2020年小学数学小学数学应用题公式及简易方程秘籍汇总!
- 格式:docx
- 大小:114.02 KB
- 文档页数:13
小学五年级数学上学期《简易方程》知识点小学五年级数学上学期《简易方程》知识点知识点是网络课程中信息传递的基本单元,研究知识点的表示与关联对提高网络课程的学习导航具有重要的作用。
下面是店铺整理的小学五年级数学上学期《简易方程》知识点,一起来看看吧。
小学五年级数学上学期《简易方程》知识点11、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:(ab)c=acbc2、用字母表示计算公式。
长方形的周长公式:c=(a+b)2长方形的面积公式:s=ab正方形的周长公式:c=4a正方形的面积公式:s=3、读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)(时间)速度=(路程)(时间)时间=(路程)(速度)总价=(单价)(数量)单价=(总价)(数量)数量=(总价)(单价)总产量=(单产量)(数量)单产量=(总产量)(数量)数量=(总产量)(单价)工作总量=(工作效率)(工作时间)工作效率=(工作总量)(工作时间)工作时间=(工作总量)(工作效率)大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量倍数=几倍量几倍量倍数=一倍量几倍量一倍量=倍数被减数=减数+差减数=被减数-差加数=和-另一个加数被除数=除数商除数=被除数商因数=积另一个因数小学五年级数学上学期《简易方程》知识点21、方程的意义含有未知数的等式,叫做方程。
2、方程和等式的关系3、方程的解和解方程的区别使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
小学数学解应用题的公式大全【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
小学数学应用题公式大全(一)著名儿童文学作家乐多多/总结推荐 每个孩子做应用题必用公式,可是公式忘记了怎么办? 备一份应用题公式大全。
哦,这只是一个权宜之计,这次查公式,孩子做对了题,下次还查公式……那下下次,或者考试时怎么办? 所以,教孩子记住公式是如何推导出来的,帮他(她)彻底把公式理解,这就相当于帮他(她)把公式刻在了脑子里,这下想忘都忘不了了。
想家长所想,急家长所急,所以多多君早早地就已把小学必用的公式,及推导过程备齐喽。
1. 和差问题公式 大数=(和+差)÷ 2 小数=(和-差)÷ 2 【例题】养鸡场总共养了1000只鸡,其中母鸡比公鸡多300只,问,养鸡场养了多少只母鸡,多少只公鸡? 【公式推导过程】 我们用假设法来推导公式。
上题中,母鸡比公鸡多300只。
如果我们假设母鸡和公鸡的数量一样多,那么,要使这种假设成立,公鸡的数量就要增加300只。
公鸡的数量增加了300只,那么,公鸡和母鸡的数量之和也要增加300只,变成了:1000+300=1300(只)。
因为假设母鸡和公鸡的数量一样多,因此,公鸡和母鸡的数量就是总数的一半,即:1300÷2=650(只) 在假设中,母鸡的数量没有发生变化,所以母鸡的数量即为650只。
但在假设中,公鸡的数量增多了300只,因此实际上,公鸡的数量为:650-300=350(只)。
所以,养鸡场一共养了650只母鸡,350只公鸡。
运用假设法解题的过程中,我们还总结出了解决这类题通用的公式: (和+差)÷2=大数; 换一种假设方法,如果我们假设母鸡的数量减少到和公鸡的数量一样。
那么,在假设中,母鸡的数量就要减少300只,那么,公鸡和母鸡的总数也要减少300只,变为:1000-300=700(只) 此时,公鸡和母鸡的数量相同,都等于总数的一半,即:700÷2=350(只) 在假设中,公鸡的数量没有发生变化,所以,养鸡场有公鸡350只。
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
教育精品资料小学数学应用题常用公式一览表(摘自百度文库)1、和倍问题和÷(倍数+1)=小数大数÷小数=倍数小数×倍数=大数大数+小数=和2、差倍问题差÷(倍数-1)=小数大数÷小数=倍数大数-小数=差小数×倍数=大数3、和差问题(和+差)÷2=大数(和-差)÷2=小数大数+小数=和大数-小数=差4、盈亏问题一盈一亏型(盈+亏)÷分差=人数两盈型(大盈-小盈)÷分差=人数两亏型(大亏-小亏)÷分差=人数小学各年级课件教案习题汇总一年级二年级三年级四年级五年级一盈一尽型盈÷分差=人数一亏一尽型亏÷分差=人数5、过桥问题(桥长+车长)÷车速=过桥时间(桥长+车长)÷过桥时间=车速过桥时间×车速-车长=桥长过桥时间×车速-桥长=车长6、流水问题船速+水速=顺速船速-水速=逆速(顺速+逆速)÷2=船速(顺速-逆速)÷2=水速7、草问题(多的-少的)÷(长的-短的)=新的总的-新的=原来的8、植树问题总距离÷每段距离+1=应栽株数每段距离×(应栽株数-1)=总距离总距离÷(应栽株数-1)=每段距离周长÷每段距离=应栽株数应栽株数×每段距离=周长周长÷应栽株数=每段距离9、鸡兔问题(总头数×4-总脚数)÷(4-2)=鸡的只数(总脚数-总头数×2)÷(4-2)=兔的只数10、连续数问题最小数={和-[1+2+3+……+(项数-1)]} ÷项数最大数={和+[1+2+3+……+(项数-1)]} ÷项数中间数=和÷项数和=(首项+尾项)×项数÷211、平均数问题总数量÷总份数=平均数平均数×总份数=总数量12、溶液浓度问题溶液=溶质+溶剂溶剂=溶液-溶质溶质=溶液-溶剂浓度=溶液溶质×100%溶质=溶液×浓度溶剂=溶液×(1-百分比浓度)溶液=溶质÷浓度13、成本、利润、折扣、利息问题利息=本金×利率×时间利率=利息÷本金利润=卖价-买价=成本×利润率利润率=买入价买入价—卖出价×100%=销售价÷成本价×100%-1 折扣=卖价÷定价卖价=标价×折扣卖价=成本×(1+利润率)销售价=成本价+利润成本价=销售价-利润销售价=定价×折扣14、行程问题距离=速度×时间速度=距离÷时间时间=距离÷速度15、追及问题距离÷速度差=追及时间速度差=距离÷追及时间距离=速度差×追及时间16、相遇问题距离=相遇时间×速度和速度和=距离÷相遇时间相遇时间=距离÷速度和17、往返行程问题全程个数=2n-1(n是相遇次数)18、比例行程问题速度一定、时间比等于路程比时间一定、速度比等于路程比路程一定、速度比等于路程的反比路程差÷速度差=时间19、工程问题工程效率=工作量÷工作时间工作时间=工作量÷工作效率工作量=工作时间×工作效率工做时间=工作量÷工作效率工作效率=工作量÷工作时间工作效率不变、工作量和工作时间成正比工作时间不变、工作效率和工作量成正比工作量不变、工作效率和工作时间成反比工作量的差÷工作时间的差=工作效率20、等差数列问题和=(首项+尾项)×项数÷2尾项=首项+公差×(项数-1)项数=(尾项-首项)÷公差+1公差=(尾项-首项)÷(项数-1)21、正方形面积正方形面积=边长×边长=对角线×对角线÷2 正方形周长=边长×422、长方形面积长方形面积=长×宽长方形周长=(长+宽)×223、梯形面积梯形面积=(上底+下底)×高÷224、平行四边形面积平行四边形面积=底×高25、三角形面积三角形面积=底×高÷226、圆的问题圆的面积= r²π圆的周长=2 rπ=dπ半圆的周长= r(2+π)扇形面积扇形弧长圆的环形面积=)(正方形内最大的圆的面积占正方形面积的18.5%圆内最大的正方形的面积占圆面积的15710027、柱椎体体积、表面积表面积=上底面积+下底面积+侧面积=2r (r+h)体积=底面积×高圆锥=等底等高圆柱体积的三分之一28、容斥原理两个元素的和-两种元素交叉数=总数每个元素的和-(两种元素交叉数的和)+三种元素交叉数=总数29、菱形菱形面积=长对角线×短对角线÷230、特别公式分数拆分公式)(平方差公式:a 2 -b2 =(a+b)(a-b)平方和公式:(a+b)2 = a2 +2ab+b2差的平方公式(a-b)2 = a2 -2ab+b2 (a+b)(c-d)=ac-ad+bc-bd连续数自然数的平方和公式:12 +22 + 3+……+n2 =61n(n-1)(2n-1)连续自然数的立方公式:13 +23 +33 +……+n3 =(1+2+3+……+n)2 =41 n 2 (n+1)2连续自然数的接力乘公式1×2+2×3+3×4……+ n(n+1)=3 1 n(n+1)(n+2)n条直线最多有2 1nn)(条直线最多可将平面分成=1+2 1nn)(块n个三角形最多可将平面分成=1+1+6×(1+2+3……+n-1)块n个圆最多有=n(n-1)个交点数线段、射线、直线的方法是加法原理数三角形的方法是加法原理和分类计数数正方形的公式=m×n+(m-1)(n-1)+(m-2)(n-2)+……+(m-n+1)×1 数长方形的公式=长边线段的和×宽边线段的和皮克公式:s=2 1a+b-131、数的整除问题如果a能被c整除、b能被c整除、那么a与b的和也能被c整除如果一个数的末尾是偶数、那么这个数能被2整除如果一个数的各位数字和能被3或9整除,那么这个数就能被3或9整除如果一个数末尾是0或5,那么这个数就能被5整除如果一个数的末尾两位数能被4或25整除,那么这个数就能被4或5整除如果一个数的末尾3位数能被8或125整除,那么这个数就能被8或125整除如果一个数的偶位数字的和与奇位数字的和的差能被11整除,那么这个数就能被11整除辗转相除法求最大公约数第一个不是0的余数就是他们的最大公约数两个数的积=他们的最大公约数×最小公倍数分数的最小公倍数=分母的最大公约数=分子的最小公倍数单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米1米=3尺1丈=10尺1尺=10寸1公里=2里1海里=1.825公里面积单位换算1平方千米=100公顷1公顷=15亩1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1升=1000毫升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤1公斤=2斤1斤=500克人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1天=1昼夜1分=60秒1时=3600秒。
解方程口诀解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。
特殊方程别犯难,减去除以未知数,加上乘上变一般。
若遇稍微复杂点,舍远取近便了然。
具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。
对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。
总结为:若遇稍微复杂点,舍远取近便了然。
当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
方程解析方程的意义1、了解方程的意义:含有未知数的等式叫做方程。
2、掌握方程与等式的关系:方程是等式但等式不一定是方程.或者说方程属于等式,等式包含方程.并能用图形表示.3、根据情境图找出等量关系,会列方程。
解方程口诀解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。
特殊方程别犯难,减去除以未知数,加上乘上变一般。
若遇稍微复杂点,舍远取近便了然。
具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。
对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。
总结为:若遇稍微复杂点,舍远取近便了然。
当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
方程解析方程的意义1、了解方程的意义:含有未知数的等式叫做方程。
2、掌握方程与等式的关系:方程是等式但等式不一定是方程.或者说方程属于等式,等式包含方程.并能用图形表示.3、根据情境图找出等量关系,会列方程。
小学五年级数学上册第四单元《简易方程》概念与公式汇总1.在含有字母的式子里,乘号可以记做“·”,也可以省略不写。
(1)数字与字母相乘,省略乘号,要将数字写在字母的前面。
(2)字母与字母相乘,直接省略乘号。
(3)括号与数字相乘,要将数字写在括号的前面,再省略乘号。
2.长方形的周长=(长+宽)×2 C长=2(a+b)长方形的面积=长×宽S长=ab正方形的周长=边长×4 C正=4a方形的面积=边长×边长S正=a23.表示相等关系的式子叫做等式。
4.含有未知数的等式是方程。
5.方程一定是等式,等式不一定是方程。
6.等式两边同时加上、减去、乘或除以同一个数(0除外),所得结果仍然是等式。
方程左右两边同时加上(或减去)相同的数,方程左右两边依然相等。
方程左右两边同时乘以(或除以“0”除外)相同的数,方程左右两边依然相等。
7.使方程左右两边相等的未知数的值叫做方程的解。
求方程的解的过程,叫做解方程。
解方程的根据是天平平和的道理,还可以根据方程各部分之间的关系。
8.解方程时常用的关系式:一个加数=和-另一个加数被减数=差+减数减数=被减数-差一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商注意:解完方程,要养成检验的好习惯。
9.三个或五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍或5倍。
10.列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的数量关系C、设未知数,一般是把所求的数用X表示。
D、根据数量关系列出方程E、解方程F、检验G、作答。
『1-6年级数学应用题』1.鸡兔同笼问题鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数) 2.流水问题:顺水速度=船速+水速逆水速度=船速-水速水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷23.火车问题基本数量关系是:火车速度×时间=车长+桥长(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和4.列车过桥问题公式(桥长+列车长)÷速度=过桥时间(桥长+列车长)÷过桥时间=速度『1-6年级数学应用题』5.植树问题间隔数+1=棵数(两端植树)路长÷间隔长+1=棵数间隔数-1=棵数路长÷间隔数=棵数路长÷间隔数=路长÷棵数=每个间隔长每个间隔长×间隔数=每个间隔长×棵数=路长锯的次数=段数-1段数=锯的次数+1A每个角上都摆的情况每边数=总盆数÷边数+1 边数=总盆数÷(每边数-1) B.每个角上都不摆的情况:每边数×边数=总盆数总盆数÷边数=每边数总盆数÷每边数=边数6.剪绳问题一根绳对折N次,从中剪M刀,则被剪成了(2N×M+1)段『1-6年级数学应用题』7.年龄问题两个人的年龄的倍数是发生变化的几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差8.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数9.和差问题公式(和-差)÷2=较小数 (和+差)÷2=较大数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数÷差=大数10.方阵问题1.方阵总人数=最外层每边人数的平方(方阵问题的核心)2.方阵最外层每边人数=(方阵最外层总人数÷4)+13.方阵最外层总人数=(最外层每边人数-1)×411.握手问题共需要(n-1)+(n-2)+(n-3)+....+2+1+0=n(n-1)/2『1-6年级数学应用题』12.等差数列末项=首项+(项数-1)÷公差项数=(末项-首项)÷公差+1总和=(末项+首项)×项数÷213.牛吃草问题1.草的每天生长量不变;2.每头牛每天的食草量不变;3.草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值4.新生的草量=每天生长量×天数①草的生长速度=(对应的牛头数x吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);②原有草量=牛头数×吃的天数-草的生长速度×吃的天数;③吃的天数=原有草量÷(牛头数-草的生长速度);④牛头数=原有草量÷吃的天数+草的生长速度。
一、反向行程问题公式
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
二、相遇问题公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
三、工程问题公式
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。
)。