(一) 几类特殊线性变换及其二阶矩阵 1. 旋转变换 问题 1. 如图, 在平面直角坐标系 xOy 内任一点 P(x, y) 绕着原点 O 按逆时针方向旋转 180 后得到点 P(x, y), 点 P 与点 P 是怎样的对称? 两点的坐标有 什么关系? y P(x, y) 点 P 与点 P 关于原点 O 成 中心对称. x O x= -x, ① P (x, y) y= -y. ① 式称为旋转角为180的旋转变换表达式. 我们 称 P 是 P 在这个旋转变换作用下的像.
例1. 在直角坐标系 xOy 内, 将每个点绕原点 O 按逆时针方向旋转 30 的变换称为旋转角是 30 的旋 转变换. (1) 求点 A(1, 0) 在这个旋转变换作用下的像 A; (2) 试写出这个旋转变换的表达式. y P(x, y) 解: (2) 设平面内任一点 P(x, y), P(x, y) 旋转变换为 P(x, y). ∴x= |OP|cos(q +30) q x O 于是得这个旋转变换的表达式为 = |OP|(cosq cos30 - sinq sin30) 3 1 3 = x = x- x y, 1 y, 2 22 2 |sin(q +30) y= |OP y = 1 x + 3 y. |(sin 2 q cos30 2 +cosq sin30) = 1 x + 3 y. = |OP 2 2
像这样, 由 4 个数 a, b, c, d 排成的正方形数表 a b 称为二阶矩阵, 数 a, b, c, d 称为矩阵的元素. c d 在二阶矩阵中, 横的叫行, 从上到下依次称为矩阵的 第一行、第二行; 竖的叫列, 从左到右依次称为矩阵
的第一列、第二列. B, C, … 表示.
矩阵通常用大写的英文字母 A,