干细胞的相关研究进展
- 格式:doc
- 大小:597.00 KB
- 文档页数:13
干细胞治疗的最新进展及未来发展方向干细胞治疗是一种前沿的医学技术,可以利用干细胞的多能性,治疗多种疾病。
近年来,干细胞治疗在临床上得到了广泛应用,并且在不断地发展和创新之中。
在本篇文章中,我们将介绍干细胞治疗的最新进展以及未来的发展方向。
一、干细胞治疗的最新进展1. 应用范围的不断扩大随着对干细胞的研究和理解不断加深,干细胞治疗的应用范围也在不断扩大。
目前已经实现了干细胞在骨科、心血管、免疫、神经、皮肤等多个领域的应用。
2. 成功治疗多种疾病干细胞治疗已经成功治疗了多种疾病。
例如,再生医学采用干细胞治疗已经被应用于脑部损伤、中风、萎缩性骨关节炎、肿瘤、糖尿病等多种疾病,有效地改善了患者的症状和生活质量。
3. 制备技术的逐步成熟制备干细胞是干细胞治疗的核心技术之一。
目前,已经有许多较为成熟的制备技术被应用于干细胞治疗中,例如,诱导多能干细胞(iPSCs)技术、修饰体细胞培养基和干细胞培养基等。
二、干细胞治疗未来的发展方向1. 个体化治疗干细胞治疗的重要特点是个体化治疗,即根据患者的个体情况制定治疗方案,以达到最佳治疗效果。
未来的干细胞治疗将更加注重患者的个体化治疗。
2. 基因编辑技术的运用目前,基因编辑技术在干细胞治疗中的应用日趋广泛。
通过基因编辑技术,科学家们可以操纵干细胞的基因,使其发挥更好的治疗效果。
未来,干细胞治疗将更加注重基因编辑技术的应用。
3. 同源性干细胞移植的研究同源性干细胞移植可以使移植物与受体组织的结构和功能达到更好的匹配。
研究表明,同源性干细胞移植可以提高移植物的移植成功率和生存率。
未来,同源性干细胞移植将成为干细胞治疗的一种重要手段。
总之,干细胞治疗是一项充满前景和挑战的医学技术。
随着科学技术的不断进步,干细胞治疗的应用范围会越来越广泛,疾病的治疗效果也会不断提高。
相信未来干细胞治疗会给更多的患者带来治愈和康复的希望。
生物学中的干细胞研究进展在生物学领域,干细胞是一类具有自我复制和分化潜能的细胞,它们在生物发育过程中起着重要的作用。
干细胞可以分为胚胎干细胞和成体干细胞两类。
胚胎干细胞来源于早期胚胎,具有多能性,即可以分化为所有体细胞类型。
成体干细胞则存在于成人的各种组织和器官中,具有有限的分化潜能。
干细胞研究的重要性在于其潜在的临床应用,可以用于组织修复、再生医学和药物研发等领域。
近年来,干细胞研究在生物学领域取得了重要的进展。
首先,胚胎干细胞研究取得了重要突破。
胚胎干细胞具有多能性,可以分化为所有体细胞类型。
研究人员成功地将人类胚胎干细胞培养和扩增,并使其分化为心脏细胞、神经元和肌肉细胞等不同类型的细胞。
这些研究为组织工程、器官移植和疾病治疗提供了新的可能性。
其次,成体干细胞研究也取得了重要进展。
成体干细胞存在于成人的各种组织和器官中,具有有限的分化潜能。
近年来,研究人员发现,成体干细胞可以通过基因调控和细胞外环境的改变,被重新编程为多能性干细胞,称为诱导多能性干细胞(iPS细胞)。
iPS细胞可以分化为多种细胞类型,具有与胚胎干细胞相似的潜能和特点。
这项重大发现被认为是2012年诺贝尔生理学或医学奖的重要科技突破之一,为干细胞研究提供了新的方向。
此外,干细胞研究还在药物研发领域发挥着重要的作用。
传统的药物研发往往在动物模型上进行,但动物模型并不能完全模拟人类体内的生理和病理过程。
利用干细胞技术,研究人员可以将患者的细胞转化为疾病特定的细胞类型,用于疾病模型的建立和药物筛选。
这种个性化药物研发的方法可以提高疗效,并减少不必要的副作用。
干细胞研究还面临许多挑战和争议。
首先,胚胎干细胞的获取和利用涉及伦理道德问题,引发了公众的争议。
虽然越来越多的国家和地区开始为胚胎干细胞研究制定法律和政策,但在合规的前提下,研究人员仍需谨慎处理这些问题。
其次,研究人员面临着控制干细胞分化和成熟的挑战。
干细胞分化的调控机制非常复杂,需要更深入的研究来解决。
干细胞在器官移植中的研究进展随着生物技术的不断发展,干细胞治疗已经成为医学界的一项重要研究领域,尤其是在器官移植方面,干细胞也被逐渐应用于临床实践中。
本篇文章将从以下三个方面来讨论干细胞在器官移植中的研究进展。
一、干细胞在器官移植中的应用随着人口老龄化的越来越显著,器官供给短缺问题日益严重,器官移植成为解决器官需求的重要方式。
干细胞作为一种具有多能性的细胞,可以被应用于器官移植的各个阶段,例如干细胞的扩增培养、干细胞分化以及干细胞前体移植等。
一种关键的研究领域是器官再生,它需要能够恢复失去的组织结构和功能的细胞。
通过将干细胞注入到受损的肝、肺、心脏等器官,可以修复这些器官的损失,并使其恢复正常功能,同时减少捐赠器官对供体的依赖。
这种方法已在实验室中得到了一些成功,并吸引了众多学者的关注,但在临床实践中,仍需要继续研发和改善。
另一个关键的应用领域是器官移植前的器官维持。
器官转运和保存过程中,细胞和组织的缺氧等不利因素对器官的质量造成了很大影响。
这一问题对于肝、肺、心脏等对缺血敏感的器官尤其明显。
通过将干细胞应用于器官冷静保存的过程中,可以保护组织和细胞的完整性和功能,从而提高器官质量和移植成功率。
二、目前的研究进展干细胞在器官移植中的应用还处于研究阶段。
目前的研究重心主要集中于两个方面。
一是研究合适的移植载体,以便将干细胞移植到器官中,并促进干细胞与宿主组织的整合。
目前的载体主要包括生物基质、支架和控释薄膜。
这些载体能够为移植的细胞和生长因子提供支持,并促进组织修复和再生。
二是研究更准确、更稳定、更有效地将干细胞移植到受体体内的技术。
研究人员需要寻找更加准确的方法来将干细胞注入到器官移植的部位,以确保细胞在宿主组织中能够定位到正确的位置。
同时,需要研究与组织工程有关的其他技术,如光造影技术和3D打印技术等。
三、展望和挑战随着干细胞在器官移植中的应用越来越广泛,也将面临许多挑战。
干细胞的应用涉及到许多技术问题,例如细胞扩增和分化、干细胞的注入和移植,以及移植后对组织的监测和评价等。
人类干细胞研究的新进展与治疗应用自从2006年以来,人类干细胞研究已经经历了快速发展的阶段,技术不断创新,且越来越多的研究结果为干细胞治疗应用打开了更广阔的前景。
以下文章旨在介绍人类干细胞研究的新进展和治疗应用。
干细胞种类和发现过程干细胞是指能够分化成多种功能细胞且具有自我更新能力的细胞。
干细胞种类包括胚胎干细胞、诱导性多能性干细胞、骨髓干细胞等。
其中,胚胎干细胞是最早被发现的一种干细胞,来自已受精的胚胎,具有最为广泛的分化潜能,可以分化成所有种类的细胞。
而人类体内的骨髓干细胞,也是广泛应用于治疗的一类干细胞。
干细胞研究的新进展随着科技的不断创新,人类干细胞研究也在不断推进。
近年来,各种新技术正在开发和优化,以最大程度地利用干细胞的潜能。
基因编辑技术聚合酶链反应和基因编辑技术是新的干细胞研究的前沿研究领域。
基因编辑技术可以帮助科学家在干细胞中删减或添加基因,以促进细胞分化和生长。
这种技术的应用范围尚在探索中,但有望在治疗一些遗传性疾病方面取得突破。
人工合成种植技术近年来许多研究也在针对人类干细胞培养的技术上进行了改进。
一些研究者正试图开发出人工合成手段来创造适宜干细胞生长环境的方法,如支架和多孔微环境。
这种基于开发干细胞生长坏境的研究,提高了对体外培养干细胞的质量和数量控制能力,并为干细胞治疗应用提供了更广泛的可能性。
新型药物开发干细胞研究在药物开发方面的应用正在迅猛发展,许多研究有望利用干细胞来开发新的治疗药物,针对一些慢性病的治疗也有着广阔的应用前景。
例如,利用干细胞可以针对某些遗传性消化道疾病进行治疗。
治疗应用前景和挑战干细胞在医学中的应用前景广阔,目前已经应用于治疗多种无法治愈的疾病,如心血管疾病、神经退行性疾病和肿瘤。
近几年,一些非正式的疗法例如自体细胞移植已经在临床中得到了验证。
然而,未来还需要解决诸多挑战,例如干细胞使用的安全问题、培养及其生长产量的限制以及严格的法规和道德问题。
此外,干细胞在不同种族、性别、年龄之间的效果还需要更多的临床研究来确定。
干细胞研究进展与应用研究报告干细胞是一种具有多能性的细胞,具备自我复制和分化为多种细胞类型的能力。
近年来,干细胞研究得到了快速发展,对医学领域的进展产生了积极的影响。
本文将对干细胞研究的最新进展以及其在医学应用中的潜力进行综述。
1. 干细胞的来源干细胞可以从多个来源获取,目前主要可以分为胚胎干细胞(ESCs)和成体干细胞(ASCs)两类。
1.1 胚胎干细胞(ESCs)胚胎干细胞是从早期胚胎中获得的多能性细胞。
它们具有广泛的分化潜能,可以分化为身体上任何部位的细胞类型。
然而,胚胎干细胞的获取涉及到胚胎捐赠和相关伦理道德问题,因此受到一定的限制。
1.2 成体干细胞(ASCs)成体干细胞主要存在于成体组织和器官中,包括骨髓、脂肪组织和皮肤等。
它们的多能性较低,主要分化为特定器官或组织的细胞类型。
成体干细胞的获取相对容易,可通过组织抽取或分离获得,不涉及伦理道德问题。
2. 干细胞研究的最新进展干细胞研究领域取得了一系列重要的突破和进展。
2.1 诱导多能性干细胞(iPSCs)诱导多能性干细胞是通过基因重编程技术将成体细胞重新转化为具有胚胎干细胞特征的干细胞。
这项技术由日本科学家山中伦也于2006年首次提出,具有重要的科研和医学应用潜力。
通过iPSCs的研究,人们可以更好地了解细胞命运和疾病发生的机制,并开发出个性化医疗的治疗方法。
2.2 细胞再生研究干细胞具有分化为多种细胞类型的能力,这为细胞再生研究提供了基础。
通过刺激干细胞分化为特定细胞类型,科学家可以尝试修复受损组织或器官。
例如,心肌细胞再生研究已经取得了一定的进展,为治疗心脏病提供了新的治疗方向。
2.3 疾病模型研究干细胞的研究不仅可以应用于细胞治疗,还可以用于建立疾病模型。
科学家可以利用干细胞技术将患者的细胞重新分化为特定细胞类型,并用于疾病模型的建立和药物研发。
这种方法可以更好地了解疾病的发生机制,为个性化治疗提供指导。
3. 干细胞在医学应用中的潜力干细胞在医学领域有着广泛的应用前景。
干细胞技术的研究热点领域与最新进展1.神经退行性疾病治疗:神经退行性疾病如帕金森病、阿尔茨海默病和脊髓损伤等一直是医学界的难题。
然而,干细胞技术为这些疾病的治疗提供了新的思路。
最新研究表明,通过将干细胞转化为特定的神经细胞类型,可以在动物模型中实现神经退行性疾病的修复,并且在临床试验中也取得了一些进展。
2.心脏病治疗:心脏病是目前全球范围内的主要死因之一、传统的治疗方法,如药物和手术治疗,只能缓解症状,而不能修复心脏的受损部分。
然而,近年来的研究表明,通过将干细胞注入患者的心脏组织中,可以促进心肌细胞的再生和修复,从而提高患者的心脏功能。
3.癌症治疗:干细胞技术在癌症治疗方面也有着重要的应用。
研究人员发现,癌症干细胞是肿瘤生长和转移的关键因素。
因此,通过干细胞的研究,可以理解肿瘤的发生机制,并发展新的靶向治疗方法。
最新的研究进展包括使用干细胞修复癌症治疗中引起的组织损伤,以及利用干细胞进行肿瘤的药物筛选。
4.组织工程:干细胞技术在组织工程领域也有巨大的应用前景。
研究人员开发出了一种新的方法,利用干细胞来生产各种组织和器官,如皮肤、肌肉和器官血管等。
这种方法不仅可以为整形外科和器官移植提供新的选择,还可以用于替代受损组织的修复和再生。
5.基因治疗:基因治疗是一种利用基因工程技术来修复或代替异常基因的治疗方法。
干细胞技术可以用来生产大量的健康细胞,并用于基因治疗中。
最新的研究进展包括使用干细胞来修复遗传性疾病,如囊性纤维化和血友病等。
总结起来,干细胞技术在神经退行性疾病治疗、心脏病治疗、癌症治疗、组织工程和基因治疗等领域都有着重要的应用。
随着研究的不断深入,我们相信干细胞技术将会为人类的健康和医学领域带来更多的突破和进展。
干细胞医学前沿研究进展干细胞医学是一门前沿的研究领域,其迅速发展引起了广泛的关注。
干细胞具有自我复制和分化为多种功能细胞的潜能,被视为治疗各种疾病和损伤的理想细胞源。
在过去的几十年中,人们取得了许多重要的研究成果,为干细胞医学的应用带来了新的希望。
首先,干细胞的来源非常广泛,包括胚胎干细胞和成体干细胞。
胚胎干细胞具有天然的多向分化能力,可以分化为各种器官和组织的细胞。
虽然胚胎干细胞的研究受到了伦理和法律的限制,但仍然为人们提供了一个重要的研究平台。
成体干细胞存在于成年人的各种组织中,可以自我更新并分化为特定类型的细胞。
例如,造血干细胞可以分化为红细胞、白细胞和血小板,用于治疗血液疾病。
近年来,科学家们还发现了许多其他类型的成体干细胞,如皮肤干细胞、肌肉干细胞和神经干细胞等,为各种疾病的治疗提供了新的途径。
其次,干细胞在心脏病、神经系统疾病和创伤等方面的应用潜力巨大。
心脏病是全球范围内的首要死因之一,而干细胞能够修复受损的心肌组织,重建心脏功能。
科学家们已经成功地使用干细胞治疗了许多实验动物模型中的心脏病,并且临床试验也取得了一些积极的结果。
神经系统疾病,如阿尔茨海默病和帕金森病,通常由于神经细胞的损害而引起。
利用干细胞可以生产大量的健康神经细胞,这将有助于治疗这些疾病。
此外,干细胞还可以用于修复创伤,如骨折和皮肤烧伤。
干细胞治疗的潜力为患者提供了更多的治疗选择,增加了康复的机会。
然而,干细胞医学仍面临着一些挑战。
首先,胚胎干细胞的获取和使用受到了伦理和道德的争议。
由于胚胎干细胞的提取通常需要破坏胚胎,因此与宗教和伦理观点存在冲突。
其次,干细胞在体内分化和定位的机制尚不完全清楚。
在病理条件下,分化后的干细胞可能会产生异常细胞或肿瘤,这对治疗的效果和安全性提出了挑战。
此外,干细胞的培养和扩增技术仍然不成熟,限制了其大规模应用的可能性。
为了解决这些问题,科学家们正在不断努力进行研究和创新。
一方面,他们致力于寻找更好的成体干细胞来源,以减少对胚胎干细胞的依赖。
干细胞的研究进展及其临床应用随着科技的不断进步和人类对于生命本质认识的深入,干细胞技术成为了新一代医学研究领域的热点。
自从1998年人类干细胞的发现以来,干细胞技术一直在不断探索中发展壮大,将为人类健康事业带来前所未有的机遇和挑战。
本文将从干细胞技术的研究现状、应用领域以及最新研究进展等方面进行阐述。
一、干细胞技术的研究现状1. 干细胞的分类干细胞是指具有自我更新和分化为多种细胞类型的能力。
按其来源可以分为胚胎干细胞和成体干细胞。
胚胎干细胞是来源于早期胚胎的万能干细胞,可以分化为各种人体组织细胞;成体干细胞是存在于人体各种成体组织中,如骨髓、脂肪、神经等,可以分化为该组织所需的特定类型细胞。
2. 干细胞的特性干细胞具有两个基本特性:自我更新和分化潜能。
自我更新能力使得干细胞可以不断进行细胞分裂,同时维持其细胞状态的稳定性。
而干细胞的分化潜能则意味着它们可以分化为多个不同类型的细胞,这使得干细胞成为修复和再生组织的优秀候选细胞源。
3. 干细胞的研究进展自从1998年人类第一次成功从胚胎中分离出干细胞以来,干细胞技术一直在快速发展。
目前,科学家已经成功地将干细胞转化为心肌细胞、神经细胞、肝细胞等多种类型细胞,并且通过移植这些细胞,成功地修复了一些疾病组织。
二、干细胞技术的应用领域干细胞技术的应用领域十分广泛,主要包括以下几个方面。
1. 治疗退行性疾病干细胞可以分化为多个类型的细胞,这使得它们可以作为一种新型的、可再生的治疗方法,为退行性疾病的治疗带来了新的希望,如帕金森病、阿尔茨海默病等。
2. 细胞移植治疗干细胞可以用于组织的修复和再生,包括疾病的诊断和治疗、细胞移植等方面。
干细胞移植治疗已被用于治疗子宫内膜异位症、严重皮肤炎症等皮肤疾病。
3. 新药研发干细胞是一种很好的模型,可以用于测试新药的安全性、有效性和毒性。
干细胞技术已经成为新一代药物研发的重要手段。
三、干细胞技术的最新研究进展1. 制备人工合成血管目前,很多心血管疾病病人已经不能接受传统治疗方法。
干细胞的研究进展【摘要】干细胞是一种具有自我更新和分化能力的特殊细胞,被认为具有巨大的医学潜力。
本文从干细胞的类型和特点、医学领域的应用、组织工程和再生医学中的作用、治疗各种疾病的潜在价值以及药物研发中的作用等方面进行介绍。
干细胞技术在治疗心血管疾病、神经退行性疾病、器官移植等重大疾病中具有重要作用。
未来,干细胞研究将更加深入,致力于解决更多疾病的治疗难题,促进医学领域的发展。
干细胞技术的未来发展方向包括提高干细胞的纯度和稳定性,加速干细胞临床转化的进程,以及探索干细胞在疾病治疗和药物研发中的更广泛应用。
干细胞研究前景光明,将为人类健康带来更多希望与可能。
【关键词】干细胞、研究进展、类型、特点、医学领域、组织工程、再生医学、治疗、疾病、药物研发、前景、未来发展方向1. 引言1.1 干细胞的研究进展干细胞的研究进展一直是科学界的热点话题之一。
干细胞具有自我更新和分化为多种细胞类型的能力,被认为具有巨大的潜力在医学领域和生物学研究中发挥作用。
随着技术的不断进步,科学家们对干细胞的研究也变得更加深入和全面。
干细胞主要分为胚胎干细胞和成体干细胞两种类型,它们各自具有不同的特点和应用价值。
胚胎干细胞来源于早期胚胎,具有较高的多能性,可以分化为身体中几乎所有类型的细胞;而成体干细胞则存在于成体组织中,具有一定的分化潜能,可以修复和更新受损组织。
干细胞在医学领域的应用包括器官移植、再生医学、组织工程等方面,为疾病治疗和健康保健提供了新的思路和方法。
未来,随着干细胞研究的不断深入和发展,相信它们将在医学和科学领域发挥出更加重要的作用。
干细胞技术的应用前景十分广阔,也面临着诸多挑战。
只有不断探索和创新,才能更好地利用干细胞的潜力,促进人类健康和生命质量的提升。
无疑将成为未来的一个重要研究方向,为人类的生活带来更多希望和可能。
2. 正文2.1 干细胞的类型和特点干细胞是一类具有自我更新和多向分化潜能的细胞,可分为胚胎干细胞和成体干细胞两大类。
干细胞的相关研究进展xxx(山东理工大学生命学院)摘要:干细胞,原始且未特化的细胞,它是未充分分化、具有再生各种组织器官的潜在功能、存在于所有多细胞组织里的细胞,它可以利用自我更新来提供更多干细胞。
对哺乳动物来说,干细胞分为两大类:胚胎干细胞与成体干细胞。
在成体组织里,干细胞与先驱细胞担任身体的修复系统,补充成体组织。
在胚胎发展阶段,干细胞能分化为任何特化细胞,但仍会维持新生组织的正常转移。
关键词:干细胞胚体干细胞成体干细胞Stem cell research progressxxx(shandong university of science and technology ofcollege of life)Abstract: stem cells, original and not specialized cells, it is not fully differentiation, with all kinds of tissue organ regeneration of the potential function, in all multicellular organization cell, it can use the self-renewal to provide more stem cells. For mammals, stem cells can be divided into two categories: embryonic stem cell and adult stem cells. In the adult group, stem cells and cell precursors as body repair system, supplementary adult tissue. In the embryonic stage of development, stem cells can differentiate into any specialized cells, but still will maintain the normal transfer new organization.Keywords: stem cell embryonic body stem cells adult stem cells干细胞的发现史干细胞的研究被认为开始于1960年代,在加拿大科学家恩尼斯特·莫科洛克和詹姆士·堤尔的研究之后。
体外培养的神经干细胞1959年,美国首次报道了通过体外受精(ⅣF )动物。
60年代,几个近亲种系的小鼠睾丸畸胎瘤的研究表明其来源于胚胎生殖细胞(embryonic germ cells,EG 细胞),此工作确立了胚胎癌细胞(embryonic carcinoma cells,EC 细胞)是一种干细胞。
1968年,Edwards 和Bavister 在体外获得了第一个人卵子。
70年代,EC 细胞注入小鼠胚泡产生杂合小鼠。
培养的SC 细胞作为胚胎发育的模型,虽然其染色体的数目属于异常。
1978年,第一个试管婴儿,Louise Brown 在英国诞生。
1981年,Evan,Kaufman 和Martin 从小鼠胚泡内细胞群分离出小鼠ES 细胞。
他们建立了小鼠ES 细胞体外培养条件。
由这些细胞产生的细胞系有正常的二倍型,像原生殖细胞一样产生三个胚层的衍生物。
将ES 细胞注入上鼠,能诱导形成畸胎瘤。
1984—1988年,Anderews 等人从人睾丸畸胎瘤细胞系Tera-2中产生出多能的、可鉴定的(克隆化的)细胞,称之为胚胎癌细胞(embryonic carcinomacells,EC 细胞)。
克隆的人EC 细胞在视黄酸的作用下分化形成神经元样细胞和其他类型的细胞。
1989年,Pera 等分离了一个人EC 细胞系,此细胞系能产生出三个胚层的组织。
这些细胞是非整倍体的(比正常细胞染色体多或少),他们在体外的分化潜能是有限的。
1994年,通过体外授精和病人捐献的人胚泡处于2-原核期。
胚泡内细胞群在培养中得以保存其周边有滋养层细胞聚集,ES 样细胞位于中央。
1998年美国有两个小组分别培养出了人的多能(pluripotent )干细胞:James A. Thomson 在Wisconsin干细胞大学领导的研究小组从人胚胎组织中培养出了干细胞株。
他们使用的方法是:人卵体外受精后,将胚胎培育到囊胚阶段,提取 inner cell mass 细胞,建立细胞株。
经测试这些细胞株的细胞表面marker 和酶活性,证实他们就是全能干细胞。
用这种方法,每个胚胎可取得15-20干细胞用于培养。
John D. Gearhart在Johns Hopkins 大学领导的另一个研究小组也从人胚胎组织中建立了干细胞株。
他们的方法是:从受精后5-9周人工流产的胚胎中提取生殖母细胞(primordial germ cell )。
由此培养的细胞株,证实具有全能干细胞的特征。
2000年,由Pera 、Trounson 和Bongso 领导的新加坡和澳大利亚科学家从治疗不育症的夫妇捐赠的胚泡内细胞群中分离得到人ES 细胞,这些细胞体外增殖,保持正常的核型,自发分化形成来源于三个胚层的体细胞系。
将其注入免疫缺陷小鼠错开内产生畸胎瘤。
2003,建立了人类皮肤细胞与兔子卵细胞种间融合的方法,为人胚胎干细胞研究提供了新的途径。
2004年,Massachusetts AdvancedCell Technology 报道克隆小鼠的干细胞可以通过形成细小血管的心肌细胞修复心衰小鼠的心肌损伤。
这种克隆细胞比来源于骨髓的成体干细胞修复作用更快、更有效,可以取代40%的瘢痕组织和恢复心肌功能。
这是首次显示克隆干细胞在活体动物体内修复受损组织。
胚胎干细胞生成机制当来自美国威斯康星大学麦迪逊分校的James Thomson 及研究团队成功从胚泡中获得一群称为“内细胞团”的细胞时,标志着取得了突破性的进展。
胚泡是一种极早期的胚胎,此处研究人员是通过在实验室中操控精子和卵子的受精而获得的。
在临床上,辅助生殖中心的科学家们通常会制造出比预备受孕父母预期的更多的胚胎,按照父母的意愿,受孕后剩余的胚胎通常会被冻存起来或丢弃。
在这种情况下,父母可以将多余的胚泡供科学研究。
如果将胚泡植入到子宫内,内细胞团将会形成胎儿或滋养外胚层,并最终形成附组织例如胎盘。
在不植入子宫的情况下,研究人员可将内细胞团转变为细胞培养物。
为了做到如此,研究人员需分离出内细胞团,并将这些细胞置于平底皿中培育成细胞系。
营养丰富的培养液和一些小鼠细胞作为滋养或支持细胞,是培育这些细胞的必要条件。
分离的细胞持续地生长。
事实上,干细胞的部分定义就是它能够几乎无限地分裂,生成越来越多的干细胞。
相比之下,普通细胞受到端粒的限制,在经历一定次数的分裂后就会死亡。
细胞的DNA复制机器无法达到DNA链的最顶端,因此随着每次细胞分裂端粒会逐渐缩短。
而干细胞中包含一种端粒酶,能够构建端粒备份,使细胞获得永生。
然而,除了能够永久分裂,干细胞还必须即具备多能性,能够形成所有的细胞类型。
在胚胎发育过程中,机体所有的器官和组织都是分别由三个胚层:内胚层、中胚层和外胚层发育形成。
多能细胞能够形成所有三个胚层。
只能形成一个胚层的细胞就已经走上了分化的道路,而不再具多能性。
科学家们通常利用将细胞注入小鼠的方法来检测细胞的多能性。
一旦进入小鼠体内,多能干细胞会形成畸胎瘤(包含三个胚层的细胞团)。
Thomson的细胞通过了检测。
他们发现了生成胚胎干细胞的机制。
胚胎干细胞转变为多种细胞类型的障碍科学家们现在获得了大量可无限分裂,并具有多能性的胚胎干细胞。
他们知道如何分离这些细胞,如何在实验室操作这些细胞,他们知道如何在适当的培养条件下使细胞维持健康。
但是为什么他们还不能将胚胎干细胞转变为治疗疾病所需的细胞类型呢?目前科学家面临的困难很多。
比如不同的细胞类型需要不同的条件和分子指令,科学家现在还没有弄清楚怎样将干细胞转诱导为人类身体里全部的这两百多种细胞。
而且,并不是所有人都是赞成进行胚胎干细胞这项研究,因此人道伦理也成为研究人员们所要解决的重要问题之一。
当前,干细胞和再生医学的研究已成为自然科学中最为引人注目的领域。
中国在干细胞低温超低温气相、液相保存技术、定向温度保存技术及超低温干细胞保存抗损伤技术等处于世界领先水平。
干细胞理论的日臻完善和技术的迅猛发展必将在疾病治疗和生物医药等领域产生划时代的成果,是对传统医疗手段和医疗观念的一场重大革命。
采用干细胞治疗有着多种优势:低毒性(或无毒性),即使不完全了解疾病发病的确切机理治疗也可达到较好的治疗效果,自身干细胞移植可避免产生免疫排斥反应,对传统治疗方法疗效较差的疾病多有惊人的效果。
相关研究2012年8月13日,据媒体报道,一种新发现的干细胞类群可能是使人类拥有更高层次思维的关键,干细胞可能增强人体的创造力。
科学家对此类干细胞家族进行鉴定,发现它们也许能促进人体神经元对抽象思维以及创造性活动的应答。
科学家在小鼠胚胎中发现了该干细胞家族,还发现这种干细胞在胚胎中以大脑皮层的上层的形式存在。
而在人体中,大脑同样的区域支配着抽象思维、对未来预先计划以及解决问题的能力。
实验室培养的该类干细胞可能有利于为精神分裂症以及自闭症等大脑疾病找到新的治疗方式。
[干细胞牛人利用胚胎干细胞生成视网膜组织:Sasai领导他的研究小组再度取得重大的突破性成果,成功地利用人类胚胎干细胞生成的第一个视网膜组织。
相关论文发表在《细胞干细胞》(Cell stem cell)杂志上日本神户理化学研究所进化生物学中心的干细胞生物学家Yoshiki Sasai近年来成为干细胞研究领域的领军人物。
Sasai曾成功地将神经干细胞诱导生成精细结构,并利用干细胞培育出视杯、大脑皮层精细组织层和初级的生成激素的垂体。
布鲁塞尔自由大学干细胞科学家Luc Leyns评价他的一系列论文是近年来最令人着迷的干细胞论文。
近日Sasai领导他的研究小组再度取得重大的突破性成果,成功地利用人类胚胎干细胞生成的第一个视网膜组织。
相关论文发表在《细胞干细胞》(Cell stem cell)杂志上。
Sasai和同事们曾经开发出一种新型的细胞培养方法,将胚胎干细胞进行悬浮而非贴壁培养。
在这样的条件下,当给予适当的生长因子组合时,培育的胚胎干细胞会自身形成复杂的三维结构。
在去年的Nature杂志上,Sasai研究小组报告称以这种方式培育的小鼠胚胎干细胞重演了发育机制,自动形成了称作视杯的杯状分层结构,这一结构类似于胚眼(embryonic eye),包含成熟视网膜的所有细胞类型,包括感光细胞。