波形发生器(课程设计)
- 格式:doc
- 大小:2.72 MB
- 文档页数:25
目录目录 01.1波形发生器的进展状况 01.2国内外波形发生器产品比较 (1)5.1 主流程图 (6)5.2正弦波仿真图 (6)5.4 方波仿真图 (7)1.波形发生器概况在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和运算机等技术领域,常常需要用到各类各样的信号波形发生器。
随着集成电路的迅速进展,用集成电路可很方便地组成各类信号波形发生器。
用集成电路实现的信号波形发生器与其它信号波形发生器相较,其波形质量、幅度和频率稳固性等性能指标,都有了专门大的提高。
1.1波形发生器的进展状况波形发生器是能够产生大量的标准信号和用户概念信号,并保证高精度、高稳固性、可重复性和易操作性的电子仪器。
函数波形发生器具有持续的相位变换、和频率稳固性等长处,不仅能够模拟各类复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通信,组成自动测试系统,因此被普遍用于自动控制系统、震动鼓励、通信和仪器仪表领域。
在70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常常利用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方式。
那个时期的波形发生器多采用模拟电子技术,而且模拟器件组成的电路存在着尺寸大、价钱贵、功耗大等缺点,而且要产生较为复杂的信号波形,则电路结构超级复杂。
同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。
到了二十一世纪,随着集成电路技术的高速进展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的进展,2003 年,Agilent 的产品33220A能够产生17 种波形,最高频率可达到20M,2005 年的产品N6030A 能够产生高达500MHz 的频率,采样的频率可达1.25GHz。
波形发生器课程设计vhdl一、教学目标本课程旨在通过学习VHDL(硬件描述语言),让学生掌握波形发生器的设计与仿真。
通过本课程的学习,学生应能理解VHDL的基本语法和编程技巧,能够运用VHDL设计简单的数字电路,特别是波形发生器。
此外,通过课程实践,培养学生分析问题、解决问题的能力,以及团队合作和沟通交流的能力。
具体来说,知识目标包括:1.掌握VHDL的基本语法和编程技巧。
2.理解波形发生器的工作原理和设计方法。
技能目标包括:1.能够运用VHDL设计简单的数字电路。
2.能够独立完成波形发生器的设计与仿真。
情感态度价值观目标包括:1.培养学生的创新意识和实践能力。
2.培养学生团队合作和沟通交流的能力。
二、教学内容本课程的教学内容主要包括VHDL基本语法、数字电路设计方法和波形发生器的设计与仿真。
1.VHDL基本语法:包括数据类型、信号声明、实体和架构、过程和函数、线网和赋值语句等。
2.数字电路设计方法:包括组合逻辑电路、时序逻辑电路和触发器的设计方法。
3.波形发生器的设计与仿真:包括正弦波、方波、三角波等波形发生器的设计方法,以及相应的仿真测试。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、案例分析法、实验法和讨论法等。
1.讲授法:用于讲解VHDL基本语法和数字电路设计方法。
2.案例分析法:通过分析实际案例,让学生学会波形发生器的设计与仿真。
3.实验法:让学生动手实践,独立完成波形发生器的设计与仿真。
4.讨论法:在课堂上引导学生进行思考和讨论,培养团队合作和沟通交流的能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《数字电路设计与VHDL编程》等。
2.参考书:《VHDL完全学习手册》、《数字电路与逻辑设计》等。
3.多媒体资料:包括PPT课件、教学视频、在线课程等。
4.实验设备:计算机、VHDL仿真软件(如ModelSim)、示波器等。
单片机波形发生器课程设计一、课程目标知识目标:1. 理解单片机的基本原理,掌握单片机波形发生器的硬件组成及工作原理;2. 学会使用相关编程语言(如C语言)编写程序,实现对单片机波形发生器的控制;3. 掌握单片机波形发生器在不同波形(如正弦波、方波、三角波等)下的参数设置及其调整方法。
技能目标:1. 能够独立完成单片机波形发生器的硬件连接与调试;2. 能够运用所学编程知识,编写出实现不同波形的程序,并成功运行在单片机上;3. 学会分析并解决在单片机波形发生器使用过程中遇到的问题。
情感态度价值观目标:1. 培养学生对电子技术的兴趣和热情,提高学生对单片机及其应用的重视程度;2. 培养学生的团队协作意识,学会在团队中发挥个人作用,共同完成项目任务;3. 培养学生勇于创新、敢于实践的精神,提高学生面对挫折和困难时的坚持与克服能力。
课程性质:本课程为实践性较强的课程,结合理论教学,注重培养学生的实际操作能力。
学生特点:学生具备一定的电子基础和编程知识,对单片机有一定了解,但实践经验不足。
教学要求:教师应结合课程特点和学生实际情况,采用理论教学与实践操作相结合的方式进行教学,注重培养学生的动手能力和创新能力。
在教学过程中,分解课程目标为具体的学习成果,以便进行有效的教学设计和评估。
二、教学内容1. 理论部分:a. 单片机原理概述:讲解单片机的基本结构、工作原理及性能特点;b. 波形发生器原理:介绍波形发生器的功能、分类及其在电子技术中的应用;c. 编程语言基础:回顾C语言基础知识,重点讲解与单片机编程相关的语法和技巧。
2. 实践部分:a. 硬件连接与调试:指导学生完成单片机波形发生器的硬件连接,学习使用调试工具;b. 程序编写与烧录:教授学生编写控制单片机波形发生器的程序,并进行烧录;c. 波形参数调整:学习如何调整单片机波形发生器的参数,实现不同波形输出。
3. 教学大纲与进度安排:a. 第一周:单片机原理概述,波形发生器原理;b. 第二周:C语言回顾,编程语言基础;c. 第三周:硬件连接与调试;d. 第四周:程序编写与烧录;e. 第五周:波形参数调整,实践操作与总结。
protel课程设计波形发生器一、教学目标本节课的教学目标是让学生掌握Protel软件的使用,能够设计并制作波形发生器电路板。
具体分为三个部分:1.知识目标:使学生了解波形发生器的基本原理和电路组成,熟悉Protel软件的操作界面和功能。
2.技能目标:培养学生使用Protel软件进行电路设计的能力,能够独立完成波形发生器电路板的设计和制作。
3.情感态度价值观目标:培养学生对电子技术的兴趣,提高学生动手实践的能力,培养学生的创新精神和团队合作意识。
二、教学内容本节课的教学内容主要包括三个部分:1.波形发生器的基本原理和电路组成:介绍波形发生器的工作原理,讲解其电路组成和功能。
2.Protel软件的操作和使用:讲解Protel软件的操作界面和功能,示范如何使用Protel软件进行电路设计。
3.波形发生器电路板的设计和制作:引导学生使用Protel软件设计波形发生器电路板,讲解电路板制作的步骤和注意事项。
三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:讲解波形发生器的基本原理和电路组成,让学生掌握相关理论知识。
2.案例分析法:分析实际案例,让学生了解Protel软件的操作和使用。
3.实验法:引导学生动手实践,设计并制作波形发生器电路板,培养学生的实际操作能力。
4.小组讨论法:分组让学生进行讨论和合作,培养学生的团队协作能力和创新精神。
四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用与Protel软件和波形发生器设计相关的教材,为学生提供理论知识的学习。
2.多媒体资料:制作课件和教学视频,为学生提供直观的学习材料。
3.实验设备:准备计算机和Protel软件,以及波形发生器电路实验所需的元器件和设备,为学生提供动手实践的机会。
五、教学评估为了全面、客观地评估学生的学习成果,将采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答情况以及团队合作表现,以了解学生的学习态度和掌握程度。
学院《电子技术》课程设计报告题目波形信号发生器的设计姓名:学号:专业:班级:指导教师:职称:——学院——系2011年9月目录1 绪论 (1)1.1课题的目的 (1)1.2设计任务和要求 (1)2 总体设计方案 (2)2.1课题分析 (2)2.2设计步骤 (2)2.3设计方案 (3)3 主要器件简介 (3)3.1LM324的功能 (3)3.2电阻和电位器 (4)3.3电容 (4)3.4二极管和稳压管的识别和接法 (5)4 单元电路设计与计算 (5)4.1正弦波发生器 (5)4.2方波-三角波发生器 (6)5 系统总电路图 (8)6 仿真分析与安装调试 (8)6.1仿真分析图 (8)6.2安装调试 (9)6.3调整过程及波形分析 (9)7 总结 (9)参考文献 (18)附录 (19)波形信号发生器1 绪论波形信号发生器亦称函数信号发生器,作为实验用信号源,是现今各种电子电路设计实验应用中不可缺少的仪器设备之一。
目前市场上出现的波形发生器多为纯硬件搭接而成,且波形有限,多为锯齿波、方波、正弦波、三角波等。
信号发生器作为一种常见的电子设备仪器,传统的仪器完全可以由硬件电路搭接而成。
如采用555振荡器产生的正弦波、方波、三角波的电路是可取的路径之一,不用依靠单片机。
但是这种电路存在波形质量差,控制难度大,调节范围小,电路复杂和体积大等缺点。
在科学研究及生产实践过程中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。
而有硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号用到的RC很大;大电阻,大电容制作上由困难,参数的精度难以保证;体积大,漏电,损耗显著更是其致命的弱点,一旦需求的功能增加,则电路的复杂程度会大大增加。
1.1 课题的目的课程设计是在校大学生素质教育的重要环节,是理论与实践相结合的桥梁和纽带。
通过课程设计,学生巩固和加深对电子电路基本知识的理解,了解集成运算放大器在振荡电路方面的运用;通过对运算放大器构成的比较器、方波-三角波发生器电路的实验研究,熟悉集成运算放大器非线性应用及基本电路的调试方法。
1.设计题目:波形发生电路2.设计任务和要求:要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。
基本指标:输出频率分别为:102HZ 、103HZ;输出电压峰峰值VPP≥20V3.整体电路设计1)信号发生器:信号发生器又称信号源或振荡器。
按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。
各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。
通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。
2)电路设计:整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。
理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。
RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。
反相输入的滞回比较器:矩形波产生的重要组成部分。
积分电路:将方波变为三角波。
3)整体电路框图:为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。
三角波进入积分电路,得出的波形为所求的三角波。
其电路的整体电路框图如图1所示:图14)单元电路设计及元器件选择 a ) 方波产生电路根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。
电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。
滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。
图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。
波形发生器单片机课程设计一、课程目标知识目标:1. 让学生理解波形发生器的基本原理,掌握单片机在波形发生器中的应用;2. 学会使用编程软件进行单片机程序设计,实现常见波形的生成;3. 了解波形发生器的性能指标,如频率、幅度、相位等,并能进行简单计算。
技能目标:1. 培养学生运用所学知识,设计并实现波形发生器单片机程序的能力;2. 提高学生动手实践能力,能够独立完成波形发生器的硬件连接与调试;3. 培养学生团队协作能力,通过小组合作完成课程设计。
情感态度价值观目标:1. 培养学生对单片机及电子技术的兴趣,激发学生的学习热情;2. 培养学生严谨的科学态度,注重实验数据的真实性,遵循实验操作规范;3. 培养学生的创新意识,鼓励学生勇于尝试,不断优化波形发生器设计。
分析课程性质、学生特点和教学要求:1. 课程性质:本课程属于电子技术领域,涉及单片机原理、编程及硬件设计;2. 学生特点:学生已具备一定的电子技术基础,熟悉单片机的基本操作,具有一定的编程能力;3. 教学要求:注重理论与实践相结合,强调动手实践,培养学生解决实际问题的能力。
二、教学内容1. 波形发生器原理:介绍波形发生器的功能、分类及其在电子技术中的应用,重点讲解单片机波形发生器的原理及组成。
教材章节:《单片机原理与应用》第四章第三节2. 单片机程序设计:讲解如何使用编程软件(如Keil)进行单片机程序设计,实现常见波形(如正弦波、方波、三角波等)的生成。
教材章节:《单片机原理与应用》第五章3. 硬件设计与连接:介绍波形发生器硬件电路的设计方法,包括单片机、晶振、滤波器等元件的选型与连接。
教材章节:《电子电路设计》第二章4. 波形发生器性能指标:讲解波形发生器的主要性能指标,如频率、幅度、相位等,并进行简单计算。
教材章节:《电子测量与仪器》第三章5. 实践操作与调试:指导学生进行波形发生器硬件连接、程序下载和调试,确保波形发生器正常工作。
教材章节:《单片机原理与应用》第六章6. 课程设计:要求学生以小组为单位,设计并实现一个具有特定功能的波形发生器,完成课程设计报告。
教师批阅波形发生器设计摘要波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
函数信号发生器是一种能够产生多种波形,函数信号发生器是一种能够产生多种波形,如三角波、如三角波、锯齿波、矩形波(含方波)、正弦波的电路。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。
目前使用的信号发生器大部分是函数信号发生器,且特殊波形发生器的价格昂贵。
所以本设计使用的是DAC0832芯片构成的发生器,可产生三角波、方波、正弦波等多种特殊波形和任意波形,波形的频率可用程序控制改变。
在单片机上加外围器件距阵式键盘,通过键盘控制波形频率的增减以及波形的选择,并用了LCD 显示频率大小。
在单片机的输出端口接DAC0832进行D/A 转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。
本设计具有线路简单、结构紧凑、价格低廉、性能优越等优点。
波器上显示。
本设计具有线路简单、结构紧凑、价格低廉、性能优越等优点。
本设计制作的波形发生器,可以输出多种标准波形,如方波、正弦波、三角波、锯齿波等,还可以输出任意波形,如用鼠标创建的一个周期的非规则波形或用函数描述的波形等,输出的波形的频率、幅度均可调,且能脱机输出。
设计的人机界面不但清晰美观,而且操作方便。
人机界面不但清晰美观,而且操作方便。
关键词:波形发生器;:波形发生器;DAC0832DAC0832DAC0832;;单片机;波形调整教师批阅目录一、设计目的及意义 ............................................................................. - 3 -1.1设计目的 ........................................................................................ - 3 -1.2设计意义 ........................................................................................ - 3 -二、方案论证 ......................................................................................... - 4 -2.1设计要求 ........................................................................................ - 4 -2.2方案论证 ........................................................................................ - 4 -三、硬件电路设计 ................................................................................. - 5 -3.1设计思路、元件选型设计思路、元件选型 .................................................................... - 5 -3.2原理图 ............................................................................................ - 5 -3.3主要芯片介绍主要芯片介绍 ................................................................................ - 6 -3.4硬件连线图 .................................................................................. - 10 -四、软件设计 ....................................................................................... - 10 -4.1锯齿波的产生过程锯齿波的产生过程 ...................................................................... - 11 -4.2三角波产生过程三角波产生过程 .......................................................................... - 13 -4.3 方波的产生过程 ......................................................................... - 14 -4.4 正弦波的产生过程 ..................................................................... - 16 -4.5通过开关实现波形切换和调频、调幅通过开关实现波形切换和调频、调幅 ...................................... - 18 -五、调试与仿真 ................................................................................... - 20 -5.1仿真结果 ...................................................................................... - 21 -六、总结 ............................................................................................... - 22 -七、参考文献: ................................................................................... - 23 -教师批阅一、设计目的及意义1.1设计目的(1)利用所学微机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。
多种波形发生器课程设计一、课程目标知识目标:1. 学生能够理解并掌握多种波形发生器的原理及其功能。
2. 学生能够识别并描述方波、三角波、正弦波等基本波形的特点。
3. 学生能够解释波形发生器在电子技术中的应用。
技能目标:1. 学生能够运用所学知识,设计简单的波形发生器电路图。
2. 学生能够操作示波器等实验设备,观察并分析不同波形的特点。
3. 学生能够通过小组合作,完成波形发生器的搭建和调试。
情感态度价值观目标:1. 学生能够认识到波形发生器在科技发展中的重要性,增强对电子技术的兴趣。
2. 学生在学习过程中,培养合作精神、探究精神和创新意识。
3. 学生能够遵循实验操作规范,树立安全意识,养成严谨的科学态度。
课程性质:本课程为电子技术课程的一部分,旨在帮助学生了解并掌握波形发生器的原理和应用。
学生特点:学生为高中年级,具备一定的电子基础知识和实验操作能力。
教学要求:结合学生特点和课程性质,通过理论讲解、实验演示和小组合作,使学生能够达到上述课程目标。
在教学过程中,注重培养学生的动手能力、思考能力和创新能力,将知识目标、技能目标和情感态度价值观目标分解为具体的学习成果,以便后续的教学设计和评估。
二、教学内容1. 理论知识:- 波形发生器的原理及其分类- 方波、三角波、正弦波等基本波形的数学表达式和特点- 波形发生器在电子电路中的应用实例2. 实践操作:- 示波器的使用方法- 波形发生器电路图设计- 波形发生器电路的搭建与调试3. 教学大纲:- 第一课时:波形发生器原理及分类介绍,示波器使用方法讲解- 第二课时:方波、三角波、正弦波等基本波形特点及数学表达式分析- 第三课时:波形发生器应用实例分析,电路图设计方法讲解- 第四课时:小组合作,进行波形发生器电路搭建与调试4. 教材章节:- 教材第四章:波形发生器- 教材第五章:示波器及其应用教学内容根据课程目标进行选择和组织,确保科学性和系统性。
在教学过程中,教师需按照教学大纲安排教学内容和进度,结合教材章节,使学生在掌握理论知识的同时,能够进行实践操作,提高学生的综合能力。
proteus波形发生器课程设计一、课程目标知识目标:1. 理解波形发生器的原理,掌握Proteus软件中波形发生器的使用方法;2. 学会分析波形发生器的电路图,并能够描述各部分功能;3. 掌握如何调整波形发生器的参数,以实现不同波形(如正弦波、方波、三角波等)的输出。
技能目标:1. 能够运用Proteus软件设计并搭建简单的波形发生器电路;2. 学会使用示波器等工具观察波形发生器输出的波形,并进行分析;3. 能够针对实际需求,调整波形发生器的参数,实现特定波形的输出。
情感态度价值观目标:1. 培养学生对电子电路的兴趣,激发学习热情;2. 增强学生的团队合作意识,培养在团队中沟通、协作的能力;3. 引导学生认识到波形发生器在电子技术中的应用价值,提高学生的创新意识和实践能力。
课程性质:本课程为电子技术实践课程,以实验操作和实际应用为主,注重培养学生的实际操作能力和创新能力。
学生特点:学生为高年级电子专业或相关专业的学生,具有一定的电子电路基础和实际操作能力。
教学要求:结合Proteus软件和实际电路,引导学生从理论到实践,逐步掌握波形发生器的原理和应用。
在教学过程中,注重启发式教学,鼓励学生思考、提问、创新,提高学生的综合素养。
通过课程学习,使学生能够独立完成波形发生器的设计与搭建,为后续相关课程和实际工作打下基础。
二、教学内容1. 波形发生器原理介绍:讲解波形发生器的概念、种类、工作原理及其在电子电路中的应用。
- 教材章节:第二章第二节“波形发生器的基本原理”- 内容列举:正弦波、方波、三角波等常见波形的产生原理,集成波形发生器的特点。
2. Proteus软件使用:介绍Proteus软件的基本功能,重点讲解波形发生器的搭建、参数设置和仿真操作。
- 教材章节:第三章“Proteus软件的使用”- 内容列举:软件界面、基本操作、波形发生器组件、仿真分析等。
3. 波形发生器电路分析与设计:- 教材章节:第四章“波形发生器电路分析与设计”- 内容列举:电路图分析、各部分功能、参数调整、波形观察与调试。
波形发生器的设计1.设计目的(1)掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。
(2)学会安装与调试由分立器件与集成电路组成的多级电子电路小系统。
2.设计任务设计一台波形信号发生器,具体要求如下:(1)输出波形:正弦波、方波、三角波。
(2)频率范围:3Hz -30Hz ,30Hz -300Hz ,300Hz -3KHz ,3KHz -30KHz 等4个波段。
(3)频率控制方式:通过改变RC 时间常数手控信号频率。
(4)输出电压:方波峰—峰值V U pp 24≤;三角波峰-峰值V 8U pp =,正弦波峰-峰V 1U pp >。
3.设计要求(1)完成全电路的理论设计(2)参数的计算和有关器件的选择(3)PCB 电路的设计(4)撰写设计报告书一份;A3 图纸2张。
报告书要求写明以下主要内容:总体方案的选择和设计 ;各个单元电路的选择和设计;PCB 电路的设计4、参考资料(l )李立主编. 电工学实验指导. 北京:高等教育出版社,2005(2)高吉祥主编. 电子技术基础实验与课程设计. 北京:电子工业出版社,2004(3)谢云,等编著.现代电子技术实践课程指导.北京:机械工业出版社,2003目录一. 设计的方案的选择与论证 (3)1.1 设计方案 (3)1.1.1 设计方案1 (3)1.1.2 设计方案2 (4)1.1.3 设计方案3 (5)1.2 方案选择 (6)二. 单元电路的设计 (6)2.1 方案设计 (6)2.1.1 正弦波电路 (6)2.1.2 方波电路 (11)2.1.3 三角波电路 (12)2.2 参数的选择 (13)三、仿真 (14)3.1 软件介绍 (14)3.2 仿真的过程与结果 (15)四、PCB制版 (15)4.1 软件简介 (15)4.2 PCB电路板设计步骤 (20)五、总结与心得 (21)六、附录 (22)6.1 材料清单 (22)6.2 原理图 (23)6.3 PCB板图 (24)七、参考文献 (25)一.设计方案的选择与论证产生正弦波、三角波、方波的电路方案有多种。
由于本次设计要求频率并未超过1MHz,因此正弦波的产生可以通过RC桥式正弦波振荡电路产生,也可以通过滤波法或折线法对三角波进行变换来产生,或者利用差分放大电路实现三角波-正弦波变换。
三角波一般通过积分电路对方波进行变换来获得。
方波一般通过电压比较器来产生。
综上可以得出两种设计方案:(一)设计方案1.1.1 设计方案1由三角波,方波发生器产生三角波和方波信号,然后通过转换电路将三角波转换成正弦波信号,其电路框图如下所示:比较器积分器正弦波变换器图一、方案一原理框图差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
图二、差分放大电路但是相对于正弦波振荡电路来说,此方案较为复杂,且对器件要求较高。
1.1.2 设计方案2首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。
正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。
其电路框图如下图所示:正弦波变换器过零比较器积分器图三、方案二原理框图1.1.3设计方案3利用ICL8038单片集成电路来产生高精度正弦,方形,三角, 锯齿波和脉冲波形,其原理框图如下图所示图四、方案三原理框图1.2方案选择最终整体方案选择方案2,主要是由于方案1中的正弦波变换器多为差分电路,然而差分电路较为复杂,而且对器件要求较高,方案三中的ICL8038单片集成电路造价较高,因此,综合考虑之后选择方案2。
二.单元电路设计2.1方案设计2.1.1 正弦波发生电路(1)方案一、RC 振荡电路采用RC 选频网络构成的振荡电路称为RC 振荡电路,它适用于低频振荡,一般用于产生1Hz~1MHz 的低频信号。
因为对于RC 振荡电路来说,增大电阻R 即可降低振荡频率,而增大电阻是无需增加成本的。
RC 串并联网络的频率特性可以表示为:)ω1ω(31ω1ω1ω1212RC RC j RC j R C j R RC j R fZ Z Z UU F +=++++=+==••• 令 RC o 1ω=,则上式可简化为 )-(ωωωω31O O j F +=•以上频率特性可分别用幅频特性和相频特性的表达式表示如下:| F •|)ωω-ωω(3122o o +=)-(3ωωωωarctan oo = 根据上式可以分别画出RC 串并联网络的幅频特性和相频特性。
RC 正弦波振荡电路示意图:图五、RC 正弦波振荡电路根据RC 串并联网络的选频特性及上述平衡条件容易得到RC 正弦波振荡电路的振荡频率为:RC fo π21=;振荡的幅度平衡条件| F A •• |1=是表示振荡电路已达到稳幅振荡时的情况。
若要振荡电路能够自行起振,开始时必须满足1||>••F A 的幅度条件。
已知当f f o =时,31||=•F ,由此可求得振荡电路的起振条件为:3||>•u A同相比例运算电路输出电压与输入电压之间的比例系数为:3R 1′>+RF (即 RF=2R ′)因此,根据RC 振荡电路的频率计算公式RC f o π21=可知,只需改变R 或C 的值即可。
本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少,其最大幅值为电路的输出电压峰值,最小值为0。
(2)方案二、LC 振荡电路LC 振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容组成。
常见的LC 正弦波振荡电路有变压器反馈式LC 振荡电路、电感三点式LC 振荡电路和电容三点式LC 振荡电路,它们的选频网络采用LC 并联谐振回路。
LC 振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。
不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电IC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。
频率计算公式f=1/2π√LC开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。
并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。
设基极的瞬间电压极性为正。
经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。
常用LC振荡电路产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。
因此,200kHz以下的正弦振荡电路,一般采用振荡频率较低的RC振荡电路。
(3)方案三、石英晶体正弦波振荡电路并联型石英晶体正弦波振荡电路如果用石英晶体取代LC振荡电路中的电感, 就得到并联型石英晶体正弦波振荡电路, 如左下图所示, 电路的振荡频率等于石英晶体的并联谐振频率。
图六、并联型石英晶体振荡电路图七、串联型石英晶体振荡电路串联型石英晶体振荡电路如右上图所示为串联型石英晶体振荡电路。
电容Cb为旁路电容, 对交流信号可视为短路。
电路的第一级为共基放大电路, 第二级为共集放大电路。
若断开反馈, 给放大电路加输入电压是, 极性上“+”下“-”;则T1管集电极动态电位为“+”, T2管的发射极动态电位也为“+”。
只有在石英晶体呈纯阻性, 即产生串联谐振时, 反馈电压才与输入电压同相, 电路才满足正弦波振荡的相位平衡条件。
所以电路的振荡频率为石英晶体的串联谐振频率fS。
调整Rf的阻值, 可使电路满足正弦波振荡的幅值平衡条件。
但是石英晶体正弦波振荡电路常用于替换LC振荡电路,常应用于高频电路,低频电路一般选择RC振荡电路2.1.2 方波电路:(1)方案一、滞回比较器电路由反相输入的滞回比较器和RC电路组成。
图八、滞回比较器RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。
设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。
Uo通过Rf对电容C正向充电。
反相输入端电位Un随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。
随后,Uo又通过Rf对电容C反向充电,Un随时间逐渐增长而减低,当t 趋于无穷大时,Un趋于-Uz。
但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。
上述过程周而复始,电路产生了自激振荡。
(2)方案二、一般单限比较器可以将其接在正弦振荡电路的输出端,也可以将其接在三角波输出电路的输出端。
图九、一般单限比较器其中6管脚输入环节一产生的正弦信号,其中方框内决定方波的振幅,振幅为限压管电压+24伏。
方案一可以自己产生自激振荡,可以作为总电路的输入,方案二并不能产生自己震荡,但是两个方案大体思路相同由于第一部分电路选择了正弦波自激震荡,从简化电路的角度来考虑,因此第二部分电路无需其自己产生自激震荡。
2.1.3 三角波电路 (1)方案1、积分电路三角波的产生是由积分电路实现的,积分电路将方波转换成三角波。
在方波发生电路中,当阈值电压数值较小时,可将电容两端的电压看成为近似三角波。
所以只要将方波电压作为积分运算电路的输入,在其输出就得到三角波电压。
积分电路的原理图如下: 原理图:图十、三角波发生电路由于集成运放的反相输入端“虚地”,故u u C O -= ;又由于“虚断”,运放反相输入端的电流为零,则i i C I =,故R i R i u C I I ==,由以上几个表dt u u I O RC ⎰=1达式可得积分电路输入电压和输出电压的关系为:由于输入的是方波,所以 Ur 的值为两个状态,当Ur>0时,tuu RC IO =,输出波形以RCuI的斜率上升,当 uI<0时,输出波形以RCuI的斜率下降。
上升和下降的斜率相等所以波形对称,形成三角波。