 14,共有 14 .∴第 10014.答案: C1-i2 014+ 2i 的共 复数--= ()3.已知 i 是虚数 位,且 z = 1+ i z , z ·z A . 5 B . 1 C . 5D . 9解析: z = 1- i 2 0142i = (- i) 2 014-=( -1+ 2i)( - 1- 2i) =5.1+ i++ 2i =- 1+ 2i ,故 z ·z答案: A4.数列 { a n } 中, a 1= 1,当 n ≥ 2, a n = a n - 1+ 2n - 1,依次 算 a 2 ,a 3, a 4 后,猜想a n 的表达式是 ()A . 3n - 2B . n 2 n -1D . 4n -3C .3解析: 算出 a 2= 4, a 3= 9, a 4=16,猜想 a n =n 2.答案: B5. 确保信息安全,信息需加密 , 送方由明文→密文(加密 ),接受方由密文→明文 (解密 ),已知加密 :明文a ,b ,c ,d 密文a +2b ,2b +c ,2c + 3d,4d ,例如,明文 1,2,3,4 密文 5,7,18,16.当接受方收到密文14,9,23,28 ,解密得到的明文()A . 4,6,1,7B . 7,6,1,4C .6,4,1,7D . 1,6,4,7a + 2b = 14,a = 6,2b + c = 9, 得b = 4,解析: 由故选 C .2c + 3d =23, c = 1,4d = 28,d = 7.答案: C6. (2017 北·京卷 )若复数 (1-i)( a + i) 在复平面内对应的点在第二象限,则实数a 的取值范围是 ()A . (-∞, 1)B . (-∞,- 1)C .(1,+∞ )D . (- 1,+∞ )解析: (1-i)( a + i) = a + i - ai - i 2= a + 1+ (1-a)i. 由复数 (1-i)( a + i) 在复平面内对应的点在第二象限,a + 1< 0,得解得 a <- 1.1- a > 0.答案: Bπ7π7.由直线 x =- 6, x = 6 ,y = 0 与曲线 y = sin x 所围成的封闭图形的面积为()A . 2- 3B . 4- 3C .2+ 3D . 4+ 3解析: 如下图,封闭图形的面积为πS =-sinxdx + 0 sinxdx -sinxdxπ=- 2sinxdx + 0 sinxdx=- 2( -cosx)+ (- cosx)|0π= 2 cos 0- cos - π- (cos π- cos 0)6 3- (- 1-1)= 4- 3.答案: B8.已知α,β是三次函数f(x)=1312+ 2bx(a,b∈R )的两个极值点,且α∈ (0,1),β3x+ ax2∈(1,2) ,则b-3的取值范围是 () a- 2A .-∞,2B.2,1 55C.(1,+∞ )D.-∞,2∪ (1,+∞ ) 5解析:因为函数有两个极值,所以f′ (x)=0有两个不同的根,即>0又.f′ (x)= x2+f′ 0 >0,2b>0,b- 3的几何意义是动ax+ 2b,α∈ (0,1),β∈ (1, 2),所以f′ 1 <0,即1+ a+2b<0,f′ 2 >0,4+ 2a+ 2b>0.a- 2点 P(a,b)到定点 A(2,3)两点连线的斜率.作出可行域如图,由图像可知当直线经过AB 时斜率最小,此时斜率为 k=1-3=2;当直线经过AD 时斜率最大,此时斜率为k=0- 3=- 3- 2 5-1-22 b- 31.故5<a-2<1.答案: B9.定义在R上的函数y= f(x)满足 f(4 -x)=f(x),(x- 2)f′ (x)<0 ,若 x1<x2,且 x1+ x2>4,则()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)= f(x2)D. f(x1)与 f(x2)的大小不确定解析:由 f(4- x)= f( x),得函数 f(x)的图像关于直线x= 2 对称.由 (x-2)f′ (x)<0,得函数f(x)在 (-∞,2)上是增加的,在 (2,+∞) 上是减少的.故当 x2>x1>2 时,f(x1)>f( x2);当 x2>2> x1时,由 x1+ x2>4,得 x2>4- x1>2.故 f(4- x1)= f(x1)>f(x2).综上, f(x1)>f(x2).答案: B范围是 ()1A . a ≤ 0B . a ≥- 8 1C .a<- 8D . a ≥ 0解析: 由题意,得1f ′ (x)=2ax +(x>0) ,且直线 x + y +m = 0(m ∈ R )的斜率为- 1.x由对任意实数 m 直线 x + y + m = 0 都不是曲线 y =f(x)的切线,得曲线 y = f(x)的切线的斜1率不可能为- 1,即 2ax + =- 1 无正实数根.1 1分离 a ,得 a =- 2x 2 - 2x ①,也就是当 x>0 时,①不能成立. 令 y =- 11 1 1+ 1 2 12x 2- 2x =- 2 x 2 + 8 ,设 t =1x ,由 x>0,得 t>0.则 y =- 1 t + 1 2+ 1<0.228 故 a ≥0.答案: D11.如果函数 f(x)=a x (a x - 3a 2-1)( a>0 且 a ≠ 1)在区间 [0,+∞ )上是增函数,那么实数a 的取值范围是 ()23, 1A . 0, 3B .3 C .(1, 3]3,+∞D . 2 解析: 由已知得 f ′ (x)= 2a 2x ln a - (3a 2+ 1)a x ·ln a = a x ln a(2a x - 3a 2- 1)≥ 0. ①当 a>1 时, ln a>0 ,a x >0,∴ 2a x - 3a 2- 1≥0 恒成立.当 x ∈ [0,+ ∞ )时,a x ≥ 1,故只需 2- 3a 2- 1≥0,∴ 3a 2≤ 1.∴ a2≤ 13与 a>1 矛盾.②当 0<a<1 时, ln a<0, a x >0,∴ 2a x - 3a 2- 1<0 恒成立.当 x ∈ [0,+ ∞ )时, a x ≤ 1,223故只需 2- 3a - 1≤0,∴ 3a ≥ 1.∴ ≤ a<1.12.已知 f(x)在点 x 处可导,那么 limf x +x -f x - x = ()x →x A . 0B . f ′ (x)1C .2f ′ (x)D . 2f ′ (x)解析: lim f x + x - f x - xx →0 x=lim f x + x -f x + lim f x - f x - xx →xx →x= f ′ (x)+ limf x - x - f xx →- x= f ′ (x)+ f ′( x)= 2f ′ (x).答案: D二、填空题 (本大题共4 小题,每小题5 分,共 20 分 )13.设 P 是△ ABC 内一点,△ ABC 三边上的高分别为h A ,h B ,h C , P 到三边的距离依l al bl c次为 l a ,l b ,l c ,则有 h A + h B + h C = ________;类比到空间,设 P 是四面体 ABCD 内一点,四 顶点到对面的距离分别是 h A , h B , h C , h D , P 到这四个面的距离依次是l a , l b , l c , l d ,则有____________.解析: 用等面积法可得 l a + l b + l c =1.h A h B h C 类比到空间有 l a + l b + l c + l d= 1.h A h B h C h D答案: 1l a + l b + l c + l d = 1h A h B h C h D2在 x = 1 处的切线方程为 14.曲线 y = 2ln x + x - 2x解析: 当 x = 1 时, y =- 1.又 y ′= 2+ 2x -2,于是 x__________ .k = y ′ |x = 1= 2.故切线方程为 y + 1=2(x - 1),即 2x - y -3= 0.答案: 2x - y - 3=015.已知二次函数 f(x)= ax 2+ bx + c 的导数为 f ′ (x), f ′ (0)>0 ,且 f(x)的值域为 [0,+∞ ) ,则 f 1的最小值为 ________. f ′解析: ∵ f ′(x)=2ax + b ,∴ f ′ (0) = b>0.又函数 f(x)的值域为 [0,+ ∞ ),∴ a>0 ,且 = b 2- 4ac = 0,即 4ac = b 2.∴ c>0.∵ f(1) = a+ b+ c,∴f 1=a+ b+ c=1+ a+ c≥1+ 2ac= 1+4ac= 1+1= 2,当且仅f′ 0b b b4ac当 a= c 时等号成立.∴ f 1的最小值为 2.f′ 0答案: 216.定义两个实数间的一种新运算“ *:”x* y= lg(10 x+ 10y), x, y∈R .对任意实数 a, b,c,给出下列结论:① (a*b)* c=a*( b* c);② a* b= b*a ;③ (a* b) + c=( a+ c)*( b+ c).其中正确的是 ________(填序号 ).解析:∵ a* b=lg(10 a+ 10b),∴(a* b)* c=lg(10lg(10 a+ 10b)+ 10c)=lg(10 a+ 10b+ 10c).同理 a*( b* c)= lg(10 a+ 10b+10c).∴a*( b*c)=( a* b)* c.故①正确.同理可验证②正确.∵a* b= lg(10 a+ 10b),a bb* a=lg(10 + 10),∴a* b= b* a.又∵ (a+ c)*( b+ c)= lg(10 a+c+ 10b+c)=lg[10 c(10a+ 10b)]=lg(10 a+ 10b)+ c,(a* b)+ c= lg(10 a+ 10b)+ c,∴(a* b)+ c=(a+c)*( b+ c).故③正确.答案:①②③三、解答题 (本大题共 6 小题,共 70 分)17. (10 分)求证: ac+ bd≤a2+b2· c2+ d2.证明:若 ac+ bd≤ 0,则不等式显然成立.若 ac+bd>0 ,要证原不等式成立,22222只要证 (ac+bd)≤ (a+b)(c+ d ),即要证 a2c2+ 2abcd+ b2d2≤ a2c2+ a2d2+ b2c2+ b2d2,只要证 (ad- bc)2≥ 0.此式显然成立,所以原不等式成立.-18.(12 分 )设复数 z 满足 4z+2 z = 3 3+ i ,ω=sin θ- icos θ(θ∈R).求 z 的值和 |z-ω| 的取值范围.-解:设 z= a+ bi(a, b∈R),则 z = a- bi.-代入 4z +2 z = 33+ i ,得 4(a + bi) + 2(a - bi) = 3 3+ i ,即 6a + 2bi = 3 3+ i.6a =3 3,3,a = 23 +1i.∴解得∴ z = 2b =1.12 2b = 2.∴ |z - ω|=3 12+ i - sin θ- icos θ2=3- sin θ2+ 12+ cos θ22= 2- 3sin θ+ cos θ=2-2sinθ- π .6π∵- 1≤ sin θ- 6 ≤ 1,π∴ 0≤ 2- 2sin θ- 6 ≤ 4.∴ 0≤ |z -ω|≤2.故 |z - w|的取 范 是 [0,2] .19. (12 分)已知复数 z = (2x + a)+ (2-x + a)i , x , a ∈ R ,当 x 在 (-∞,+∞ )内 化 ,求 |z|的最小g(a).解: |z|2= (2x +a) 2+ (2 - x+ a) 2= 22x +2 - 2x- x+ 2a(2x +2 )+ 2a 2.令 t = 2x + 2- x , t ≥ 2,22x + 2-2x = t 2- 2.从而 |z|2= t 2+ 2at + 2a 2- 2= (t + a)2+ a 2- 2.当- a ≥ 2,即 a ≤ - 2 , g(a)=a 2- 2;当- a<2 ,即 a>- 2 ,g(a)= a + 2 2+ a 2- 2= 2|a + 1|.20. (12 分)用数学 法 明不等式:2+ 1× 4+ 1×⋯× 2n + 124 2n > n + 1.明: ①当 n =1 ,左式= 3,右式=2,2左式 >右式,所以不等式成立.②假 n = k(k ≥ 1, k ∈ N + ) 不等式成立,2+ 1 4+ 1 2k + 1即2×4×⋯×2k >k + 1,当 n = k + 1 ,2+ 1×4+ 1×⋯× 2k + 1× 2k +32k + 3 = 2k + 3 .2 42k 2 k +1 > k +1×2 k + 12 k + 1 要 当 n = k + 1 不等式成立,只需2k +3≥k + 2,2 k + 1即2k + 3≥ k +1 k + 2 .2由基本不等式 2k + 3= k + 1 + k + 2 ≥k + 1 k + 2 成立,故2k + 3≥ k + 2成立.222 k + 1所以,当 n = k +1 ,不等式成立.由①②可知, n ∈ N2+1 4+ 12n + 1,不等式2 ×4×⋯×2n> n + 1成立.+21. (12 分 )已知函数 f(x) =x 3 +2bx 2+ cx - 2 的 像在与x 交点 的切 方程是y = 5x-10.(1)求函数 f(x)的解析式.(2) 函数 g(x)= f(x)+1mx ,若 g( x)的极 存在, 求 数 m 的取 范 以及函数 g(x)取得3极 的自 量 x 的 .解: (1)由已知得切点(2,0),故有 f(2) = 0,即 4b + c + 3=0.①又 f ′ (x)= 3x 2+ 4bx + c ,由已知 f ′(2) = 12+ 8b + c =5,得 8b + c + 7= 0.②立①②,解得b =- 1,c = 1.所以函数的解析式f(x) =x 3 -2x 2+ x - 2.(2)g( x)= x 3- 2x 2+ x -2+ 1mx ,3 21令 g ′ (x)= 3x -4x +1+ m = 0.3当函数有极 ,方程3x 2- 4x + 1+ 1m = 0 有 数解,即 Δ≥ 0.3由 = 4(1- m)≥ 0,得 m ≤ 1.①当 m =1 , g ′ (x)= 0 有 数根 x = 2,在 x =2左右两 均有g ′ (x)>0 ,故函数 g(x)33无极 .②当 m<1 , g ′ (x)= 0 有两个 数根x 1 =1 (2- 1- m), x 2= 1(2+ 1- m).33当 x 化 , g ′( x), g(x)的情况如下表:x (-∞, x 1) x 1(x 1,x 2) x 2( x 2,+∞ )g′ (x)+0-0+g(x)极大值极小值所以当 m∈ (-∞, 1)时,函数g(x)有极值,1当x=3(2 - 1-m)时, g(x)有极大值;当x=13(2 + 1-m)时, g(x)有极小值.22.(12 分 )(2014 浙·江高考 )已知函数 f(x)= x3+ 3|x- a|(a>0),将 f(x)在 [- 1,1] 上的最小值记为 g(a).(1)求 g(a).(2)证明:当x∈ [ - 1,1] 时,恒有f(x)≤ g(a)+ 4.(1)解:因为 a>0 ,- 1≤ x≤ 1,所以①当 0<a<1 时,若x∈ [- 1, a],则 f(x)=x3- 3x+ 3a,f′ (x)=3x2-3<0.故 f(x) 在(- 1, a)上是减函数.若x∈ [a,1],则 f(x)= x3+ 3x-3a,f′ (x)=3x2+3>0.故f(x) 在(a,1)上是增函数.所以 g(a)= f(a)= a3.②当 a≥ 1 时,有 x≤ a,则f(x) =x3- 3x+ 3a, f′ (x)= 3x2- 3<0.故f(x) 在(- 1,1)上是减函数,所以 g(a)= f(1)=- 2+ 3a.a3 0<a<1 ,综上, g(a)=-2+ 3a a≥ 1 .(2)证明:令 h( x)= f(x)- g(a).①当 0<a<1 时, g( a) = a3 .若x∈ [a,1],则 h(x)=x3+3x- 3a-a3,h′ (x)= 3x2+ 3,在 (a,1)上是增函数.所以 h(x)在 [a,1]上的最大值是 h(1) = 4- 3a- a3 .因为 0< a<1,所以 h(1)≤4.故f(x) ≤g( a)+4.若x∈ [- 1, a],则 h(x)= x3- 3x+ 3a- a3,h′ (x)= 3x2- 3,在 ( -1, a)上是减函数.所以 h(x)在 [ - 1,a] 上的最大值是h(- 1)= 2+3a- a3.9北师大版 2018 年高中数学选修2-2 同步优化指导练习含答案知t(a) 在(0,1)上是增函数,所以 t(a)<t(1)= 4,即 h(- 1)<4.故f(x) ≤g( a)+4.②当 a≥ 1 时, g(a)=- 2+ 3a,故h(x)= x3- 3x+ 2,得 h′ (x)= 3x2- 3.此时 h(x)在 (- 1,1)上是减函数.因此 h(x)在 [ - 1,1] 上的最大值是h(- 1)= 4.故f(x) ≤g( a)+4.综上,当 x∈ [ - 1,1]时,恒有f(x)≤g(a)+4.10。
选修2-2 第四章 §2 课时作业21一、选择题 1.⎠⎛02π|sin x |d x 等于( ) A .0B .2C .4D .-4解析:∫2π0|sin x |d x =⎠⎛0πsin x d x +∫2ππ(-sin x )d x =(-cos x )⎪⎪⎪ π0+cos x ⎪⎪⎪ 2ππ=1-(-1)+1-(-1)=4.故选C. 答案:C2. (1-2sin 2θ2)dθ的值为( ) A .-32 B .-12C .12D .32 解析: (1-2sin 2θ2)dθ =cosθdθ=sinθ⎪⎪⎪⎪π30=32,故选D. 答案:D3. 下列各式中错误的是( )A .sinφdφ=1B .cosφdφ=1C .⎠⎛1e e x d x =-1D .⎠⎛1e 1x d x =1 解析:sinφdφ=(-cosφ)⎪⎪⎪⎪π20=-0-(-1)=1,cosφdφ=sinφ⎪⎪⎪⎪ π20=1-0=1,⎠⎛1e e x d x =e x ⎪⎪⎪ e1=e e -e , ⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=lne -0=1. 故选C.答案:C4. 已知f (x )是一次函数且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,则f (x )的解析式为() A .4x +3 B .3x +4C .-4x +3D .-3x +4解析:设f (x )=ax +b (a ≠0),则xf (x )=ax 2+bx ,⎠⎛01f (x )d x =(a 2x 2+bx )⎪⎪⎪ 10=a 2+b =5, ①⎠⎛01xf (x )d x =(a 3x 3+b 2x 2)⎪⎪⎪ 10=a 3+b 2=176, ②联立①②得⎩⎨⎧ a 2+b =5a 3+b 2=176⇒⎩⎪⎨⎪⎧ a =4,b =3.∴f (x )=4x +3.故选A.答案:A二、填空题5.[2013·湖南高考]若⎠⎛0T x 2d x =9,则常数T 的值为________.解析:∵⎠⎛0T x 2d x =13T 3=9,T >0,∴T=3.答案:36.⎠⎛2-1|x 2-x |d x =__________.解析:⎠⎛2-1|x 2-x |d x =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x +⎠⎛12(x 2-x )d x= ⎪⎪⎝⎛⎭⎫13x 3-x 220-1+ ⎪⎪⎝⎛⎭⎫x 22-13x 310+⎪⎪⎝⎛⎭⎫13x 3-x 2221=116. 答案:1167.设函数f (x )=ax 2+c (a ≠0).若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为__________. 解析:⎠⎛01(ax 2+c )d x =⎪⎪⎝⎛⎭⎫13ax 3+cx 10=13a +c =ax 20+c ⇒x 0=33⎝⎛⎭⎫由0≤x 0≤1,则x 0=-33舍去. 答案:33 三、解答题8.计算下列定积分.(1)⎠⎛12⎝⎛⎭⎫2x 2-1x d x ; (2)⎠⎛23⎝⎛⎭⎫x +1x 2d x ; (3)(sin x -sin2x )d x . 解:(1)∵⎝⎛⎭⎫23x 3-ln x ′=2x 2-1x , ∴⎠⎛12⎝⎛⎭⎫2x 2-1x d x = ⎪⎪⎝⎛⎭⎫23x 3-ln x 21 =⎝⎛⎭⎫23×23-ln2-⎝⎛⎭⎫23×13-ln1 =143-ln2. (2)∵⎝⎛⎭⎫x +1x 2=x +1x +2, 且⎝⎛⎭⎫x 22+ln x +2x ′=x +1x+2, ∴⎠⎛23⎝⎛⎭⎫x +1x 2d x =⎪⎪⎝⎛⎭⎫x 22+ln x +2x 32 =⎝⎛⎭⎫322+ln 3+6-⎝⎛⎭⎫222+ln 2+4 =92+ln 32. (3)∵(-cos x +12cos2x )′=sin x -sin2x ,∴ (sin x -sin2x )d x =(-cos x +⎪⎪12cos2x )π30 =⎝⎛⎭⎫-cos π3+12cos 2π3-⎝⎛⎭⎫-cos0+12cos0 =-12-14+1-12=-14. 9.设f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2.(1)求y =f (x )的表达式;(2)若直线x =-t (0<t <1)把y =f (x )的图像与两坐标轴所围成图形的面积二等分,求t 的值.解:(1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b ,由已知f ′(x )=2x +2,所以a =1,b =2,所以f (x )=x 2+2x +c .又方程f (x )=0有两个相等的实根,所以Δ=4-4c =0,即c =1.所以f (x )=x 2+2x +1.(2)依题意知:⎠⎛-1-t (x 2+2x +1)d x =⎠⎛0-t (x 2+2x +1)d x , 所以 ⎪⎪⎝⎛⎭⎫13x 3+x 2+x -t -1= ⎪⎪⎝⎛⎭⎫13x 3+x 2+x 0-t .-13t 3+t 2-t +13=13t 3-t 2+t ,所以2t 3-6t 2+6t -1=0, 即2(t -1)3+1=0.于是t =1-132.。
一、选择题1.0xdx +=( )A .2π B .12π+C .4π D .π2.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( ) A .240 B .240-C .60-D .603.定积分2]x dx ⎰的值为( )A .24π- B .2π- C .22π- D .48π-4.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e -- B .1e e -+ C .12e e --- D .12e e -+-5.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞6.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .27.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是AB .2C .π23-D π38.20ln 1()231mx x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,,,且()()10f f e =,则m 的值为( ) A .1B .2C .1-D .2-9.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .32910.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( )A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 2211.二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,观察发现()S r l '=:三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,观察发现()V r S '=.则由四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( ). A .224r πB .283r πC .514r πD .42r π12.若函数31()log ()(01)(,0)3a f x x ax a a 且在区间=->≠-内单调递增,则实数a 的取值范围是( ). A .2[,1)3B .1[,1)3C .1[,1)(1,3]3D .(1,3]二、填空题13.由曲线2y x=与直线1y =x -及1x =所围成的封闭图形的面积为__________. 14.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________.15.1321(tan sin )x x x x dx -++⎰的值为______________________16.()1||214x ex dx -+-=⎰__________________17.已知()[](]221,1,11,1,2x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩,则()21f x dx -=⎰______.18.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.三、解答题21.已知函数f (x )=x 3+32x 2+mx 在x=1处有极小值, g (x )=f (x )﹣23x 3﹣34x 2+x ﹣alnx . (1)求函数f (x )的单调区间;(2)是否存在实数a ,对任意的x 1、x 2∈(0,+∞),且x 1≠x 2,有1212()()1g x g x x x ->-恒成立?若存在,求出a 的取值范围;若不存在,说明理由.22.如图所示,抛物线21y x =-与x 轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD 作为工业用地,其中A 、B 在抛物线上,C 、D 在x 轴上 已知工业用地每单位面积价值为3a 元()0a >,其它的三个边角地块每单位面积价值a 元.(Ⅰ)求等待开垦土地的面积;(Ⅱ)如何确定点C 的位置,才能使得整块土地总价值最大. 23.已知函数()xf x xea -=-有两个零点1x , 2x .(1)求实数a 的取值范围; (2)求证: 122x x +>. 24.已知()xkx bf x e +=. (Ⅰ)若()f x 在0x =处的切线方程为1y x =+,求k 与b 的值; (Ⅱ)求1x xdx e ⎰. 25.计算下列定积分 (1) ()12xx e dx +⎰(2)2442cos tan 2x x dx ππ-⎛⎫+ ⎪⎝⎭⎰ (3)214x dx --26.已知()1313d 26x ax a b x a -⎰++-=+,且()()33d tf t x ax a b x ⎰=++-为偶函数,求a ,b .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别根据积分的运算法则和几何意义求得两个积分的值,进而得到结果. 【详解】22200112xdx x ==⎰ 2224x dx -⎰表示下图所示的阴影部分的面积S2OA =,2OC =4AOC π∴∠=12221422S ππ∴=⨯-=- 2220241122x dx ππ+-∴=+-=⎰故选:A 【点睛】本题考查积分的求解问题,涉及到积分的运算法则和几何意义的应用.2.D解析:D 【解析】试题分析:242a =-=-,62122x x ⎛⎫- ⎪⎝⎭的通项为()()662112366112222rrrrr r rC x x C x----⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭,1230,4r r -==,系数为()244612602C ⎛⎫-= ⎪⎝⎭.考点:定积分、二项式定理.3.B解析:B 【解析】试题分析:由定积分的几何意义有2204(2)x dx --⎰表示的是以(2,0)为圆心,半径为2的圆的14部分,而20xdx ⎰表示的是直线y x =,0,2,x x x ==轴所围成的面积,故220[4(2)]x x dx ---⎰表示的图形如下图的阴影部分,面积为221122242ππ⨯-⨯=-.故选B.考点:1.定积分的几何意义;2.方程的化简.4.D解析:D 【解析】试题分析:根据题意画出区域,作图如下,由{x xy e y e-==解得交点为(0,1),∴所求面积为:()()1101|2x x x x S e e dx e e e e --=-=+=+-⎰ 考点:定积分及其应用5.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果.【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b ,设abt ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.6.C解析:C 【解析】f ′(x )=6x 2−18x +12,令f ′(x )=0得x 2−3x +2=0,解得x =1,或x =2. ∴当x <1或x >2时,f ′(x )>0,当1<x <2时,f ′(x )<0,∴f (x )在(−∞,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增, ∴当x =1时,f (x )取得极大值f (1)=5−a , 当x =2时,f (x )取得极小值f (2)=4−a ,∵f (x )只有两个零点,∴5−a =0或4−a =0,即a =5或a =4. 本题选择C 选项.7.D解析:D 【解析】曲线()sin 0πy x x =≤≤与直线12y =的两个交点坐标分别为(π6,12),(5π6,12),则封闭图形的面积为5π5π66ππ6611πsin cos |223x dx x x ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭⎰ 本题选择D 选项.点睛:(1)用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加. (2)根据定积分的几何意义可利用面积求定积分.(3)若y =f (x )为奇函数,则()()0aaf x dx a ->⎰ =0.8.B解析:B 【详解】因为2333|,mmt dt t m ==⎰所以()3121lnx x f x x m x >⎧=⎨+≤⎩,,, ()ln 1f e e ==,()()()31210f f e f m ∴==+=,解得2m =. 故选:B.9.C解析:C 【详解】由1xy y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,13xy y =⎧⎨=⎩解得133x y ⎧=⎪⎨⎪=⎩,3y y x =⎧⎨=⎩解得33x x =⎧⎨=⎩,所围成的平面图形的面积为S ,则()()1111331131(31)323ln |2S dx x x x ⎛⎫=⨯--+-=+- ⎪⎝⎭⎰,4ln 3S =-,故选C.10.B解析:B 【解析】 【分析】联立方程组,确定被积区间和被积函数,得出曲边形的面积2121(4)S x dx x=-⎰,即可求解,得到答案. 【详解】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =, 所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为 22222112211115(4)(2ln )|(22ln 2)[2()ln ]2ln 2222S x dx x x x =-=-=⨯--⨯-=-⎰, 故选B . 【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题意求解交点的坐标,确定被积分区间和被积函数,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D 【解析】因为4328W r W r V ππ'=⇒==,所以42W r π=,应选答案D . 点睛:观察和类比题设中的函数关系,本题也可以这样解答:34418824W r dr r r πππ=⎰=⨯=,应选答案D . 12.B解析:B 【解析】由题意得0y '≥1,03⎛⎫- ⎪⎝⎭在区间恒成立,即210(3)ln x a a ≥-1,03⎛⎫- ⎪⎝⎭在区间恒成立,当1a > 时2min (3)0a x a <⇒≤ ,舍;当01a << 时2min 111(3)3=1933a x a a ,>⇒≥⨯∴≤< ,选B.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.二、填空题13.【分析】转化为定积分求解【详解】如图:曲线与直线及所围成的封闭图形的为曲边形因为曲线与直线及的交点分别为且所以由曲线与直线及所围成的封闭图形的面积为【点睛】本题考查定积分的意义及计算 解析:12ln 22-【分析】 转化为定积分求解. 【详解】 如图:,曲线2y x=与直线1y =x -及1x =所围成的封闭图形的为曲边形ABC , 因为ABC ABCD ACD S S S =- , 曲线2y x=与直线1y =x -及1x =的交点分别为(1,2),(2,1) 且212ABCD S dx x =⎰,21(1)ACD S x dx =-⎰,所以,()22222111121(1)2ln 2ABCS dx x dx x x x x ⎛⎫=--=-- ⎪⎝⎭⎰⎰ ()221112ln 22ln122112ln 2222⎡⎤⎛⎫⎛⎫=--⨯--⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.由曲线2y x =与直线1y =x -及1x =所围成的封闭图形的面积为12ln 22-. 【点睛】本题考查定积分的意义及计算.14.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 15.0【解析】因为f(x)=x3+tanx+x2sinx−1⩽x ⩽1所以f(−x)=−x3−tanx−x2sinx=−f(x)所以f(x)为奇函数解析:0 【解析】因为f (x )=x 3+tanx +x 2sinx ,−1⩽x ⩽1所以f (−x )=−x 3−tanx −x 2sinx =−f (x ), 所以f (x )为奇函数,21310x tanx x sinx dx -⎛⎫∴++= ⎪⎝⎭⎰.16.【解析】由定积分的几何意义知:是如图所示的阴影部分曲边梯形的面积其中故故故故答案为 解析:22233e π+-+【解析】11221424x dx x dx --=-⎰⎰,由定积分的几何意义知:1204x dx -⎰是如图所示的阴影部分曲边梯形OABC 的面积,其中()1,3,30B BOC ∠=,故221242433x dx x dx π--=-=+11101022|22xx x e dx e dx e e -===-⎰⎰,故(121242233xe x dx e π--=+-⎰22233e π+-17.【解析】由题意可得答案:【点睛】求定积分的题型一种是:几何方法求面积一般是圆第二种是:求用被积函数的原函数用积分公式第三种是:利用奇函数关于原点对称区间的积分为0本题考查了第一种和第二种 解析:π423+ 【解析】由题意可得()22221111(1)f x dx x dx x dx --=-+-=⎰⎰2214()|2323x x ππ+-=+,答案:423π+. 【点睛】求定积分的题型,一种是:几何方法求面积,一般是圆.第二种是:求用被积函数的原函数,用积分公式,第三种是:利用奇函数关于原点对称区间的积分为0.本题考查了第一种和第二种.18.3【解析】由题意得即则解析:3【解析】由题意,得()()()()21222221220101111||2x dx x dx xdx x x x x -=-+-=-+-=⎰⎰⎰,即57622a a a +==,则468633a a a a ++==.19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --== 考点:1.定积分;2.二项式定理20.【解析】由解得或∴曲线及直线的交点为和因此曲线及直线所围成的封闭图形的面积是故答案为点睛:本题考查了曲线围成的图形的面积着重考查了定积分的几何意义和定积分计算公式等知识属于基础题;用定积分求平面图形解析:43【解析】由2 2y x y x⎧=⎨=⎩,解得0 0x y =⎧⎨=⎩或2 4x y =⎧⎨=⎩,∴曲线2y x =及直线2y x =的交点为()0,0O 和()2,4A 因此,曲线2y x =及直线2y x =所围成的封闭图形的面积是()222320014233S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰,故答案为43.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.三、解答题21.(1)单调增区间为(﹣∞,﹣2),(1,+∞),单调减区间为(﹣2,1);(2)7a≤-2【解析】试题分析:(1)由极值定义得f′(1)=6+m=0,解得m值,再求导函数零点,列表分析导函数符号变化规律,确定单调区间(2)先等价转化不等式:设0<x1<x2,g(x1)﹣x1<g (x2)﹣x2.再构造函数h(x)=g(x)﹣x,转化为h(x)在(0,+∞)为增函数,利用导数研究h(x)导函数恒非负的条件,即得a的取值范围试题解:(1)∵f(x)=x3+x2+mx,∴f′(x)=3x2+3x+m,∵f(x)=x3+x2+mx在x=1处有极小值,∴f′(1)=6+m=0,得m=﹣6.∴f(x)=x3+x2﹣6x,则f′(x)=3(x2+x﹣2)=3(x﹣1)(x+2).∴当x∈(﹣∞,﹣2)∪(1,+∞)时,f′(x)>0,当x∈(﹣2,1)时,f′(x)<0,则f(x)的单调增区间为(﹣∞,﹣2),(1,+∞),单调减区间为(﹣2,1);(2)g(x)=f(x)﹣x3﹣x2+x﹣alnx=x3+x2﹣6x﹣x3﹣x2+x﹣alnx=﹣5x﹣alnx.假设存在实数a使得对任意的 x1,x2∈(0,+∞),且x1≠x2,有>1恒成立,不妨设0<x1<x2,只要g(x1)﹣g(x2)<x1﹣x2,即:g(x1)﹣x1<g(x2)﹣x2.令h(x)=g(x)﹣x,只要 h(x)在(0,+∞)为增函数即可.又函数h(x)=g(x)﹣x=,则h′(x)==.要使h'(x)≥0在(0,+∞)上恒成立,则需2x3+3x2﹣12x﹣2a≥0在(0,+∞)上恒成立,即2a≤2x3+3x2﹣12x.令t(x)=2x3+3x2﹣12x,则t′(x)=6x2+6x﹣12=6(x+2)(x﹣1).∴当x∈(0,1)时,t(x)单调递减,当x∈(1,+∞)时,t(x)单调递增,则t(x)min=t(1)=﹣7.∴2a≤﹣7,得a.∴存在实数a ,对任意的x 1、x 2∈(0,+∞),且x 1≠x 2,有>1恒成立. 22.(1)43;(2)点C 的坐标为.【详解】试题分析:(1)由于等待开垦土地是由曲线21y x =-与x 轴围成的,求出曲线与x 轴的交点坐标,再用定积分就可求出此块土地的面积;(2)既然要确定点C 的位置,使得整块土地总价值最大,那我们只需先设出点C 的坐标为(x ,0),然后含x 的代数式表示出矩形地块ABCD ,进而结合(1)的结果就可表示出其它的三个边角地块的面积,从而就能将整块土地总价值表示成为x 的函数,再利用导数求此函数的最大值即可. 试题(1)由于曲线21y x =-与x 轴的交点坐标为(-1,0)和(1,0),所以所求面积S=1231114(1)()|133x dx x x --=-=-⎰,故等待开垦土地的面积为43(2)设点C 的坐标为(,0)x ,则点B 2(,1)x x -其中01x <<, ∴22(1)ABCD S x x =- ∴土地总价值由2'4(13y a x =-)=0得33(33x x ==-或者舍去)并且当303x <<时,3'0,1'03y x y ><<<当时,故当33x =时,y 取得最大值. 答:当点C 的坐标为时,整个地块的总价值最大.考点:1.定积分;2.函数的最值. 23.(1)10,e ⎛⎫ ⎪⎝⎭;(2)见解析. 【解析】试题分析: (1)函数()xf x xe a -=-的定义域为R ,因为()x f x xe a -=-有两个零点1x , 2x ,所以函数()xxg x e =与函数y a =有两个不同的交点,根据导数的性质,可知当(),1x ∈-∞时, ()g x 单调递增;当()1,x ∈+∞时, ()g x 单调递减,所以()()max 11g x g e ==,并且当()1,x ∈+∞, ()0g x >,于是可得函数()x xg x e=的图象大致,然后再利用数形结合,可得函数()xxg x e =与函数y a =有两个不同的交点时, a 的取值范围;(2)由已知()()12f x f x =,即1212x x x x e e =,∴ 2121x x x e e x =,∴ 2121x x xe x -=,两边同取以e 为底的对数,得2211lnx x x x -=,要证明122x x +>,则只需证明2122111ln 2x x x x x x -<+,即21221111ln 21x x x x x x -<+,不妨设12x x <,令21xt x =,则()1,t ∈+∞, 即证11ln 12t t t -<+对()1,t ∈+∞恒成立,令()11ln 21t g t t t -=-+,然后再根据导数在函数单调性中的应用即可求出结果. 试题(1)函数()xf x xe a -=-的定义域为R ,因为()xf x xea -=-有两个零点1x , 2x ,所以函数()xxg x e =与函数y a =有两个不同的交点, ()1'x x g x e -=,令()1'0xxg x e -==, 解得1x =,当(),1x ∈-∞时, ()'0g x >, ()g x 单调递增;当()1,x ∈+∞时, ()'0g x <, ()g x 单调递减,所以()()max 11g x g e==, 并且当()1,x ∈+∞, ()0g x >,于是()xxg x e =的图象大致为:函数()x x g x e =与函数y a =有两个不同的交点时, a 的取值范围是10,e ⎛⎫⎪⎝⎭.(2)由已知()()12f x f x =,即1212x x x x e e =,∴ 2121x x x e e x =,∴ 2121x x xe x -=,两边同取以e 为底的对数,得2211lnx x x x -=, 要证明122x x +>,则只需证明2122111ln 2x x x x x x -<+,即21221111ln 21x x x x x x -<+, 不妨设12x x <,令21x t x =,则()1,t ∈+∞, 即证11ln 12t t t -<+对()1,t ∈+∞恒成立, 令()11ln 21t g t t t -=-+,则()()()()()()()22222221411221'021212121t t t t t g t t t t t t t t t +---+=-===>++++, ∴()g t 在区间()1,+∞单调递增, ∴()()10g t g >=,即11ln 021t t t -->+, 11ln 12t t t -<+,从而122x x +>成立. 24.(Ⅰ)1b =,2k =;(Ⅱ)21e-. 【解析】 试题分析:(Ⅰ)求出函数的的导函数;根据题意知()()011{{011f k b f b =-=⇒==',可解得1b =,2k =;(Ⅱ)根据微积分的基本定理设()x x kx k b xf x e e--'+==,解得1k =-,1b =-,得()1x x f x e --=,从而求得1112|10x x x x dx e e e --==-⎰. 试题解:()()()2x xx x x k e kx b ekx b kx k b f x e e e'⋅-++-+-⎛⎫== ⎪⎝⎭'=. (Ⅰ)依题意:()()011{{011f k b f b =-=⇒==',解得1b =,2k =;(Ⅱ)设()x xkx k b xf x e e--'+==,则1{0k k b -=-=,解得1k =-,1b =-,即()1xx f x e --=, ∴1112|10x x x x dx e e e --==-⎰. 考点:导数的几何意义;微积分的基本定理. 25.(1) e (2) 2π(3)23π+【解析】 【分析】(1)由微积分基本定理求解定积分即可;(2)由微积分基本定理结合奇函数的性质可得定积分的值; (3)由定积分的几何意义将原问题转化为求解面积的问题即可. 【详解】(1)由微积分基本定理可得:()12xx e dx +⎰()()()210|101x xe e e =+=+-+=.(2)由奇函数的性质可得:44tan 0xdx ππ-=⎰,由微积分基本定理可得:()()24444442cos 1cos sin |2xdx x dx x x ππππππ---=+=+⎰⎰442πππ⎛⎛=+--=+ ⎝⎭⎝⎭, 则42422x costanx dx ππ-⎛⎫+ ⎪⎝⎭⎰244442cos tan 22x dx xdx πππππ--=+=⎰⎰ (3)由定积分的几何意义可知,1-表示如图所示的阴影部分的面积,该图形可分解为一个扇形与两个三角形,故:1-2160221223603ππ⎛=⨯⨯+⨯⨯=+ ⎝【点睛】(1)一定要注意重视定积分性质在求值中的应用;(2)区别定积分与曲边梯形面积间的关系,定积分可正、可负、也可以为0,是曲边梯形面积的代数和,但曲边梯形面积非负. 26.a =-3,b =-9 【解析】 【分析】利用微积分基本定理得a,b 的方程组求解即可. 【详解】因为f(x)=3x +ax 为奇函数,所以()131x ax dx 0+=-⎰.所以()131x ax 3a b dx -⎰++-()()11311x ax dx 3a b dx +---=+⎰⎰()103a b x |1-=+-=6a -2b ,所以6a -2b =2a +6,即2a -b=3.①又()()()4422x a t at f t x 3a b x 3a b t 04242t ⎡⎤⎢⎥⎣⎦=++-=++-为偶函数, 所以3a -b =0,② 由①②得:a =-3,b =-9. 【点睛】本题考查微积分基本定理,准确计算是关键,是基础题.。
第四章 本章整合提升1.(2015·福建卷)若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( )A .{-1}B .{1}C .{1,-1}D .∅解析:∵A ={i ,i 2,i 3,i 4}={i ,-1,-i,1},B ={1,-1},∴A ∩B ={-1,1}. 答案:C2.(2016·山东卷)若复数z =21-i ,其中i 为虚数单位,则z -=( )A .1+iB .1-iC .-1+iD .-1-i解析:∵z =2(1+i )(1-i )(1+i )=1+i ,∴z -=1-i.故选B .答案:B3.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A .12B .22 C . 2D .2解析:方法一 由(1+i)z =2i 得z =2i1+i =1+i ,∴|z |= 2.故选C .方法二 ∵2i =(1+i)2,∴由(1+i)z =2i =(1+i)2,得z =1+i.∴|z |= 2.故选C . 答案:C4.(2015·全国卷Ⅱ)若a 为实数,且2+a i1+i =3+i ,则a =( )A .-4B .-3C .3D .4解析:∵2+a i1+i =3+i ,∴2+a i =(3+i)(1+i)=2+4i.∴a =4.故选D .答案:D5.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:∵z =i(-2+i)=-1-2i ,∴复数z =-1-2i 所对应的复平面内的点为Z (-1,-2),位于第三象限.故选C .答案:C6.(2017·山东卷)已知a ∈R , i 是虚数单位,若z =a +3i ,z ·z -=4,则a =( ) A .1或-1 B .7或-7 C .- 3D . 3解析:∵z ·z -=4,∴|z |2=4,即|z |=2. ∵z =a +3i ,∴|z |=a 2+3.∴a 2+3=2. ∴a =±1.故选A . 答案:A7.(2016·天津卷)i 是虚数单位,复数z 满足(1+i)z =2,则z 的实部为________. 解析:先求出复数z ,再确定其实部.因为(1+i)z =2,所以z =21+i =1-i.所以其实部为1.答案:18.(2015·天津卷)i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________. 解析:先运用复数的乘法进行化简,再利用纯虚数的概念求解.由(1-2i)(a +i)=(a +2)+(1-2a )i 是纯虚数可得a +2=0,1-2a ≠0,解得a =-2.答案:-29.(2015·江苏卷)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 解析:∵z 2=3+4i ,∴|z 2|=|z |2=|3+4i|=32+42=5.∴|z |= 5. 答案: 510.(2015·重庆卷)设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________. 解析:根据复数的模和复数的乘法解决.∵|a +b i|=a 2+b 2=3,∴(a +b i)(a -b i)=a 2+b 2=3. 答案:3。
活页作业(十六) 微积分基本定理
1.函数F (x )=⎠⎛0x
t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323
C .有最小值-32
3,无最大值
D .既无最大值也无最小值
解析:F (x )=⎠⎛0x (t 2-4t )d t =⎝⎛⎭⎫13t 3-2t 2|x 0=13
x 3-2x 2(-1≤x ≤5). 则F ′(x )=x 2-4x ,令F ′(x )=0,得x =0或4.列表如下:
因此极大值F (0)=0,极小值F (4)=-32
3.
又F (-1)=-73,F (5)=-25
3,
所以最大值为0,最小值为-32
3.
答案:B
2.下列式子正确的是( ) A .⎠⎛a b
f (x )d x =f (b )-f (a ) B .⎠⎛a b f ′(x )d x =f (b )-f (a ) C .⎠⎛a b f (x )d x =f (x ) D .[⎠⎛a b f (x )d x ]′=f (x )
解析:⎠⎛a b f ′(x )d x =f (x )|b a =f (b )-f (a ).
答案:B
3.设f (x )=⎩
⎪⎨⎪⎧
x 2
(0≤x <1),
2-x (1≤x ≤2),则⎠⎛02f (x )d x =( ) A .3
4
B .45
C .56
D .65
解析:⎠⎛02
f (x )d x =⎠⎛01
x 2
d x +⎠⎛12
(2-x )d x =13x 3|10+⎝⎛⎭⎫2x -12x 2|21=56. 答案:C
4.已知自由落体的运动速度v =gt (g 为常数),则当t 从1到2时,物体下落的距离为( ) A .1
2g
B .g
C .32
g
D .2g
解析:物体下落的距离s =⎠⎛1
2
gt d t =12gt 2|21=12g (22-12)=3
2g . 答案:C
5.设函数f (x )=x m
+ax 的导函数为f ′(x )=2x +1,则⎠⎛12
f (-x )d x 的值是( )
A .5
6
B .12
C .23
D .16
解析:∵f ′(x )=2x +1,∴f (x )=x 2+x .
∴⎠⎛12
f (-x )d x =⎠⎛1
2
(x 2-x )d x =⎝⎛⎭⎫13x 3-12x 2|21=56.
答案:A
6.若⎠⎛0a
x 2
d x =9,则a =________.
解析:∵⎠⎛0a
x 2d x =13x 3|a 0=13a 3=9, ∴a =3. 答案:3
7.m =⎠⎛01
e x d x 与n =⎠⎛1e
1x d x 的大小关系是m ________n (填“>”“<”或“=”).
解析:∵m =⎠⎛01
e x d x =e x |10=e -1,
n =⎠⎛1e
1x d x =ln x |e 1=1, ∴m >n . 答案:>
8.定积分⎠⎛-11
(|x |-1)d x 的值为________.
解析:⎠⎛-11
(|x |-1)d x =⎠⎛-10
(-x -1)d x +⎠⎛01
(x -1)d x =⎝⎛⎭⎫-12x 2-x |0-1+⎝⎛⎭⎫12x 2-x |1
0=-1.
答案:-1
9.求⎠⎛-40
|x +3|d x 的值.
解:∵|x +3|=⎩
⎪⎨⎪⎧
x +3(x ≥-3),-x -3(x <-3),
∴⎠⎛-40
|x +3|d x
=⎠⎛-4 -3
(-x -3)d x +⎠⎛-3 0
(x +3)d x =⎝⎛⎭⎫-x 2
2-3x |-3-4+⎝⎛⎭⎫x 2
2+3x |0
-3 =5.
10.如下图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1与S 2之和最小.
解:S 1等于边长分别为t 与t 2的矩形面积减去曲线y =x 2与x 轴和直线x =t 围成的图形的面积,
即S 1=t ·t 2
-⎠⎛0t
x 2d x =23t 3;
S 2等于曲线y =x 2与x 轴,x =t 及x =1围成的图形的面积减去一个矩形的面积,矩形边长分别为t 2,1-t ,
即S 2=⎠⎛t 1
x 2d x -t 2(1-t )=23t 3-t 2+13.
∴阴影部分面积S =S 1+S 2=43t 3-t 2+1
3(0≤t ≤1).
令S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -1
2=0, 得t =0或t =1
2
.
易知当t =1
2时,S 最小.
∴最小值为S ⎝⎛⎭⎫12=1
4.
11.如下图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )
A .⎠⎛02
|x 2
-1|d x B .|⎠⎛02
(x 2
-1)d x |
C .⎠⎛02(x 2-1)d x
D .⎠⎛01
(x 2-1)d x +⎠⎛12
(1-x 2)d x
解析:由曲线y =|x 2-1|的对称性,所求阴影部分的面积与下图中阴影部分的面积相等,
为⎠⎛02
|x 2
-1|d x ,故选A .
答案:A
12.计算:⎠⎛1e 1
x d x +⎠⎛-22
4-x 2
d x =________.
解析:⎠⎛1e 1x d x =ln x |e 1=1-0=1.而⎠⎛-22
4-x 2d x 表示的是圆x 2+y 2=4在x 轴上方部分的面积,故⎠⎛-22
4-x 2d x =12π×22
=2π.故答案为2π+1.
答案:2π+1
13.设f (x )=⎩⎪⎨⎪⎧
lg x (x >0),
x +⎠⎛0
a 3t 2d t (x ≤0),若f (f (1))=1,则a =________. 解析:显然f (1)=lg 1=0,则f (0)=0+⎠⎛0a
3t 2d t =t 3|a 0=a 3
=1,得a =1.
答案:1
14.若f (x )=x 2
+2⎠⎛01
f (x )d x ,则∫10f (x )d x =________.
解析:∵⎠⎛01
f (x ) d x
=⎠⎛01
x 2d x +⎠⎛01
[2⎠⎛01
f (x )d x ]d x =13x 3|1
0+[2⎠⎛0
1
f (x )d x ]x |10 =13+2⎠⎛0
1
f (x )d x ,
∴⎠⎛01
f (x )d x =-1
3. 答案:-13
15.已知⎠⎛-11
(x 3+ax +3a -b )d x =2a +6,且f (t )=⎠⎛
0t
(x 3
+ax +3a -b )d x 为偶函数,求a ,b .
解:∵g (x )=x 3+ax 为奇函数,
∴⎠⎛-11
(x 3+ax )d x =0,
∴⎠⎛-11
(x 3+ax +3a -b )d x =⎠⎛-11
(x 3+ax )d x +⎠⎛-11
(3a -b )d x =0+(3a -b )[1-(-1)]=6a -
2b .
∴6a -2b =2a +6,即2a -b =3.①
又f (t )=⎣⎡⎦⎤x 4
4+a 2x 2+(3a -b )x |t 0=t 4
4+at
2
2+(3a -b )t 为偶函数, ∴3a -b =0.②
由①②得⎩
⎪⎨⎪
⎧
a =-3,
b =-9.
16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图像如右图所示,它与x 轴在原点处相切,且x 轴与函数图像所围成的区域(阴影部分)的面积为1
12
,求a 的值.
解:∵函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图像与x 轴在原点处相切, ∴函数的导数f ′(x )=-3x 2+2ax +b ,且f ′(0)=b =0. ∴f (x )=-x 2(x -a ).
∴⎠⎛0a
(x 3
-ax 2
)d x =⎝⎛⎭⎫14x 4-13ax 3|0a =0-a 4
4+a 4
3=a 4
12=112
. ∴a =±1.
函数f (x )与x 轴的交点横坐标一个为0,另一个为a ,根据图形可知a <0,故a =-1.。