同济大学(高等数学)第四篇无穷级数
- 格式:doc
- 大小:2.74 MB
- 文档页数:58
第四篇 无穷级数第七章 无穷级数无穷级数是高等数学课程的重要内容,它以极限理论为基础,是研究函数的性质及进行数值计算方面的重要工具. 本章首先讨论常数项级数,介绍无穷级数的一些基本概念和基本内容,然后讨论函数项级数,着重讨论如何为将函数展开成幂级数和三角级数的问题,最后介绍工程中常用的傅里叶级数.第1节 常数项级数的概念与性质1.1常数项级数的概念一般的,给定一个数列,,,,,321n u u u u则由这数列构成的表达式+++++n u u u u 321叫做(常数项)无穷级数, 简称(常数项)级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项n u 叫做级数的一般项.作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和. 当n 依次取1,2,3…时,它们构成一个新的数列11s u =,212s u u =+,3123s u u u =++,…,12...n n s u u u =+++,…根据这个数列有没有极限,我们引进无穷级数的收敛与发散的概念。
定义 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim , 则称无穷级数∑∞=1n nu 收敛, 这时极限s 叫做这级数的和, 并写成3211+++++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.当级数∑∞=1n n u 收敛时, 其部分和n s 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值12n n n n r s s u u ++=-=++叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)n n aq ∑∞=0(a ≠0)的敛散性.解 如果1≠q , 则部分和qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当1<q 时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当1>q 时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果1=q , 则当1=q 时, n s na =→∞ , 因此级数n n aq ∑∞=0发散;当1-=q 时, 级数n n aq ∑∞=0成为+-+-a a a a ,因为n s 随着n 为奇数或偶数而等于a 或零, 所以n s 的极限不存在, 从而这时级数n n aq ∑∞=0发散.综上所述, 如果1<q , 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果1≥q , 则级数n n aq ∑∞=0发散.例2 判别无穷级数∑∞=+1)11ln(n n 的收敛性. 解 由于n n nu n ln )1(ln )11ln(-+=+=,因此)1(ln )ln )1(ln( )ln3ln4()ln2ln3()1ln 2(ln +=-++⋅⋅⋅+-+-+-=n n n s n ,而 ∞=∞→n n S lim ,故该级数发散.例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性. 解 因为111)1(1+-=+=n n n n u n ,所以)1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n , 从而1)111(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1.1.2 收敛级数的基本性质根据无穷级数收敛、发散的概念,可以得到收敛级数的基本性质.性质1如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛, 且其和为ks .证明 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为n s 与n σ, 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21,这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为σ±s .证明 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为n s 、n σ、n τ, 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性.比如, 级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的;级数)1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的;级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数(1-1)+(1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的.推论 如果加括号后所成的级数发散, 则原来级数也发散. 性质5 如果∑∞=1n n u 收敛, 则它的一般项n u 趋于零, 即0lim 0=→n n u .证明 设级数∑∞=1n n u 的部分和为n s , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .注: 级数的一般项趋于零并不是级数收敛的充分条件.例6 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n是发散的.证明 假若级数∑∞=11n n收敛且其和为s , ns 是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面,2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n ,故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.习题7-11. 写出下列级数的前四项:(1) ∑∞=1!n n n n ; (2)∑∞=⎥⎦⎤⎢⎣⎡+---121)1(1)1(n n n n . 2. 写出下列级数的一般项(通项):(1) -+-+-8141211 ; (2)+-+-97535432a a a a ; (3) ++++7151311. 3. 根据级数收敛性的定义,判断下列级数的敛散性: (1)∑∞=⎪⎭⎫⎝⎛+111ln n n ; (2) ++++6sin 62sin 6sin πππn . 4. 判断下列级数的敛散性: (1)∑∞=+131n n ; (2) +++++n 31916131; (3)∑∞=+112n n n (4) +-+-+-+-2)1(2222n.第2节 常数项级数的收敛法则2.1 正项级数及其收敛法则现在我们讨论各项都是正数或零的级数,这种级数称为正项级数. 设级数+++++n u u u u 321 (7-2-1)是一个正项级数,它的部分和为n s .显然,数列{}n s 是一个单调增加数列,即:≤≤≤≤n s s s 21如果数列{}n s 有界,即n s 总不大于某一常数M ,根据单调有界的数列必有极限的准则,级数(7-2-1)必收敛于和s ,且M s s n ≤≤. 反之,如果正项级数(7-2-1)收敛于和s .根据有极限的数列是有界数列的性质可知,数列{}n s 有界. 因此,有如下重要结论:定理 1 正项级数∑∞=1n n u 收敛的充分必要条件是它的部分和数列{n s }有界.定理2 (比较审敛法) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且n n u v ≤ ),2,1( =n . 若级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.证明 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和),2,1(21321 =≤++≤++++=n v v v u u u u s n n n σ即部分和数列{}n s 有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当N n ≥时有)0(>≤k kv u n n 成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当N n ≥时有)0(>≥k kv u n n 成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1 413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=pp p p p n n n 的收敛性, 其中常数0>p .解 设1≤p . 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当1≤p 时级数pn n 11∑∞=发散.设1>p . 此时有⎪⎪⎭⎫⎝⎛---=≤=----⎰⎰11111)1(111111p p n n p n n p p n n p dx x dx n n ),3,2( =n . 对于级数⎪⎪⎭⎫⎝⎛----∞=∑1121)1(1p p n n n , 其部分和 111111)1(11)1(11 3121211------+-=⎪⎪⎭⎫ ⎝⎛+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=p p p p p p n n n n s . 因为1)1(11lim lim 1=⎪⎪⎭⎫ ⎝⎛+-=-∞→∞→p n n n n s . 所以级数⎪⎪⎭⎫⎝⎛----∞=∑1121)1(1p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数pn n 11∑∞=当1>p 时收敛.综上所述, p -级数p n n11∑∞=当1>p 时收敛, 当1≤p 时发散.例2 证明级数∑∞=+1)1(1n n n 是发散的. 证明 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的.定理3 (比较审敛法的极限形式)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果)0(lim +∞<<=∞→l l v u n nn , 则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当N n >时, 有不等式l l v ul l n n 2121+<<-, 即n n n lv u lv 2321<<.再根据比较审敛法的推论1, 即得所要证的结论.例3 判别级数∑∞=11sinn n的收敛性. 解 因为111sin lim =∞→nn n , 而级数∑∞=11n n 发散, 根据比较审敛法的极限形式, 级数∑∞=11sin n n 发散.用比较审敛法审敛时,需要适当地选取一个已知其收敛性的级数∑∞=1n nv作为比较的基准.最常选用做基准级数的是等比级数和p -级数.定理4 (比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ,即ρ=+∞→n n n u u 1lim,则当1<ρ时级数收敛;当1>ρ (或∞=+∞→nn n u u 1lim)时级数发散; 当1=ρ时级数可能收敛也例4 判别级数∑∞=1!1n n 收敛性. 解 因为1011lim !1)!1(1lim lim1<=+=+=∞→∞→+∞→n n n u u n n nn n , 根据比值审敛法可知,所给级数收敛. 例5 判别级数∑∞=13!n n n 的收敛性. 解 因为,31lim 3!3)!1(lim lim11+∞=+=+=∞→+∞→+∞→n n n u u n nn n nn n ,根据比值审敛法可知,所给级数发散. 定理5 (根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项n u 的n 次根的极限等于ρ,即ρ=∞→n n n u lim ,则当1<ρ时级数收敛; 当1>ρ (或+∞=∞→n n n u lim )时级数发散; 当1=ρ时级数可能收敛也可能发散.定理6(极限审敛法)设∑∞=1n n u 为正项级数,(1)如果0lim >=∞→l nu n n (或+∞=∞→n n nu lim ),则级数∑∞=1n n u 发散;(2)如果1>p ,而l u n n pn =∞→lim (+∞<≤l 0),则级数∑∞=1n n u 收敛.证明 (1)在极限形式的比较审敛法中,取n v n 1=,由调和级数∑∞=11n n发散,知结论成立.(2)在极限形式的比较审敛法中,取p n n v 1=,当1>p 时,p -级数∑∞=11n p n收敛,例6 判定级数)11ln(12∑∞=+n n的收敛性. 解 因)(1~)11ln(22+∞→+n nn ,故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→n n n n u n n n n n ,根据极限审敛法,知所给级数收敛.2.2 交错级数及其审敛法则下列形式的级数,4321 u u u u -+-称为交错级数. 交错级数的一般形式为n n n u ∑∞=--11)1(, 其中0>n u .定理7(莱布尼茨定理)如果交错级数n n n u ∑∞=--11)1(满足条件:(1) 1(1,2,3,)n n u u n +≥= ;(2) 0lim =∞→n n u ,则级数收敛, 且其和1u s ≤, 其余项n r 的绝对值1+≤n n u r .证明 设前n 项部分和为n s ,由)()()(21243212n n n u u u u u u s -+-+-=- ,及n n n n u u u u u u u u s 21222543212)()()(--+-+--=-- ,看出数列{}n s 2单调增加且有界)(12u s n ≤, 所以收敛.设)(2∞→→n s s n , 则也有)(12212∞→→+=++n s u s s n n n ,所以)(∞→→n s s n ,从而级数是收敛的, 且1u s <.因为 +-≤++21n n n u u r |也是收敛的交错级数, 所以1+≤n n u r .2.3 绝对收敛与条件收敛对于一般的级数:,21 ++++n u u u若级数∑∞=1n nu收敛,则称级数∑∞=1n nu绝对收敛;若级数∑∞=1n nu收敛, 而级数∑∞=1n nu发散, 则称级数∑∞=1n nu条件收敛.级数绝对收敛与级数收敛有如下关系: 定理8 如果级数∑∞=1n nu绝对收敛, 则级数∑∞=1n nu必定收敛.证明 令)(21n n n u u v +=),2,1( =n . 显然0≥n v 且n n u v ≤ ),2,1( =n .因级数∑∞=1n nu收敛,故由比较审敛法知道,级数∑∞=1n nv,从而级数∑∞=12n nv也收敛.而n n n u v u -=2,由收敛级数的基本性质可知:∑∑∑∞=∞=∞=-=1112n n n n n nu v u,所以级数∑∞=1n nu收敛.定理8表明,对于一般的级数∑∞=1n nu,如果我们用正项级数的审敛法判定级数∑∞=1n nu收敛,则此级数收敛.这就使得一大类级数的收敛性判定问题,转化成为正项级数的收敛性判定问题.一般来说,如果级数∑∞=1n nu发散, 我们不能断定级数∑∞=1n nu也发散. 但是, 如果我们用比值法或根值法判定级数∑∞=1n nu发散, 则我们可以断定级数∑∞=1n nu必定发散. 这是因为, 此时|u n |不趋向于零, 从而n u 也不趋向于零, 因此级数∑∞=1n nu也是发散的.例7 判别级数∑∞=12sin n nna 的收敛性. 解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n nna 也收敛, 从而级数∑∞=12sin n nna 绝对收敛.例8 判别级数∑∞=13n nna (a 为常数)的收敛性.解 因为)(1)1(33311∞→→⎪⎭⎫⎝⎛+=+=++n a a n n n a n au u n n nn ,所以当1±=a 时,级数∑∞=±13)1(n n n均收敛;当1≤a 时,级数∑∞=13n nn a 绝对收敛;当1>a 时,级数∑∞=13n nna 发散.习题7-21. 用比较审敛法判定下列级数的收敛性: (1)∑∞=+12121n n; (2)∑∞=++1)2)(1(1n n n ;(3)∑∞=+11n n n; (4)∑∞=12sin n n π; (5)∑∞=>+1)0(11n na a.2. 用比值审敛法判定下列级数的敛散性:(1)∑∞=1!2n n n ; (2)∑∞=⋅1!3n nn n n ; (3)∑∞=+1)12(n n n n ; (4)∑∞=+112tan n n n π.3. 判定下列级数的敛散性:(1)∑∞=12n n n ; (2)∑∞=+1)1(n nn n ;(3)∑∞=13sin 2n n nπ; (4)∑∞=14!n n n ;(5)∑∞=++121)1(n n n n . 4. 判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛? (1)∑∞=+-111)1(n n n; (2)∑∞=-+-11)1ln(1)1(n n n ;(3)∑∞=--111sin )1(n n n ; (4)∑∞=--11ln )1(n n n n.第3节 幂级数3.1 函数项级数的概念给定一个定义在区间I 上的函数列{})(x u n , 由这函数列构成的表达式+++++)()()()(321x u x u x u x u n ,称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .对于区间I 内的一定点0x , 若常数项级数∑∞=10)(n n x u 收敛, 则称点0x 是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n nx u发散, 则称点0x 是级数∑∞=1)(n n x u 的发散点.函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域.在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数)(x s , )(x s 称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s . 函数项级数)(x u n ∑的前n 项的部分和记作)(x s n , 即)()()()()(321x u x u x u x u x s n n ++++= .在收敛域上有)()(lim x s x s n n =∞→.函数项级数∑∞=1)(n n x u 的和函数)(x s 与部分和)(x s n 的差)()()(x s x s x r n n -=叫做函数项级数∑∞=1)(n n x u 的余项. 并有0)(lim =∞→x r n n .3.2 幂级数及其收敛性函数项级数中简单而常见的一类级数就是各项都是幂函数的函数项级数, 这种形式的级数称为幂级数, 它的形式是+++++=∑∞=n n n n nx a x a x a a x a22100,其中常数 ,,,,,210n a a a a 叫做幂级数的系数.定理1(阿贝尔定理) 对于级数∑∞=0n n nx a,当)0(00≠=x x x 时收敛, 则适合不等式0x x <的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当0x x =时发散, 则适合不等式0x x >的一切x 使这幂级数发散.证 先设0x 是幂级数∑∞=0n nn x a的收敛点, 即级数∑∞=0n nnx a 收敛. 根据级数收敛的必要条件,有0lim 0=∞→nn n x a , 于是存在一个常数M , 使),2,1(0 =≤n M x a nn .这样级数∑∞=0n n nx a的的一般项的绝对值n n nn n n nn nn x x M x x x a x x x a x a ||||||||||00000⋅≤⋅=⋅=.因为当0x x <时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n nx a绝对收敛. 定理的第二部分可用反证法证明.倘若幂级数当0x x =时发散而有一点1x 适合01x x >使级数收敛, 则根据本定理的第一部分, 级数当0x x =时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n nx a不是仅在点0=x 一点收敛, 也不是在整个数轴上都收敛,则必有一个完全确定的正数R 存在, 使得 当R x <时, 幂级数绝对收敛; 当R x >时, 幂级数发散;当R x =与R x -=时, 幂级数可能收敛也可能发散. 正数R 通常叫做幂级数∑∞=0n nnx a的收敛半径. 开区间),(R R -叫做幂级数∑∞=0n n n x a 的收敛区间. 再由幂级数在x R =±处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n nnx a的收敛域是),(R R -或),[R R -、],(R R -、],[R R -之一.若幂级数∑∞=0n nnx a只在0=x 收敛, 则规定收敛半径0=R , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径+∞=R , 这时收敛域为),(+∞-∞.定理2 如果ρ=+∞→||lim 1nn n a a , 其中n a 、1+n a 是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .证明|| ||||lim ||lim 111x x a a x a x a nn n n n n n n ρ=⋅=+∞→++∞→.(1) 如果+∞<<ρ0, 则只当1<x ρ时幂级数收敛, 故ρ1=R .(2) 如果0=ρ, 则幂级数总是收敛的, 故+∞=R .(3) 如果+∞=ρ, 则只当0=x 时幂级数收敛, 故0=R .例1 求幂级数 ∑∞=12n nnx 的收敛半径与收敛域.解 因为1)1(lim lim 221=+==∞→+∞→n n a a n nn n ρ,所以收敛半径为11==ρR . 即收敛区间为)1,1(-.当1±=x 时, 有221)1(n n n =±,由于级数∑∞=121n n 收敛,所以 级数∑∞=12n n nx 在1±=x 时也收敛.因此, 收敛域为]1,1[-.例2 求幂级数∑∞=0!1n nx n = !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x 的收敛域.解 因为0)!1(!lim !1)!1(1lim ||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ,所以收敛半径为+∞=R , 从而收敛域为),(+∞-∞.例3 求幂级数∑∞=0!n nxn 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为0=R , 即级数仅在0=x 处收敛. 例4 求幂级数∑∞=022)!()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径:幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当142<x即21||<x 时级数收敛; 当142>x 即21||>x 时级数发散, 所以收敛半径为21=R .3.3 幂级数的运算 设幂级数∑∞=0n nn xa 及∑∞=0n n n x b 分别在区间),(R R -及),(R R ''-内收敛, 则在),(R R -与),(R R ''-中较小的区间内有加法:∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b x a .减法: ∑∑∑∞=∞=∞=-=-00)(n n n n n nn n nn x b a x b x a .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a ++++++=2021120011000)()(x b a b a b a x b a b a b a+++++-n n n n x b a b a b a )(0110.除法: .221022102210+++++=++++++++++n n nn n n x c x c x c c x b x b x b b x a x a x a a 关于幂级数的和函数有下列重要性质:性质1 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛域I 上连续.性质2 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn x x n a dx x a dx x a dx x s )(I x ∈,逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛区间),(R R -内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n nn n nn x na x a x a x s ()x R <,逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n nx n 的和函数.解 求得幂级数的收敛域为)1,1[-. 设和函数为)(x s , 即∑∞=+=011)(n n x n x s , )1,1[-∈x .显然1)0(=s . 在∑∞=++=0111)(n n x n x xs 的两边求导得:()x x x n x xs n n n n -=='⎪⎭⎫⎝⎛+='∑∑∞=∞=+1111)(001.对上式从0到x 积分, 得)1ln(11)(0x dx xx xs x--=-=⎰.于是, 当0≠x 时, 有)1ln(1)(x xx s --=. 从而[)()⎪⎩⎪⎨⎧=⋃∈--=,0 1 ,1,01,0- )1ln(1)(x x x xx s . 提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.11132++++++=-n x x x x x. 习题7-31.求下列幂级数的收敛区间(1)∑∞=1n nnx ; (2)∑∞=-1)1(n nn x n ;(3)∑∞=⋅+12)2(n nn n x ; (4)∑∞=++-11212)1(n n n n x ; (5)∑∞=-1)5(n n n x ; (6)∑∞=+1212n n nx n ;(7)∑∞=-1)1(2n nn x n ; (8)∑∞=-1)5(n n n x . 2. 利用逐项求导法或逐项积分法,求下列级数的和函数 (1)∑∞=-1122n n nx1<x ; (2)∑∞=--11212n n n x .第4节 函数展开成幂级数4.1函数展开成幂级数给定函数)(x f , 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数)(x f . 如果能找到这样的幂级数, 我们就说,函数)(x f 能展开成幂级数, 而该级数在收敛区间内就表达了函数)(x f .如果)(x f 在点0x 的某邻域内具有各阶导数),(),(x f x f ''' ),()(x f n ,则当∞→n 时, )(x f 在点0x 的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+=成为幂级数)(!2)())(()(200000⋅⋅⋅+-''+-'+x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f这一幂级数称为函数)(x f 的泰勒级数.显然, 当0x x =时,)(x f 的泰勒级数收敛于)(0x f .需要解决的问题: 除了0x x =外, )(x f 的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于)(x f ?定理 设函数)(x f 在点0x 的某一邻域)(0x U 内具有各阶导数, 则)(x f 在该邻域内能展开成泰勒级数的充分必要条件是)(x f 的泰勒公式中的余项)(x R n 当n →∞时的极限为零, 即lim ()0 n n R x →∞= 0(())x U x ∈.证明 先证必要性. 设)(x f 在)(0x U 内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设)(1x s n +是)(x f 的泰勒级数的前1+n 项的和,则在)(0x U 内)(1x s n +)(x f →)(∞→n .而)(x f 的n 阶泰勒公式可写成)()()(1x R x s x f n n +=+,于是=)(x R n 1()()0n f x s x +-→)(∞→n .再证充分性. 设)(0)(∞→→n x R n 对一切)(0x U x ∈成立.因为)(x f 的n 阶泰勒公式可写成)()()(1x R x s x f n n +=+, 于是=+)(1x s n )(x f )()(x f x R n →-,即)(x f 的泰勒级数在)(0x U 内收敛, 并且收敛于)(x f .在泰勒级数中取00=x , 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2nn x n f x f x f f ,此级数称为)(x f 的麦克劳林级数.要把函数)(x f 展开成x 的幂级数,可以按照下列步骤进行: 第一步 求出)(x f 的各阶导数: ),(,),(),(),()(x f x f x f x f n ''''''.第二步 求函数及其各阶导数在00=x 处的值:),0(,),0(),0(),0()(n f f f f '''''' .第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+nn x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(),(R R -内时是否)(0)(∞→→n x R n .1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ 是否为零. 如果)(0)(∞→→n x R n , 则)(x f 在),(R R -内有展开式!)0( !2)0()0()0()()(2+++''+'+=nn x n f x f x f f x f )(R x R <<-.例1 试将函数x e x f =)(展开成x 的幂级数. 解 所给函数的各阶导数为),2,1()()( ==n e x f x n , 因此),2,1(1)0()( ==n f n .得到幂级数⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x , 该幂级数的收敛半径+∞=R .由于对于任何有限的数ξ,x (ξ介于0与x 之间), 有)!1(||)!1( |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ, 而0)!1(||lim1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 2111 2!!x n e x x x n =+++⋅⋅⋅+⋅⋅⋅ ()x -∞<<+∞. 例2 将函数x x f sin )(=展开成x 的幂级数. 解 因为⎪⎭⎫ ⎝⎛⋅+=2 sin )()(πn x x fn ),2,1( =n ,所以)0()(n f顺序循环地取),3,2,1,0(,1,0,1,0 =-n , 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n , 它的收敛半径为+∞=R .对于任何有限的数ξ,x (ξ介于0与x 之间), 有11(1)sin ||2|()| 0(1)!(1)!n n n n x R x x n n πξ+++⎛⎫+⎪⎝⎭=≤→++ n →∞.因此得展开式35211sin(1)3!5!(21)!n n x x x x x n --=-+-+-+- ()x -∞<<+∞.例3 将函数m x x f )1()(+=展开成x 的幂级数, 其中m 为任意常数. 解 )(x f 的各阶导数为1)1()(-+='m x m x f,)1)(1()(2-+-=''m x m m x f,)1)(1()2)(1()()(n m n x n m m m m x f -++---=所以),1()2)(1()0(,),1()0(,)0(,1)0()(+---=-=''='=n m m m m f m m f m f f n且()0n R x → 于是得幂级数++-⋅⋅⋅-++-++nx n n m m m x m m mx !)1( )1( !2)1(12. 以上例题是直接按照公式计算幂级数的系数,最后考察余项是否趋于零.这种直接展开的方法计算量较大,而且研究余项即使在初等函数中也不是一件容易的事.下面介绍间接展开的方法,也就是利用一些已知的函数展开式,通过幂级数的运算以及变量代换等,将所给函数展开成幂级数.这样做不但计算简单,而且可以避免研究余项.例4 将函数x x f cos )(=展开成x 的幂级数. 解 已知)!12()1( !5!3sin 12153 +--+-+-=--n x x x x x n n )(+∞<<-∞x .对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞+-+-+-=x n x x x x n n . 例5 将函数)1ln()(x x f +=展开成x 的幂级数. 解 因为x x f +='11)(, 而x +11是收敛的等比级数∑∞=-0)1(n n n x )11(<<-x 的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x. 所以将上式从0到x 逐项积分, 得)1ln()(x x f +=⎰⎰+='+=xx dx xdx x 0011])1[ln(∑⎰∑∞=+∞=+-=-=01001)1(])1([n n nx n nn n x dx x )11(≤<-x . 上述展开式对1=x 也成立, 这是因为上式右端的幂级数当1=x 时收敛, 而)1ln(x +在1=x 处有定义且连续.常用展开式小结:211 1n x x x x=+++⋅⋅⋅++⋅⋅⋅- (11)x -<<, 2111 2!!xn e x x x n =+++⋅⋅⋅+⋅⋅⋅ ()x -∞<<+∞,35211sin (1) 3!5!(21)!n n x x x x x n --=-+-⋅⋅⋅+-+⋅⋅⋅- ()x -∞<<+∞,242cos 1 (1) 2!4!(2)!n n x x x x n =-+-⋅⋅⋅+-+⋅⋅⋅ ()x -∞<<+∞, 2341ln(1) (1) 2341n n x x x x x x n ++=-+-+⋅⋅⋅+-+⋅⋅⋅+ (11)x -<≤,!2)1(1)1(2⋅⋅⋅+-++=+x m m mx x m (1) (1) !n m m m n x n -⋅⋅⋅-+++⋅⋅⋅(11)x -<<4.2 幂级数的展开式的应用4.2.1 近似计算有了函数的幂级数展开式,就可以用它进行近似计算,在展开式有意义的区间内,函数值可以利用这个级数近似的按要求计算出来.例6 计算5245的近似值(误差不超过410-).解 因为5/15555)321(323245+=+=, 所以在二项展开式中取51=m , 532=x , 即]. )32)(151(51!2132511[32452555⋅⋅⋅+-⋅-⋅+=.这个级数从第二项起是交错级数, 如果取前n 项和作为5245的近似值, 则其误差(也叫做截断误差),1+≤n n u r 可算得,103258352243||4910222-<⨯=⨯⨯⨯⨯=u 为了使误差不超过410-, 只要取其前两项作为其近似值即可. 于是有.0049.3)2432511(32455≈⋅+≈.例7 利用3!31sin x x x -≈ 求 9sin 的近似值, 并估计误差. 解 首先把角度化成弧度,91809⨯=π (弧度)20π=(弧度),从而()320!312020sin πππ-≈ . 其次, 估计这个近似值的精确度. 在x sin 的幂级数展开式中令20π=x , 得20!7120!5120!312020sin 753⋅⋅⋅+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=πππππ.等式右端是一个收敛的交错级数, 且各项的绝对值单调减少. 取它的前两项之和作为20sin π的近似值, 起误差为3000001)2.0(120120!51||552<⋅<⎪⎭⎫ ⎝⎛≤πr . 因此取157080.020≈π, 003876.0203≈⎪⎭⎫ ⎝⎛π.于是得 15643.09sin ≈ ,这时误差不超过510-. 例8 计算定积分dx e x ⎰-2122π的近似值, 要求误差不超过410-(取56419.01≈π).解 将xe 的幂级数展开式中的x 换成2x -, 得到被积函数的幂级数展开式!3)(!2)(!1)(1322222⋅+-+-+-+=-x x x ex 20(1) !n n n x n ∞==-∑ ()x -∞<<+∞. 于是, 根据幂级数在收敛区间内逐项可积, 得dx x n dx n x dx e n n n n n n x ⎰∑⎰∑⎰∞=∞=--=-=102010201!)1(2]!)1([222πππ) !3721!25213211(1642 +⋅⋅-⋅⋅+⋅-=π. 前四项的和作为近似值, 其误差为900001!49211||84<⋅⋅≤πr ,所以5295.0)!3721!25213211(12642212≈⋅⋅-⋅⋅+⋅-≈⎰-ππdx e x .例9 计算积分dx x⎰+5.00411的近似值, 要求误差不超过410-.解 因为+-+-+-=+n n x x x x x)1(11132. 所以)1( 111412844+-++-+-=+nn x x x x x对上式逐项积分得dx x⎰+5.00411=dx x x x x n n ])1(1[412845.00 +-++-+-⎰ 5.0014139514)1(1319151⎥⎦⎤⎢⎣⎡++-++-+-=+ n n x n x x x x++-++-+-=+141395)5.0(14)1()5.0(131)5.0(91)5.0(515.0n n n . 上面级数为交错级数,所以误差14)5.0(141++<n n n r ,经试算 00625.0)5.0(515≈⋅,00022.0)5.0(919≈⋅,000009.0)5.0(13113≈. 所以取前三项计算,即≈+⎰dx x5.004110.49400.493970.0002200625.0-0.50000≈=+.4.2.2 欧拉公式设有复数项级数为,)()()(2211 +++++++n n iv u iv u iv u (7-4-1)其中n n v u , ),3,2,1( =n 为实常数或实函数.如果实部所成的级数++++n u u u 21 (7-4-2)收敛于和u ,并且虚部所成的级数++++n v v v 21 (7-4-3)收敛于和v ,就说级数(1)收敛且其和为iv u +.如果级数(7-4-1)各项的模所构成的级数+++++++2222222121n n v u v u v u收敛,则称级数(7-4-1)绝对收敛.如果级数(1)绝对收敛,由于),,2,1(,,2222 =+≤+≤n v u v v u u n n n n n n那么级数(7-4-2),(7-4-3)绝对收敛,从而级数(7-4-1)收敛.考察复数项级数+++++n z n z z !1!2112 )(iy x z += (7-4-4) 可以证明级数(7-4-4)在整个复平面上是绝对收敛的.在x 轴上)(x z =它表示指数函数xe ,在整个复平面上我们用它来定义复变量指数函数,记作ze ,于是ze 定义为=z e +++++n z n z z !1!2112 )(∞<z (7-4-5) 当0=x 时,z 为纯虚数iy ,(7-4-5)式成为 ++++++=n iyiy n iy iy iy e)(!1)(!31)(!21132-++--+=5432!51!41!31!211y i y y i y iy )!51!31()!41!211(5342 -+-+-+-=y y y i y y y i y sin cos +=把y 换写为x ,上式变为x i x e ixsin cos += (7-4-6)这就是欧拉公式. 应用公式(7-4-6),复数z 可以表示为指数形式:,)sin (cos θρθθρi e i z =+= (7-4-7)其中z =ρ是z 的模,z arg =θ是z 的辐角在(7-4-6)式中把x 换成x -,又有x i x e ix sin cos -=-与(7-4-6)相加、相减,得⎪⎪⎩⎪⎪⎨⎧-=+=--i e e x e e x ix ix ixix 2sin 2cos (7-4-8)这两个式子也叫做欧拉公式.(7-4-6)式或(7-4-8)式揭示了三角函数与复变量指数函数之间的一种联系.最后,根据定义式(7-4-5),并利用幂级数的乘法,我们不难验证2121z z z z e e e =+.特殊地,取1z 为实数x ,2z 为纯虚数iy ,则有).sin (cos y i y e e e e x iy x iy x +==+这就是说,复变量指数函数ze 在iy x z +=处的值是模为xe 、辐角为y 的复数.习题7-41.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)xa y = )1,0(≠>a a ; (2)2)1(1x y +=;(3)3sin xy =; (4))2ln(x y -=; (5)211xy -=; (6))1ln()1(x x y ++=.2.将函数x x f ln )(=展开成)1(-x 的幂级数.3.将函数xx f 1)(=展开成)3(-x 的幂级数. 4.利用函数的幂级数展开式求3ln 的近似值(误差不超过0.0001)5.利用欧拉公式将函数x e xcos 展开成x 的幂级数.第5节 傅里叶级数5.1三角级数 三角函数系的正交性正弦函数是一种常见而简单的周期函数.例如描述简谐振动的函数)sin(ϕ+=wt A y ,就是一个以ωπ2为周期的正弦函数,其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相.在实际问题中,除了正弦函数外,还会遇到非正弦函数的周期函数,它们反应了较复杂的周期运动.如电子技术中常用的周期为T 的矩形波,就是一个非正弦周期函数的例子.为了深入研究非正弦周期函数,联系到前面介绍过的用函数的幂级数展开式表示和讨论函数,我们也想将周期为T 的周期函数用一系列以T 为周期的正弦函数)sin(n n t n A ϕω+组成的级数来表示,记为)sin()(10n n nt n AA t f ϕω++=∑∞= (7-5-1)其中 ),3,2,1(,,0 =n A A n n ϕ都是常数.将周期函数按上述方式展开,它的物理意义是很明确的,这就是把一个比较复杂的周期运动看作是许多不同频率的简谐振动的叠加.在电工学上,这种展开称为是谐波分析.其中常数项0A 称为是)(t f 的直流分量;)sin(11ϕω+t A 称为一次谐波;而)sin(22ϕω+t A , ),sin(33ϕω+t A依次称为是二次谐波,三次谐波,等等.为了以后讨论方便起见,我们将正弦函数)sin(n n t n A ϕω+按三角公式变形,得)sin(n n t n A ϕω+=t n A n n ωϕcos sin +t n A n n ωϕsin cos ,并且令002A a =,n n n A a ϕsin =,n n n A b ϕcos =,l πω=,则(1)式右端的级数就可以改写为∑∞=++10)sin cos (2n n n ltn b l t n a a ππ (7-5-2)形如(7-5-2)式的级数叫做三角级数,其中),3,2,1(,,0 =n b a a n n 都是常数. 令,x lt=π(7-5-2)式成为 ,)sin cos (210∑∞=++n n n nx b nx a a (7-5-3)这就把以l 2为周期的三角级数转换为以π2为周期的三角级数.下面讨论以π2为周期的三角级数(7-5-3).我们首先介绍三角函数系的正交性. 三角函数系:,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x (7-5-4) 在区间],[ππ-上正交,就是指在三角函数系(7-5-4)中任何不同的两个函数的乘积在区间],[ππ-上的积分等于零,即 ⎰-=ππ0cos nxdx ),2,1( =n , ⎰-=ππ0sin nxdx ),2,1( =n , ⎰-=ππ0cos sin nxdx kx ),2,1,( =n k , ⎰-=ππ0sin sin nxdx kx ),,2,1,(n k n k ≠= ,⎰-=ππ0cos cos nxdx kx ),,2,1,(n k n k ≠= .三角函数系中任何两个相同的函数的乘积在区间],[ππ-上的积分不等于零, 即 ⎰-=πππ212dx ,⎰-=πππnxdx 2cos ),2,1( =n ,⎰-=πππnxdx 2sin ),2,1( =n .5.2 函数展开成傅里叶级数设)(x f 是周期为π2的周期函数, 且能展开成三角级数:∑∞=++=10)sin cos (2)(k k k kx b kx a a x f . (7-5-5)那么系数 ,,,110b a a 与函数)(x f 之间存在着怎样的关系? 假定三角级数可逐项积分, 则]cos sin cos cos [cos 2cos )(1⎰⎰∑⎰⎰--∞=--++=ππππππππnxdx kx b nxdx kx a nxdx a nxdx x f k k k =πn a类似地⎰-=πππn b nxdx x f sin )(,可得⎰-=πππdx x f a )(10,⎰-=ππnxdx x f a n cos )(1, ),2,1( =n ,⎰-=πππnxdx x f b n sin )(1, ),2,1( =n .系数 ,,,110b a a 叫做函数)(x f 的傅里叶系数.由于当0=n 时,n a 的表达式正好给出0a ,因此,已得结果可合并写成1()cos ,(1,2,),1()sin ,(1,2,).n n a f x nxdx n b f x nxdx n ππππππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (7-5-6)将傅里叶系数代入(5)式右端,所得的三角级数∑∞=++10)sin cos (2n n n nx b nx a a 叫做函数)(x f 的傅里叶级数.一个定义在),(∞+-∞上周期为π2的函数)(x f , 如果它在一个周期上可积, 则一定可以作出)(x f 的傅里叶级数. 然而, 函数)(x f 的傅里叶级数是否一定收敛? 如果它收敛, 它是否一定收敛于函数? 一般来说, 这两个问题的答案都不是肯定的.定理1 (收敛定理, 狄利克雷充分条件) 设)(x f 是周期为π2的周期函数, 如果它满足: 在一个周期内连续或只有有限个第一类间断点, 在一个周期内至多只有有限个极值点, 则)(x f 的傅里叶级数收敛, 并且当x 是)(x f 的连续点时, 级数收敛于)(x f ;当x 是)(x f 的间断点时, 级数收敛于)]()([21+-+x f x f .由定理可知,函数展开成傅里叶级数的条件比展开成幂级数的条件低得多,若记⎭⎬⎫⎩⎨⎧+==+-)]()([21)(|x f x f x f x C ,在C 上就成立)(x f 的傅里叶级数展开式C x nx b nx a a x f n n n ∈++=∑∞=,)sin cos (2)(10. (7-5-7)例1 设)(x f 是周期为π2的周期函数, 它在),[ππ-上的表达式为⎩⎨⎧<≤<≤--=ππx x x f 0 1 01)(, 将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件, 它在点πk x = ),2,1,0( ±±=k 处不连续, 在其它点处连续, 从而由收敛定理知道)(x f 的傅里叶级数收敛, 并且当πk x =时收敛于0)11(21)]0()0([21=+-=++-x f x f , 当πk x ≠时级数收敛于)(x f . 傅里叶系数计算如下:⎰⎰⎰=⋅+-==--πππππππ00cos 11cos )1(1cos )(1nxdx nxdx nxdx x f a n ),2,1( =n ;⎰⎰⎰⋅+-==--πππππππ0sin 11sin )1(1sin )(1nxdx nxdx nxdx x f b n]1cos cos 1[1]cos [1]cos [100+--=-+=-πππππππn n n n nx n nx πn 2=[1-(-1)n ]⎪⎩⎪⎨⎧⋅⋅⋅=⋅⋅⋅== 6, 4, 2, 0 ,5 ,3 ,1 4n n n π.于是)(x f 的傅里叶级数展开式为] )12sin(121 3sin 31[sin 4)(⋅⋅⋅+--+⋅⋅⋅++=x k k x x x f π),2,,0;( ππ±±≠+∞<<-∞x x .例2 设)(x f 是周期为π2的周期函数, 它在],(ππ-上的表达式为⎩⎨⎧<<-≤≤=000 )(x x x x f ππ. 将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件, 它在点π)12(+=k x ),2,1,0( ±±=k 处不连续, 因此, )(x f 的傅里叶级数在π)12(+=k x 处收敛于2)0(21)]0()0([21ππ=+=+-+-x f x f . 在连续点x ))12((π+≠k x 处级数收敛于)(x f . 傅里叶系数计算如下:21)(10ππππππ===⎰⎰-xdx dx x f a ; ⎰⎰==-πππππ0cos 1cos )(1nxdx x nxdx x f a n ππ02cos sin 1⎥⎦⎤⎢⎣⎡+=n nx n nx x )1(cos 12-=ππn n ⎪⎩⎪⎨⎧⋅⋅⋅=⋅⋅⋅=-= 6, 4, 2,,5 ,3 ,1 22n n n π. πππππππ20sin cos 1sin 1sin )(1⎥⎦⎤⎢⎣⎡+-===⎰⎰-n nx n nx x nxdx x nxdx x f b nnn πcos -=n n 1)1(+-=),2,1( =n . )(x f 的傅里叶级数展开式为。
同济大学高等数学教材全解同济大学高等数学教材是数学专业学生学习高等数学的重要教材之一。
本教材内容涵盖了微积分、数学分析、线性代数等多个方面的知识,旨在帮助学生建立数学思维、培养数学能力。
下面将对该教材进行全面解析。
第一章微积分微积分是数学的一个重要分支,用于研究函数的变化率以及函数的积分与微分等问题。
同济大学高等数学教材第一章主要包括导数与微分、微分中值定理、不定积分与定积分等内容。
通过学习这一章节,学生将掌握函数导数的计算方法,理解微分中值定理的几何意义,并能解决与定积分相关的应用问题。
第二章无穷级数无穷级数在数学中具有重要地位,它是由无穷多个数相加或相乘而得到的一种数列形式。
同济大学高等数学教材第二章主要介绍级数的概念、级数的敛散性、幂级数以及维数问题。
学生通过学习这一章节,能够判断一个级数的敛散性,掌握常用级数的收敛性判定方法,并且理解幂级数的性质及其应用。
第三章函数的多项式逼近与泰勒展开函数的多项式逼近与泰勒展开是数学中的一种重要的近似方法,可以用来研究非常复杂的函数。
同济大学高等数学教材第三章主要介绍多项式逼近的原理和方法、泰勒公式以及常见函数的泰勒展开式。
学生通过学习这一章节,能够使用多项式逼近方法近似计算函数值,掌握泰勒公式的推导过程,同时了解一些重要函数的泰勒展开式。
第四章重积分重积分是对多元函数的积分求解问题,是高等数学中的一个重要概念。
同济大学高等数学教材第四章主要介绍二重积分、三重积分以及重积分的计算应用。
学生通过学习这一章节,能够理解重积分的几何意义,掌握二重积分和三重积分的计算方法,并能解决与重积分相关的实际问题。
第五章曲线与曲面积分曲线与曲面积分是数学中用于研究曲线和曲面上的各种问题的方法。
同济大学高等数学教材第五章主要包括曲线积分、曲面积分以及格林公式的应用。
学生通过学习这一章节,能够计算曲线积分和曲面积分,理解格林公式的几何意义,并能运用这些知识解决与曲线和曲面相关的应用问题。
同济大学高等数学b教材答案解析由于高等数学B教材涵盖广泛且涉及内容较多,因此本篇文章将着重为读者提供对该教材中习题的解析和答案,并按照章节对各个部分进行分类解析,以便读者更好地掌握相关知识。
第一章:多元函数微分学本章主要介绍多元函数微分学的基本概念及其应用。
在习题部分,涵盖了多元函数求导、隐函数求导和参数方程求导等题型。
第二章:多元函数积分学本章主要介绍多元函数积分学的基本概念及其应用。
习题部分主要包含了定积分、多元函数的积分、换元积分法等题型。
第三章:向量代数与空间解析几何本章主要介绍向量代数和空间解析几何的基本概念及其应用。
习题部分包含了向量的基本运算、空间解析几何等题型。
第四章:无穷级数本章主要介绍无穷级数的基本概念及其求和方法。
习题部分包含了级数求和、收敛判别法等题型。
第五章:常微分方程本章主要介绍常微分方程的基本概念及其解法。
习题部分主要包含了一阶、二阶常微分方程的求解等题型。
第六章:多元函数微分学的应用本章主要介绍多元函数微分学在实际问题中的应用。
习题部分包含了多元函数求极值、泰勒展开等题型。
第七章:多元函数积分学的应用本章主要介绍多元函数积分学在实际问题中的应用。
习题部分主要包含了二重积分、三重积分等题型。
第八章:场论初步本章主要介绍向量场和标量场的基本概念及其性质。
习题部分包含了向量场的散度、旋度等题型。
第九章:曲线积分与曲面积分本章主要介绍曲线积分和曲面积分的基本概念及其计算方法。
习题部分包含了曲线积分和曲面积分的计算等题型。
第十章:无穷级数的应用本章主要介绍无穷级数在实际问题中的应用。
习题部分包含了功率级数的展开和收敛域等题型。
通过以上对同济大学高等数学B教材各个章节的习题解析,读者可以更好地理解数学的相关概念和方法,并在学习过程中获得更多的实践机会。
希望本文对同济大学高等数学B教材的学习有所帮助。
同济版高等数学教材目录一、微积分基础1. 实数及数列1.1 实数1.1.1 不等式与绝对值1.1.2 数列与极限1.2 数列极限的计算1.2.1 无穷序列与无穷数列1.2.2 数列极限存在的判定2. 函数与连续性2.1 函数的概念与性质2.1.1 函数的定义与表示法2.1.2 基本初等函数2.1.3 一次函数与二次函数2.2 函数的极限与连续性2.2.1 函数极限的定义与性质2.2.2 函数的连续性与间断点2.2.3 闭区间连续函数的性质3. 导数与微分3.1 导数的概念与性质3.1.1 导数的定义与表示法3.1.2 导函数的求法3.1.3 连续与可导的关系3.2 导数的计算与应用3.2.1 基本初等函数的导数3.2.2 导数的四则运算3.2.3 函数的单调性与极值4. 微分中值定理与导数的应用4.1 微分中值定理4.1.1 罗尔定理4.1.2 拉格朗日中值定理4.2 函数的单调性与凹凸性4.2.1 函数单调性的判定与应用 4.2.2 函数凹凸性的判定与应用4.3 泰勒公式与高阶导数4.3.1 泰勒公式与拉格朗日余项4.3.2 函数的高阶导数及其应用二、数列与级数1. 数列极限的概念与性质1.1 数列极限的定义1.2 数列极限存在的判定1.2.1 单调有界准则1.2.2 夹逼准则1.3 数列极限的运算与性质2. 函数的极限与连续性2.1 函数极限的定义与性质2.2 函数连续性的定义与性质2.3 连续函数的性质与运算3. 无穷级数3.1 数项级数的概念与性质3.2 收敛级数的判定方法3.2.1 正项级数的判别法3.2.2 任意项级数的判别法3.3 幂级数与函数展开3.3.1 幂级数的概念与性质3.3.2 幂级数的收敛半径3.3.3 幂级数的函数展开4. 函数的泰勒展开4.1 函数的泰勒展开与麦克劳林展开 4.2 一些常用函数的泰勒展开4.3 泰勒展开与函数的逼近三、多元函数微分学1. 多元函数的极限与连续性1.1 多元函数的概念与性质1.2 多元函数的极限定义与性质1.3 多元函数的连续性定义与性质2. 偏导数与全微分2.1 多元函数的偏导数定义2.2 偏导数的计算与性质2.3 全微分的概念与计算3. 多元函数的微分法及其应用3.1 隐函数的求导法3.2 多元复合函数的求导法3.3 一阶全微分的应用3.3.1 方向导数与梯度3.3.2 最小值与最大值问题4. 二重积分的计算与应用4.1 二重积分的概念与性质4.2 二重积分的计算方法4.2.1 二重积分的累次积分法4.2.2 坐标变换法与极坐标法4.3 二重积分的应用4.3.1 质心与形心的计算4.3.2 二重积分在物理问题中的应用四、无穷级数及多元函数积分学1. 无穷级数的收敛1.1 无穷级数的概念与性质1.2 收敛级数的判定方法1.3 幂级数的性质与运算2. 曲线与曲面积分2.1 第一型曲线积分2.2 第二型曲线积分2.3 曲线积分的应用2.3.1 质量与质心的计算2.3.2 曲线积分在环线积分中的应用3. 曲面积分3.1 曲面积分的概念与性质3.2 双重积分的计算方法3.3 曲面积分的应用3.3.1 质量与质心的计算3.3.2 曲面积分在流量计算中的应用4. 三重积分的计算4.1 三重积分的概念与性质4.2 三重积分的计算方法4.2.1 三重积分的累次积分法4.2.2 坐标变换法与球坐标法4.3 三重积分的应用4.3.1 质量与质心的计算4.3.2 三重积分在物理问题中的应用以上是同济版高等数学教材的目录,涵盖了微积分基础、数列与级数、多元函数微分学、无穷级数及多元函数积分学等内容。
高等数学同济下册教材目录第一章无穷级数1.1 数项级数1.1.1 数项级数的概念1.1.2 数项级数的性质1.1.3 极限形式的级数1.2 幂级数1.2.1 幂级数的概念1.2.2 幂级数的收敛域1.2.3 幂级数的和函数1.3 函数项级数1.3.1 函数项级数的概念1.3.2 函数项级数的一致收敛性第二章傅里叶级数2.1 傅里叶级数的定义2.1.1 周期函数的傅里叶级数2.1.2 奇偶延拓的傅里叶级数2.2 傅里叶级数的性质2.2.1 傅里叶级数的线性性质2.2.2 傅里叶级数的逐项积分与逐项微分 2.2.3 傅里叶级数的逐项积分和逐项微分 2.3 傅里叶级数的收敛性2.3.1 傅里叶级数一致收敛的性质2.3.2 周期函数的傅里叶级数收敛性2.3.3 局部函数化的傅里叶级数第三章一元函数积分学3.1 定积分3.1.1 定积分的定义3.1.2 定积分的性质3.1.3 线性运算与换元积分法3.2 反常积分3.2.1 第一类反常积分3.2.2 第二类反常积分3.3 微积分基本定理3.3.1 牛顿-莱布尼茨公式3.3.2 积分求导法3.3.3 函数定积分的应用第四章多元函数微分学4.1 多元函数的极限与连续4.1.1 多元函数的极限4.1.2 多元函数的连续性4.2 多元函数的偏导数与全微分 4.2.1 多元函数的偏导数4.2.2 多元函数的全微分4.3 隐函数与参数方程的偏导数 4.3.1 隐函数的偏导数4.3.2 参数方程的偏导数第五章多元函数的积分学5.1 二重积分5.1.1 二重积分的概念5.1.2 二重积分的性质5.1.3 二重积分的计算方法5.2 三重积分5.2.1 三重积分的概念5.2.2 三重积分的性质5.2.3 三重积分的计算方法5.3 曲线积分与曲面积分5.3.1 第一类曲线积分5.3.2 第二类曲线积分5.3.3 曲面积分第六章多元函数的向量微积分6.1 多元函数的梯度、散度与旋度 6.1.1 多元函数的梯度6.1.2 多元函数的散度6.1.3 多元函数的旋度6.2 多元函数的曲线积分与曲面积分 6.2.1 多元函数的第一类曲线积分 6.2.2 多元函数的第二类曲线积分6.2.3 多元函数的曲面积分第七章序列与函数的多元极限7.1 多元函数的序列极限7.1.1 多元函数序列极限的概念7.1.2 多元函数序列极限的性质7.2 多元函数的函数极限7.2.1 多元函数函数极限的概念7.2.2 多元函数函数极限的性质第八章多元函数的泰勒展开8.1 函数的多元Taylor展开8.1.1 函数的多元Taylor展开定理 8.1.2 函数的多元Taylor展开的应用 8.2 隐函数存在定理与逆函数存在定理 8.2.1 隐函数存在定理8.2.2 逆函数存在定理第九章向量场与散度定理9.1 向量场9.1.1 向量场的定义9.1.2 向量场与流线9.2 散度与散度定理9.2.1 向量场的散度9.2.2 散度定理的概念与性质第十章曲线积分与斯托克斯定理10.1 向量值函数的曲线积分10.1.1 向量值函数的曲线积分的定义 10.1.2 向量值函数的曲线积分的计算 10.2 Stokes定理10.2.1 Stokes定理的概念与性质第十一章重积分与高斯定理11.1 二重积分与三重积分的概念11.1.1 二重积分与三重积分的定义 11.1.2 二重积分与三重积分的性质 11.2 高斯定理11.2.1 高斯定理的概念与性质第十二章序列与级数的广义极限12.1 无穷小量和无穷大量12.1.1 无穷小量的概念与性质12.1.2 无穷大量的概念与性质12.2 级数极限与广义极限12.2.1 级数极限的概念与性质12.2.2 广义极限的概念与性质第十三章多项式逼近与傅里叶级数近似13.1 约束方程组的最小二乘解13.1.1 约束方程组的最小二乘解的概念 13.1.2 约束方程组的最小二乘解的计算 13.2 多项式逼近13.2.1 多项式逼近的概念与性质13.2.2 最佳一致逼近13.3 傅里叶级数的近似13.3.1 傅里叶级数的收敛性13.3.2 傅里叶级数的部分和逼近第十四章偏微分方程初步14.1 偏导数14.1.1 偏导数的定义与性质14.1.2 高阶偏导数14.2 偏微分方程的分类与例子14.2.1 第一阶偏微分方程14.2.2 二阶线性偏微分方程14.2.3 泊松方程与拉普拉斯方程第十五章全微分方程初步15.1 微分方程的定义与解15.1.1 微分方程的概念与性质15.1.2 微分方程解的存在唯一性 15.2 一阶线性微分方程15.2.1 齐次线性微分方程15.2.2 非齐次线性微分方程15.3 可降阶的高阶线性微分方程15.3.1 可降阶的高阶线性微分方程第十六章复变函数初步16.1 复数的性质与运算16.1.1 复数的概念与性质16.1.2 复数的运算与表示16.2 复变函数的导数16.2.1 复变函数的导数的定义 16.2.2 复变函数的导数的性质 16.3 复变函数的积分16.3.1 复变函数的积分的定义 16.3.2 复变函数的积分的性质第十七章应用篇17.1 牛顿法与割线法17.1.1 牛顿迭代法17.1.2 割线法17.2 微分方程的应用17.2.1 放射性衰变方程17.2.3 流体的入口速度与出口速度之间的关系17.3 级数的应用17.3.1 泰勒级数的应用17.3.2 调和级数的收敛性与发散性希望以上内容能满足您对《高等数学同济下册教材目录》的需求,如有任何疑问或其他需求,请随时告知。
同济大学高等数学教材书同济大学高等数学教材书是同济大学编写的一本专门面向高等数学课程的教材。
该教材的编写旨在帮助学生系统深入地学习高等数学的理论和应用,培养学生的数学思维能力和解决实际问题的能力。
本文将探讨同济大学高等数学教材书的特点、内容结构以及对学生学习的作用。
一、教材特点同济大学高等数学教材书具有以下几个特点:1. 理论与实践相结合:教材综合了数学理论和实际应用,并通过大量的例子和练习题,帮助学生理解并掌握数学知识的实际应用。
2. 逻辑性强:教材根据数学知识的逻辑关系有条不紊地组织内容,使学生能够清晰地理解和掌握数学的基本概念和原理。
3. 突出问题解决:教材注重培养学生的问题解决能力,通过丰富的习题和案例分析,引导学生运用数学方法解决实际问题。
二、教材内容结构同济大学高等数学教材书的内容结构主要包括以下几个方面:1. 微积分:教材以微积分为核心,涵盖了导数和微分、积分和定积分、微分方程等内容。
通过理论和实际问题的结合,帮助学生建立微积分知识体系。
2. 数列与级数:教材对数列和级数的概念、性质和运算进行了全面而深入的讲解,通过典型例题的引导,培养学生对数学模式的分析和构建能力。
3. 无穷级数:教材详细介绍了无穷级数的收敛性与敛散判别法,以及常见的级数收敛性判断方法。
4. 多元函数微积分学:教材对多元函数的概念、极限和连续性、偏导数、多元函数积分等进行了系统性的阐述,通过实际问题的讨论和分析,帮助学生建立对多元函数微积分的整体认识。
5. 空间解析几何:教材介绍了空间中的点、直线、平面及其相互位置关系以及相关的几何计算方法,使学生理解和掌握空间几何的基本概念和原理。
三、教材对学生学习的作用同济大学高等数学教材书对学生学习高等数学具有重要的作用:1. 培养数学思维:教材通过丰富的例题和习题,培养学生的数学思维能力,激发学生对数学的兴趣。
2. 提高理论应用能力:教材以实际问题为背景,注重理论与实践的结合,帮助学生将数学知识应用于解决实际问题。
第四篇 无穷级数第七章 无穷级数无穷级数是高等数学课程的重要内容,它以极限理论为基础,是研究函数的性质及进行数值计算方面的重要工具. 本章首先讨论常数项级数,介绍无穷级数的一些基本概念和基本内容,然后讨论函数项级数,着重讨论如何为将函数展开成幂级数和三角级数的问题,最后介绍工程中常用的傅里叶级数.第1节 常数项级数的概念与性质1.1常数项级数的概念一般的,给定一个数列ΛΛ,,,,,321n u u u u则由这数列构成的表达式ΛΛ+++++n u u u u 321叫做(常数项)无穷级数, 简称(常数项)级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项n u 叫做级数的一般项.作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和. 当n 依次取1,2,3…时,它们构成一个新的数列11s u =,212s u u =+,3123s u u u =++,…,12...n n s u u u =+++,…根据这个数列有没有极限,我们引进无穷级数的收敛与发散的概念。
定义 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim , 则称无穷级数∑∞=1n nu 收敛, 这时极限s 叫做这级数的和, 并写成ΛΛ 3211+++++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.当级数∑∞=1n n u 收敛时, 其部分和n s 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值12n n n n r s s u u ++=-=++L叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)n n aq ∑∞=0(a ≠0)的敛散性.解 如果1≠q , 则部分和qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当1<q 时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当1>q 时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果1=q , 则当1=q 时, n s na =→∞ , 因此级数n n aq ∑∞=0发散;当1-=q 时, 级数n n aq ∑∞=0成为Λ+-+-a a a a ,因为n s 随着n 为奇数或偶数而等于a 或零, 所以n s 的极限不存在, 从而这时级数n n aq ∑∞=0发散.综上所述, 如果1<q , 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果1≥q , 则级数n n aq ∑∞=0发散.例2 判别无穷级数∑∞=+1)11ln(n n 的收敛性. 解 由于n n nu n ln )1(ln )11ln(-+=+=,因此)1(ln )ln )1(ln( )ln3ln4()ln2ln3()1ln 2(ln +=-++⋅⋅⋅+-+-+-=n n n s n ,而 ∞=∞→n n S lim ,故该级数发散.例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性. 解 因为111)1(1+-=+=n n n n u n , 所以)1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n , 从而1)111(lim lim =+-=∞→∞→n s n n n ,所以这级数收敛, 它的和是1.1.2 收敛级数的基本性质根据无穷级数收敛、发散的概念,可以得到收敛级数的基本性质.性质1如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛, 且其和为ks .证明 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为n s 与n σ, 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21,这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为σ±s .证明 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为n s 、n σ、n τ, 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性. 比如, 级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的;级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的; 级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数(1-1)+(1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的.推论 如果加括号后所成的级数发散, 则原来级数也发散. 性质5 如果∑∞=1n n u 收敛, 则它的一般项n u 趋于零, 即0lim 0=→n n u .证明 设级数∑∞=1n n u 的部分和为n s , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .注: 级数的一般项趋于零并不是级数收敛的充分条件.例6 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n是发散的.证明 假若级数∑∞=11n n收敛且其和为s , ns 是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面,2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n ,故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.习题7-11. 写出下列级数的前四项:(1) ∑∞=1!n n n n ; (2)∑∞=⎥⎦⎤⎢⎣⎡+---121)1(1)1(n n n n .2. 写出下列级数的一般项(通项):(1)Λ-+-+-8141211 ; (2)Λ+-+-97535432a a a a ; (3)Λ++++7151311. 3. 根据级数收敛性的定义,判断下列级数的敛散性: (1)∑∞=⎪⎭⎫⎝⎛+111ln n n ; (2)ΛΛ++++6sin 62sin 6sin πππn . 4. 判断下列级数的敛散性: (1)∑∞=+131n n ; (2)ΛΛ+++++n 31916131; (3)∑∞=+112n n n (4)ΛΛ+-+-+-+-2)1(2222n.第2节 常数项级数的收敛法则2.1 正项级数及其收敛法则现在我们讨论各项都是正数或零的级数,这种级数称为正项级数. 设级数ΛΛ+++++n u u u u 321 (7-2-1)是一个正项级数,它的部分和为n s .显然,数列{}n s 是一个单调增加数列,即:ΛΛ≤≤≤≤n s s s 21如果数列{}n s 有界,即n s 总不大于某一常数M ,根据单调有界的数列必有极限的准则,级数(7-2-1)必收敛于和s ,且M s s n ≤≤. 反之,如果正项级数(7-2-1)收敛于和s .根据有极限的数列是有界数列的性质可知,数列{}n s 有界. 因此,有如下重要结论:定理 1 正项级数∑∞=1n n u 收敛的充分必要条件是它的部分和数列{n s }有界.定理2 (比较审敛法) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且n n u v ≤ ),2,1(Λ=n . 若级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.证明 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和),2,1(21321ΛΛΛ=≤++≤++++=n v v v u u u u s n n n σ即部分和数列{}n s 有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当N n ≥时有)0(>≤k kv u n n 成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当N n ≥时有)0(>≥k kv u n n 成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1 413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=pp p p p n n n 的收敛性, 其中常数0>p .解 设1≤p . 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当1≤p 时级数pn n 11∑∞=发散.设1>p . 此时有⎪⎪⎭⎫⎝⎛---=≤=----⎰⎰11111)1(111111p p n n pn n p p n n p dx x dx n n ),3,2(Λ=n . 对于级数⎪⎪⎭⎫ ⎝⎛----∞=∑1121)1(1p p n n n , 其部分和111111)1(11)1(11 3121211------+-=⎪⎪⎭⎫ ⎝⎛+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=p p p p p p n n n ns . 因为1)1(11lim lim 1=⎪⎪⎭⎫ ⎝⎛+-=-∞→∞→p n n n n s . 所以级数⎪⎪⎭⎫⎝⎛----∞=∑1121)1(1p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数pn n 11∑∞=当1>p 时收敛. 综上所述, p -级数p n n11∑∞=当1>p 时收敛, 当1≤p 时发散. 例2 证明级数∑∞=+1)1(1n n n 是发散的. 证明 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的.定理3 (比较审敛法的极限形式)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果)0(lim +∞<<=∞→l l v u n nn , 则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当N n >时, 有不等式l l v ul l n n 2121+<<-, 即n n n lv u lv 2321<<.再根据比较审敛法的推论1, 即得所要证的结论.例3 判别级数∑∞=11sinn n的收敛性. 解 因为111sin lim=∞→nn n , 而级数∑∞=11n n 发散, 根据比较审敛法的极限形式, 级数∑∞=11sin n n发散.用比较审敛法审敛时,需要适当地选取一个已知其收敛性的级数∑∞=1n nv作为比较的基准.最常选用做基准级数的是等比级数和p -级数.定理4 (比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ,即ρ=+∞→n n n u u 1lim,则当1<ρ时级数收敛;当1>ρ (或∞=+∞→nn n u u 1lim )时级数发散; 当1=ρ时级数可能收敛也可能发散.例4 判别级数∑∞=1!1n n 收敛性.解 因为1011lim !1)!1(1lim lim1<=+=+=∞→∞→+∞→n n n u u n n nn n , 根据比值审敛法可知,所给级数收敛. 例5 判别级数∑∞=13!n n n 的收敛性. 解 因为,31lim 3!3)!1(lim lim11+∞=+=+=∞→+∞→+∞→n n n u u n nn n nn n ,根据比值审敛法可知,所给级数发散. 定理5 (根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项n u 的n 次根的极限等于ρ,即ρ=∞→n n n u lim ,则当1<ρ时级数收敛; 当1>ρ (或+∞=∞→nn n u lim )时级数发散; 当1=ρ时级数可能收敛也可能发散.定理6(极限审敛法)设∑∞=1n n u 为正项级数,(1)如果0lim >=∞→l nu n n (或+∞=∞→n n nu lim ),则级数∑∞=1n n u 发散;(2)如果1>p ,而l u n n pn =∞→lim (+∞<≤l 0),则级数∑∞=1n n u 收敛.证明 (1)在极限形式的比较审敛法中,取n v n 1=,由调和级数∑∞=11n n发散,知结论成立.(2)在极限形式的比较审敛法中,取p n n v 1=,当1>p 时,p -级数∑∞=11n p n收敛,故结论成立.例6 判定级数)11ln(12∑∞=+n n的收敛性. 解 因)(1~)11ln(22+∞→+n nn ,故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→n n n n u n n n n n ,根据极限审敛法,知所给级数收敛.2.2 交错级数及其审敛法则下列形式的级数,4321Λu u u u -+-称为交错级数. 交错级数的一般形式为n n n u ∑∞=--11)1(, 其中0>n u .定理7(莱布尼茨定理)如果交错级数n n n u ∑∞=--11)1(满足条件:(1) 1(1,2,3,)n n u u n +≥=L ; (2) 0lim =∞→n n u ,则级数收敛, 且其和1u s ≤, 其余项n r 的绝对值1+≤n n u r .证明 设前n 项部分和为n s ,由)()()(21243212n n n u u u u u u s -+-+-=-Λ,及n n n n u u u u u u u u s 21222543212)()()(--+-+--=--Λ,看出数列{}n s 2单调增加且有界)(12u s n ≤, 所以收敛.设)(2∞→→n s s n , 则也有)(12212∞→→+=++n s u s s n n n ,所以)(∞→→n s s n ,从而级数是收敛的, 且1u s <.因为Λ+-≤++21n n n u u r |也是收敛的交错级数, 所以1+≤n n u r .2.3 绝对收敛与条件收敛对于一般的级数:,21ΛΛ++++n u u u若级数∑∞=1n nu收敛,则称级数∑∞=1n nu绝对收敛;若级数∑∞=1n nu收敛, 而级数∑∞=1n nu发散, 则称级数∑∞=1n nu条件收敛.级数绝对收敛与级数收敛有如下关系: 定理8 如果级数∑∞=1n nu绝对收敛, 则级数∑∞=1n nu必定收敛.证明 令)(21n n n u u v +=),2,1(Λ=n . 显然0≥n v 且n n u v ≤ ),2,1(Λ=n .因级数∑∞=1n nu收敛,故由比较审敛法知道,级数∑∞=1n nv,从而级数∑∞=12n nv也收敛.而n n n u v u -=2,由收敛级数的基本性质可知:∑∑∑∞=∞=∞=-=1112n n n n n nu v u,所以级数∑∞=1n nu收敛.定理8表明,对于一般的级数∑∞=1n nu,如果我们用正项级数的审敛法判定级数∑∞=1n nu收敛,则此级数收敛.这就使得一大类级数的收敛性判定问题,转化成为正项级数的收敛性判定问题.一般来说,如果级数∑∞=1n nu发散, 我们不能断定级数∑∞=1n nu也发散. 但是, 如果我们用比值法或根值法判定级数∑∞=1n nu发散, 则我们可以断定级数∑∞=1n nu必定发散. 这是因为, 此时|u n |不趋向于零, 从而n u 也不趋向于零, 因此级数∑∞=1n nu也是发散的.例7 判别级数∑∞=12sin n nna 的收敛性.解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n nna 也收敛, 从而级数∑∞=12sin n nna 绝对收敛.例8 判别级数∑∞=13n nna (a 为常数)的收敛性.解 因为)(1)1(33311∞→→⎪⎭⎫⎝⎛+=+=++n a a n n n a n au u n n nn ,所以当1±=a 时,级数∑∞=±13)1(n nn均收敛;当1≤a 时,级数∑∞=13n n n a 绝对收敛;当1>a 时,级数∑∞=13n nna 发散.习题7-21. 用比较审敛法判定下列级数的收敛性: (1)∑∞=+12121n n; (2)∑∞=++1)2)(1(1n n n ; (3)∑∞=+11n n n; (4)∑∞=12sin n n π;(5)∑∞=>+1)0(11n na a . 2. 用比值审敛法判定下列级数的敛散性:(1)∑∞=1!2n n n ; (2)∑∞=⋅1!3n nn nn ; (3)∑∞=+1)12(n n n n ; (4)∑∞=+112tan n n n π. 3. 判定下列级数的敛散性:(1)∑∞=12nnn; (2)∑∞=+1)1(nnnn;(3)∑∞=13sin 2nnnπ; (4)∑∞=14!nnn;(5)∑∞=+ +121)1 (nnnn.4. 判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)∑∞=+ -111)1(n nn; (2)∑∞=-+-11)1ln(1)1(nnn;(3)∑∞=--111sin)1(n nn; (4)∑∞=--11ln)1(nnnn.第3节 幂级数3.1 函数项级数的概念给定一个定义在区间I 上的函数列{})(x u n , 由这函数列构成的表达式ΛΛ+++++)()()()(321x u x u x u x u n ,称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .对于区间I 内的一定点0x , 若常数项级数∑∞=10)(n n x u 收敛, 则称点0x 是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n nx u发散, 则称点0x 是级数∑∞=1)(n n x u 的发散点.函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域.在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数)(x s ,)(x s 称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s . 函数项级数)(x u n ∑的前n 项的部分和记作)(x s n , 即)()()()()(321x u x u x u x u x s n n ++++=Λ.在收敛域上有)()(lim x s x s n n =∞→.函数项级数∑∞=1)(n n x u 的和函数)(x s 与部分和)(x s n 的差)()()(x s x s x r n n -=叫做函数项级数∑∞=1)(n n x u 的余项. 并有0)(lim =∞→x r n n .3.2 幂级数及其收敛性函数项级数中简单而常见的一类级数就是各项都是幂函数的函数项级数, 这种形式的级数称为幂级数, 它的形式是ΛΛ+++++=∑∞=n n n n nx a x a x a a x a22100,其中常数ΛΛ,,,,,210n a a a a 叫做幂级数的系数.定理1(阿贝尔定理) 对于级数∑∞=0n n nx a,当)0(00≠=x x x 时收敛, 则适合不等式0x x <的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当0x x =时发散, 则适合不等式0x x >的一切x 使这幂级数发散.证 先设0x 是幂级数∑∞=0n nnx a的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件,有0lim 0=∞→nn n x a , 于是存在一个常数M , 使),2,1(0Λ=≤n M x a n n .这样级数∑∞=0n n nx a的的一般项的绝对值n n nn n n nn nn x x M x x x a x x x a x a ||||||||||0000⋅≤⋅=⋅=.因为当0x x <时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n nx a绝对收敛.定理的第二部分可用反证法证明.倘若幂级数当0x x =时发散而有一点1x 适合01x x >使级数收敛, 则根据本定理的第一部分, 级数当0x x =时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n nx a不是仅在点0=x 一点收敛, 也不是在整个数轴上都收敛,则必有一个完全确定的正数R 存在, 使得 当R x <时, 幂级数绝对收敛; 当R x >时, 幂级数发散;当R x =与R x -=时, 幂级数可能收敛也可能发散. 正数R 通常叫做幂级数∑∞=0n nnx a的收敛半径. 开区间),(R R -叫做幂级数∑∞=0n n n x a 的收敛区间. 再由幂级数在x R =±处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n nnx a的收敛域是),(R R -或),[R R -、],(R R -、],[R R -之一.若幂级数∑∞=0n nnx a只在0=x 收敛, 则规定收敛半径0=R , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径+∞=R , 这时收敛域为),(+∞-∞.定理2 如果ρ=+∞→||lim 1nn n a a , 其中n a 、1+n a 是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .证明|| ||||lim ||lim 111x x a a x a x a nn n n n n n n ρ=⋅=+∞→++∞→. (1) 如果+∞<<ρ0, 则只当1<x ρ时幂级数收敛, 故ρ1=R .(2) 如果0=ρ, 则幂级数总是收敛的, 故+∞=R .(3) 如果+∞=ρ, 则只当0=x 时幂级数收敛, 故0=R .例1 求幂级数 ∑∞=12n nnx 的收敛半径与收敛域.解 因为1)1(lim lim 221=+==∞→+∞→n n a a n nn n ρ,所以收敛半径为11==ρR . 即收敛区间为)1,1(-.当1±=x 时, 有221)1(n n n =±,由于级数∑∞=121n n 收敛,所以 级数∑∞=12n nnx 在1±=x 时也收敛.因此, 收敛域为]1,1[-.例2 求幂级数∑∞=0!1n nxn = !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域.解 因为0)!1(!lim !1)!1(1lim ||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ,所以收敛半径为+∞=R , 从而收敛域为),(+∞-∞. 例3 求幂级数∑∞=0!n nxn 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为0=R , 即级数仅在0=x 处收敛. 例4 求幂级数∑∞=022)!()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径:幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当142<x 即21||<x 时级数收敛; 当142>x 即21||>x 时级数发散, 所以收敛半径为21=R .3.3 幂级数的运算 设幂级数∑∞=0n nn xa 及∑∞=0n n n x b 分别在区间),(R R -及),(R R ''-内收敛, 则在),(R R -与),(R R ''-中较小的区间内有加法: ∑∑∑∞=∞=∞=+=+0)(n n n n n n n n n n x b a x b x a .减法:∑∑∑∞=∞=∞=-=-00)(n n n n n n n n n n x b a x b x a .乘法: )()(00∑∑∞=∞=⋅n n n n nn x b x a Λ++++++=2021*********)()(x b a b a b a x b a b a b aΛΛ+++++-nn n n x b a b a b a )(0110.除法: .221022102210ΛΛΛΛΛΛ+++++=++++++++++nn nn n n x c x c x c c x b x b x b b x a x a x a a 关于幂级数的和函数有下列重要性质:性质1 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛域I 上连续.性质2 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn x x n a dx x a dx x a dx x s )(I x ∈, 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛区间),(R R -内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s ()x R <,逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n nx n 的和函数.解 求得幂级数的收敛域为)1,1[-. 设和函数为)(x s , 即∑∞=+=011)(n n x n x s , )1,1[-∈x .显然1)0(=s . 在∑∞=++=0111)(n n x n x xs 的两边求导得:()x x x n x xs n n n n -=='⎪⎭⎫⎝⎛+='∑∑∞=∞=+1111)(001.对上式从0到x 积分, 得)1ln(11)(0x dx x x xs x--=-=⎰.于是, 当0≠x 时, 有)1ln(1)(x xx s --=. 从而 [)()⎪⎩⎪⎨⎧=⋃∈--=,0 1 ,1,01,0- )1ln(1)(x x x xx s . 提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.ΛΛ 11132++++++=-n x x x x x. 习题7-31.求下列幂级数的收敛区间(1)∑∞=1n nnx ; (2)∑∞=-1)1(n nn x n ;(3)∑∞=⋅+12)2(n nn n x ; (4)∑∞=++-11212)1(n n n n x ; (5)∑∞=-1)5(n n n x ; (6)∑∞=+1212n n nx n ;(7)∑∞=-1)1(2n nn x n ; (8)∑∞=-1)5(n n n x . 2. 利用逐项求导法或逐项积分法,求下列级数的和函数 (1)∑∞=-1122n n nx1<x ; (2)∑∞=--11212n n n x .第4节 函数展开成幂级数4.1函数展开成幂级数给定函数)(x f , 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数)(x f . 如果能找到这样的幂级数, 我们就说,函数)(x f 能展开成幂级数, 而该级数在收敛区间内就表达了函数)(x f .如果)(x f 在点0x 的某邻域内具有各阶导数Λ),(),(x f x f ''' Λ),()(x f n ,则当∞→n 时, )(x f 在点0x 的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+=成为幂级数)(!2)())(()(200000⋅⋅⋅+-''+-'+x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f 这一幂级数称为函数)(x f 的泰勒级数.显然, 当0x x =时,)(x f 的泰勒级数收敛于)(0x f .需要解决的问题: 除了0x x =外, )(x f 的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于)(x f ?定理 设函数)(x f 在点0x 的某一邻域)(0x U 内具有各阶导数, 则)(x f 在该邻域内能展开成泰勒级数的充分必要条件是)(x f 的泰勒公式中的余项)(x R n 当n →∞时的极限为零, 即lim ()0 n n R x →∞= 0(())x U x ∈.证明 先证必要性. 设)(x f 在)(0x U 内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设)(1x s n +是)(x f 的泰勒级数的前1+n 项的和,则在)(0x U 内)(1x s n +)(x f →)(∞→n .而)(x f 的n 阶泰勒公式可写成)()()(1x R x s x f n n +=+,于是=)(x R n 1()()0n f x s x +-→)(∞→n .再证充分性. 设)(0)(∞→→n x R n 对一切)(0x U x ∈成立.因为)(x f 的n 阶泰勒公式可写成)()()(1x R x s x f n n +=+, 于是=+)(1x s n )(x f )()(x f x R n →-,即)(x f 的泰勒级数在)(0x U 内收敛, 并且收敛于)(x f .在泰勒级数中取00=x , 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2nn x n f x f x f f ,此级数称为)(x f 的麦克劳林级数.要把函数)(x f 展开成x 的幂级数,可以按照下列步骤进行: 第一步 求出)(x f 的各阶导数: ΛΛ),(,),(),(),()(x f x f x f x f n ''''''.第二步 求函数及其各阶导数在00=x 处的值:ΛΛ),0(,),0(),0(),0()(n f f f f '''''' .第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+nn x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(),(R R -内时是否)(0)(∞→→n x R n .1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ 是否为零. 如果)(0)(∞→→n x R n , 则)(x f 在),(R R -内有展开式ΛΛ !)0( !2)0()0()0()()(2+++''+'+=nn x n f x f x f f x f )(R x R <<-.例1 试将函数xe xf =)(展开成x 的幂级数. 解 所给函数的各阶导数为),2,1()()(Λ==n e x f x n , 因此),2,1(1)0()(Λ==n fn .得到幂级数⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x , 该幂级数的收敛半径+∞=R .由于对于任何有限的数ξ,x (ξ介于0与x 之间), 有)!1(||)!1( |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ, 而0)!1(||lim1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 2111 2!!x n e x x x n =+++⋅⋅⋅+⋅⋅⋅ ()x -∞<<+∞. 例2 将函数x x f sin )(=展开成x 的幂级数. 解 因为⎪⎭⎫ ⎝⎛⋅+=2 sin )()(πn x x f n ),2,1(Λ=n ,所以)0()(n f顺序循环地取),3,2,1,0(,1,0,1,0ΛΛ=-n , 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n , 它的收敛半径为+∞=R .对于任何有限的数ξ,x (ξ介于0与x 之间), 有11(1)sin ||2|()| 0(1)!(1)!n n n n x R x x n n πξ+++⎛⎫+⎪⎝⎭=≤→++ n →∞.因此得展开式35211sin (1) 3!5!(21)!n n x x x x x n --=-+-+-+-L L ()x -∞<<+∞.例3 将函数mx x f )1()(+=展开成x 的幂级数, 其中m 为任意常数. 解 )(x f 的各阶导数为1)1()(-+='m x m x fΛ,)1)(1()(2-+-=''m x m m x fΛΛ,)1)(1()2)(1()()(n m n x n m m m m x f -++---=所以ΛΛΛ),1()2)(1()0(,),1()0(,)0(,1)0()(+---=-=''='=n m m m m f m m f m f f n且()0n R x → 于是得幂级数ΛΛ++-⋅⋅⋅-++-++nx n n m m m x m m mx !)1( )1( !2)1(12. 以上例题是直接按照公式计算幂级数的系数,最后考察余项是否趋于零.这种直接展开的方法计算量较大,而且研究余项即使在初等函数中也不是一件容易的事.下面介绍间接展开的方法,也就是利用一些已知的函数展开式,通过幂级数的运算以及变量代换等,将所给函数展开成幂级数.这样做不但计算简单,而且可以避免研究余项.例4 将函数x x f cos )(=展开成x 的幂级数.解 已知)!12()1( !5!3sin 12153ΛΛ+--+-+-=--n x x x x x n n )(+∞<<-∞x .对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞+-+-+-=x n x x x x n n ΛΛ. 例5 将函数)1ln()(x x f +=展开成x 的幂级数.解 因为x x f +='11)(, 而x +11是收敛的等比级数∑∞=-0)1(n n n x )11(<<-x 的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x. 所以将上式从0到x 逐项积分, 得)1ln()(x x f +=⎰⎰+='+=xx dx xdx x 0011])1[ln(∑⎰∑∞=+∞=+-=-=01001)1(])1([n n nx n n n n x dx x )11(≤<-x . 上述展开式对1=x 也成立, 这是因为上式右端的幂级数当1=x 时收敛, 而)1ln(x +在1=x 处有定义且连续. 常用展开式小结:211 1n x x x x=+++⋅⋅⋅++⋅⋅⋅- (11)x -<<, 2111 2!!xn e x x x n =+++⋅⋅⋅+⋅⋅⋅ ()x -∞<<+∞,35211sin (1) 3!5!(21)!n n x x x x x n --=-+-⋅⋅⋅+-+⋅⋅⋅- ()x -∞<<+∞, 242cos 1 (1) 2!4!(2)!n n x x x x n =-+-⋅⋅⋅+-+⋅⋅⋅ ()x -∞<<+∞, 2341ln(1) (1) 2341n n x x x x x x n ++=-+-+⋅⋅⋅+-+⋅⋅⋅+ (11)x -<≤,!2)1(1)1(2⋅⋅⋅+-++=+x m m mx x m (1) (1) !n m m m n x n -⋅⋅⋅-+++⋅⋅⋅(11)x -<<4.2 幂级数的展开式的应用4.2.1 近似计算有了函数的幂级数展开式,就可以用它进行近似计算,在展开式有意义的区间内,函数值可以利用这个级数近似的按要求计算出来.例6 计算5245的近似值(误差不超过410-).解 因为5/15555)321(323245+=+=, 所以在二项展开式中取51=m , 532=x ,即]. )32)(151(51!2132511[32452555⋅⋅⋅+-⋅-⋅+=.这个级数从第二项起是交错级数, 如果取前n 项和作为5245的近似值, 则其误差(也叫做截断误差),1+≤n n u r 可算得,103258352243||4910222-<⨯=⨯⨯⨯⨯=u 为了使误差不超过410-, 只要取其前两项作为其近似值即可. 于是有.0049.3)2432511(32455≈⋅+≈.例7 利用3!31sin x x x -≈ 求ο9sin 的近似值, 并估计误差. 解 首先把角度化成弧度,91809⨯=πο(弧度)20π=(弧度),从而()320!312020sin πππ-≈ . 其次, 估计这个近似值的精确度. 在x sin 的幂级数展开式中令20π=x , 得20!7120!5120!312020sin 753⋅⋅⋅+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=πππππ.等式右端是一个收敛的交错级数, 且各项的绝对值单调减少. 取它的前两项之和作为20sin π的近似值, 起误差为3000001)2.0(120120!51||552<⋅<⎪⎭⎫ ⎝⎛≤πr .因此取157080.020≈π, 003876.0203≈⎪⎭⎫ ⎝⎛π.于是得 15643.09sin ≈ο,这时误差不超过510-. 例8 计算定积分dx e x ⎰-2122π的近似值, 要求误差不超过410-(取56419.01≈π).解 将xe 的幂级数展开式中的x 换成2x -, 得到被积函数的幂级数展开式!3)(!2)(!1)(1322222Λ⋅+-+-+-+=-x x x ex 20(1)!n n n x n ∞==-∑ ()x -∞<<+∞. 于是, 根据幂级数在收敛区间内逐项可积, 得dx x n dx n x dx e n n n n n n x ⎰∑⎰∑⎰∞=∞=--=-=210202102021!)1(2]!)1([222πππ) !3721!25213211(1642Λ+⋅⋅-⋅⋅+⋅-=π. 前四项的和作为近似值, 其误差为900001!49211||84<⋅⋅≤πr , 所以5295.0)!3721!25213211(12642212≈⋅⋅-⋅⋅+⋅-≈⎰-ππdx e x . 例9 计算积分dx x⎰+5.00411的近似值, 要求误差不超过410-.解 因为ΛΛ+-+-+-=+n n x x x x x)1(11132. 所以ΛΛ )1( 111412844+-++-+-=+n n x x x x x对上式逐项积分得dx x⎰+5.00411=dx x x x x n n ])1(1[412845.00ΛΛ+-++-+-⎰ 5.0014139514)1(1319151⎥⎦⎤⎢⎣⎡++-++-+-=+ΛΛn n x n x x x x ΛΛ++-++-+-=+141395)5.0(14)1()5.0(131)5.0(91)5.0(515.0n n n . 上面级数为交错级数,所以误差14)5.0(141++<n n n r ,经试算 00625.0)5.0(515≈⋅,00022.0)5.0(919≈⋅,000009.0)5.0(13113≈. 所以取前三项计算,即≈+⎰dx x5.004110.49400.493970.0002200625.0-0.50000≈=+.4.2.2 欧拉公式设有复数项级数为,)()()(2211ΛΛ+++++++n n iv u iv u iv u (7-4-1)其中n n v u , ),3,2,1(Λ=n 为实常数或实函数.如果实部所成的级数ΛΛ++++n u u u 21 (7-4-2)收敛于和u ,并且虚部所成的级数ΛΛ++++n v v v 21 (7-4-3)收敛于和v ,就说级数(1)收敛且其和为iv u +.如果级数(7-4-1)各项的模所构成的级数ΛΛ+++++++2222222121n n v u v u v u收敛,则称级数(7-4-1)绝对收敛.如果级数(1)绝对收敛,由于),,2,1(,,2222Λ=+≤+≤n v u v v u u n n n n n n那么级数(7-4-2),(7-4-3)绝对收敛,从而级数(7-4-1)收敛.考察复数项级数ΛΛ+++++n z n z z !1!2112 )(iy x z += (7-4-4) 可以证明级数(7-4-4)在整个复平面上是绝对收敛的.在x 轴上)(x z =它表示指数函数xe ,在整个复平面上我们用它来定义复变量指数函数,记作ze ,于是ze 定义为=z e ΛΛ+++++n z n z z !1!2112 )(∞<z (7-4-5) 当0=x 时,z 为纯虚数iy ,(7-4-5)式成为ΛΛ++++++=n iyiy n iy iy iy e)(!1)(!31)(!21132 Λ-++--+=5432!51!41!31!211y i y y i y iy)!51!31()!41!211(5342ΛΛ-+-+-+-=y y y i y y y i y sin cos +=把y 换写为x ,上式变为x i x e ixsin cos += (7-4-6)这就是欧拉公式.应用公式(7-4-6),复数z 可以表示为指数形式:,)sin (cos θρθθρi e i z =+= (7-4-7)其中z =ρ是z 的模,z arg =θ是z 的辐角在(7-4-6)式中把x 换成x -,又有x i x e ix sin cos -=-与(7-4-6)相加、相减,得⎪⎪⎩⎪⎪⎨⎧-=+=--ie e x e e x ix ixixix2sin 2cos (7-4-8) 这两个式子也叫做欧拉公式.(7-4-6)式或(7-4-8)式揭示了三角函数与复变量指数函数之间的一种联系.最后,根据定义式(7-4-5),并利用幂级数的乘法,我们不难验证2121z z z z e e e =+.特殊地,取1z 为实数x ,2z 为纯虚数iy ,则有).sin (cos y i y e e e e x iy x iy x +==+这就是说,复变量指数函数ze 在iy x z +=处的值是模为xe 、辐角为y 的复数.习题7-41.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)xa y = )1,0(≠>a a ; (2)2)1(1x y +=; (3)3sin xy =; (4))2ln(x y -=; (5)211xy -=; (6))1ln()1(x x y ++=.2.将函数x x f ln )(=展开成)1(-x 的幂级数.3.将函数xx f 1)(=展开成)3(-x 的幂级数. 4.利用函数的幂级数展开式求3ln 的近似值(误差不超过0.0001) 5.利用欧拉公式将函数x e xcos 展开成x 的幂级数.第5节 傅里叶级数5.1三角级数 三角函数系的正交性正弦函数是一种常见而简单的周期函数.例如描述简谐振动的函数)sin(ϕ+=wt A y ,就是一个以ωπ2为周期的正弦函数,其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相.在实际问题中,除了正弦函数外,还会遇到非正弦函数的周期函数,它们反应了较复杂的周期运动.如电子技术中常用的周期为T 的矩形波,就是一个非正弦周期函数的例子.为了深入研究非正弦周期函数,联系到前面介绍过的用函数的幂级数展开式表示和讨论函数,我们也想将周期为T 的周期函数用一系列以T 为周期的正弦函数)sin(n n t n A ϕω+组成的级数来表示,记为)sin()(10n n nt n AA t f ϕω++=∑∞= (7-5-1)其中 ),3,2,1(,,0Λ=n A A n n ϕ都是常数.将周期函数按上述方式展开,它的物理意义是很明确的,这就是把一个比较复杂的周期运动看作是许多不同频率的简谐振动的叠加.在电工学上,这种展开称为是谐波分析.其中常数项0A 称为是)(t f 的直流分量;)sin(11ϕω+t A 称为一次谐波;而)sin(22ϕω+t A ,Λ),sin(33ϕω+t A依次称为是二次谐波,三次谐波,等等.为了以后讨论方便起见,我们将正弦函数)sin(n n t n A ϕω+按三角公式变形,得)sin(n n t n A ϕω+=t n A n n ωϕcos sin +t n A n n ωϕsin cos ,并且令002A a =,n n n A a ϕsin =,n n n A b ϕcos =,lπω=,则(1)式右端的级数就可以改写为∑∞=++10)sin cos (2n n n ltn b l t n a a ππ (7-5-2) 形如(7-5-2)式的级数叫做三角级数,其中),3,2,1(,,0Λ=n b a a n n 都是常数. 令,x lt=π(7-5-2)式成为,)sin cos (21∑∞=++n n n nx b nx a a (7-5-3) 这就把以l 2为周期的三角级数转换为以π2为周期的三角级数.下面讨论以π2为周期的三角级数(7-5-3).我们首先介绍三角函数系的正交性. 三角函数系:ΛΛ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x (7-5-4) 在区间],[ππ-上正交,就是指在三角函数系(7-5-4)中任何不同的两个函数的乘积在区间],[ππ-上的积分等于零,即 ⎰-=ππ0cos nxdx ),2,1(Λ=n , ⎰-=ππ0sin nxdx ),2,1(Λ=n , ⎰-=ππ0cos sin nxdx kx ),2,1,(Λ=n k , ⎰-=ππ0sin sin nxdx kx ),,2,1,(n k n k ≠=Λ,⎰-=ππ0cos cos nxdx kx ),,2,1,(n k n k ≠=Λ. 三角函数系中任何两个相同的函数的乘积在区间],[ππ-上的积分不等于零, 即 ⎰-=πππ212dx ,⎰-=πππnxdx 2cos ),2,1(Λ=n ,⎰-=πππnxdx 2sin ),2,1(Λ=n .5.2 函数展开成傅里叶级数设)(x f 是周期为π2的周期函数, 且能展开成三角级数:∑∞=++=10)sin cos (2)(k k k kx b kx a a x f . (7-5-5)那么系数Λ,,,110b a a 与函数)(x f 之间存在着怎样的关系? 假定三角级数可逐项积分, 则]cos sin cos cos [cos 2cos )(1⎰⎰∑⎰⎰--∞=--++=ππππππππnxdx kx b nxdx kx a nxdx a nxdx x f k k k =πn a类似地⎰-=πππn b nxdx x f sin )(,可得⎰-=πππdx x f a )(10,⎰-=πππnxdx x f a n cos )(1, ),2,1(Λ=n ,⎰-=πππnxdx x f b n sin )(1, ),2,1(Λ=n .系数Λ,,,110b a a 叫做函数)(x f 的傅里叶系数.由于当0=n 时,n a 的表达式正好给出0a ,因此,已得结果可合并写成1()cos ,(1,2,),1()sin ,(1,2,).n n a f x nxdx n b f x nxdx n ππππππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰L L (7-5-6)将傅里叶系数代入(5)式右端,所得的三角级数∑∞=++10)sin cos (2n n n nx b nx a a 叫做函数)(x f 的傅里叶级数.一个定义在),(∞+-∞上周期为π2的函数)(x f , 如果它在一个周期上可积, 则一定可以作出)(x f 的傅里叶级数. 然而, 函数)(x f 的傅里叶级数是否一定收敛? 如果它收敛, 它是否一定收敛于函数? 一般来说, 这两个问题的答案都不是肯定的.定理1 (收敛定理, 狄利克雷充分条件) 设)(x f 是周期为π2的周期函数, 如果它满足: 在一个周期内连续或只有有限个第一类间断点, 在一个周期内至多只有有限个极值点, 则)(x f 的傅里叶级数收敛, 并且当x 是)(x f 的连续点时, 级数收敛于)(x f ;当x 是)(x f 的间断点时, 级数收敛于)]()([21+-+x f x f .由定理可知,函数展开成傅里叶级数的条件比展开成幂级数的条件低得多,若记⎭⎬⎫⎩⎨⎧+==+-)]()([21)(|x f x f x f x C ,在C 上就成立)(x f 的傅里叶级数展开式C x nx b nx a a x f n n n ∈++=∑∞=,)sin cos (2)(1. (7-5-7) 例1 设)(x f 是周期为π2的周期函数, 它在),[ππ-上的表达式为⎩⎨⎧<≤<≤--=ππx x x f 0 1 0 1)(,将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件, 它在点πk x = ),2,1,0(Λ±±=k 处不连续, 在其它点处连续, 从而由收敛定理知道)(x f 的傅里叶级数收敛, 并且当πk x =时收敛于0)11(21)]0()0([21=+-=++-x f x f ,当πk x ≠时级数收敛于)(x f . 傅里叶系数计算如下:⎰⎰⎰=⋅+-==--πππππππ00cos 11cos )1(1cos )(1nxdx nxdx nxdx x f a n ),2,1(Λ=n ;⎰⎰⎰⋅+-==--πππππππ00sin 11sin )1(1sin )(1nxdx nxdx nxdx x f b n]1cos cos 1[1]cos [1]cos [100+--=-+=-πππππππn n n n nx n nxπn 2=[1-(-1)n ]⎪⎩⎪⎨⎧⋅⋅⋅=⋅⋅⋅== 6, 4, 2,0 ,5 ,3 ,1 4n n n π. 于是)(x f 的傅里叶级数展开式为] )12sin(121 3sin 31[sin 4)(⋅⋅⋅+--+⋅⋅⋅++=x k k x x x f π),2,,0;(Λππ±±≠+∞<<-∞x x .例2 设)(x f 是周期为π2的周期函数, 它在],(ππ-上的表达式为⎩⎨⎧<<-≤≤=000 )(x x x x f ππ.。