鲁教版初一数学上册期中试题(四)
- 格式:doc
- 大小:4.56 KB
- 文档页数:3
一、选择题1.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 2.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .553.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- 4.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 5.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b 6.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式 7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3 8.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=-D .133( 3.25)6 3.2532.544⨯--⨯=- 9.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b =﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 11.下列分数不能化成有限小数的是( ) A .625 B .324 C .412 D .11612.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0二、填空题13.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.14.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.15.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.16.在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______. 17.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______. 18.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.19.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____.20.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.三、解答题21.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 22.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?23.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 24.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?25.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.26.上海与南京间的公路长为364km ,一辆汽车以xkm/h 的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h ,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h ,可比原来早到几小时?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 2.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=, 当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.4.C解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.6.D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关7.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.D解析:D【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 9.C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则a b=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数,∴a 的倒数小于b 的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】 本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.11.C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.12.A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.二、填空题13.【分析】根据多项式的次数的定义先求出n的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n的值解析:24-【分析】根据多项式的次数的定义,先求出n的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 14.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+ 【分析】将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+, ∴2224828b k b k a k k+=+=, 故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.15.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6.【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.16.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型. 17.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.18.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 19.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.20.73xy3=-2【分析】首先确定使用的是xy 键先按底数再按yx 键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y ,3,= -2【分析】首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y 、3、=; (2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.三、解答题21.(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.22.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.24.(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.25.(1)5x 2-2;(2)-x +1y;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2; (2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.26.(1)364x h ;(2)3642x +h ;(3)3643642xx ⎛⎫- ⎪+⎝⎭h 【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x x⎛⎫-⎪+⎝⎭h.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.。
鲁教版初中七年级数学上册期中检测卷(,含答案)期中综合测评一、选择题(本大题共10小题,每小题3分,共30分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案,其中是轴对称图形的是()A B C D2.已知a,b,c分别为Rt△ABC中∠A,∠B,∠C的对边,∠A=90°,则下列说法正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.无法确定3.图1是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及其夹角B.已知三边C.已知两角及其夹边D.已知两边及一边对角图1 图24.一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是()A.11 B.12 C.13 D.145.如图2,AB=DB,∠1=∠2,添加以下条件仍不能判断△ABC≌△DBE的是()A.BC=BE B.∠A=∠D C.∠ACB=∠DEB D.AC=DE6.如图3,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.8 B.9 C.27 D.45图3 图47.如图4,等腰三角形ABC中,AB=AC,∠BAC=70°,D是BC中点,DE⊥AB于点E,延长DE至F,使EF=DE,则∠F的度数是()A.30°B.35°C.55°D.60°8.图5是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色,使所形成的图形为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个图5 图6 图79.图6是台阶的示意图,已知每个台阶的宽度都是2.5 dm,每个台阶的高度都是1.6 dm,连接AB,则AB等于()A.17 dm B.15 dm C.8 dm D.25 dm10.如图7,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE,ED,DC,OA,有如下结论:①∠EA D=90°;②∠BOE=60°;③OA平分∠BOC.其中正确的结论有()A.0个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)11.如图8,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是.图8 图912.如图9,小明为了测出塑料瓶直壁厚度,由于不便测出塑料瓶的内径,小明动手制作一个简单的工具(AC=BD,O为AC,BD的中点)解决了测塑料瓶的内径问题,测得塑料瓶的外径为a,图10中的DC长为b,塑料瓶直壁厚度x=(用含a,b的代数式表示).13.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图10,设勾a =6,弦c=10,则小正方形ABCD的面积是.图10 图1114.如图11,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC,则∠ABD=_____.15.如图12,在四边形ABCD中,AB=3,BC=13,CD=12,AD=4,且∠A=90°,则四边形ABCD的面积是.图12 图1316.如图13,在△ABC中,∠A=α,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2019BC与∠A2019CD的平分线相交于点A2020,得∠A2020,则∠A2020=.三、解答题(本大题共7小题,共66分)17.(6分)如图14,已知∠1与线段a,用直尺和圆规按下列步骤作△AMN(保留作图痕迹,不写作法):(1)作∠A=∠1;(2)在∠A的两边分别作AM=AN=a;(3)连接MN.图14 图1518.(8分)如图15,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m (水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD的长度.19.(8分)如图16,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F 是BE的中点,连接CF并延长交AD 于点G.(1)试说明:CG平分∠BCD;(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.图16 图1720.(8分)如图17,直线l l,l2交于点O,点P关于l l,l2的对称点分别为P1,P2.(1)若l l,l2相交所成的锐角∠AOB=60°,求∠P1OP2的度数;(2)若OP=3,P1P2=5,求△P1OP2的周长.21.(10分)如图18,在△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上的点,且AM=DN.(1)试说明:△ABE ≌△DBC ;(2)探索BM 和BN 的关系,并说明你的结论.图18 图1922.(12分)如图19,在△ABC 中,∠ACB =90°,AB =10cm ,BC =6cm ,若点P 从点A 出发以每秒1cm 的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上(但不与A 点重合),求t 的值.23.(14分)在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图20,当AE ⊥BC 时,写出图中所有与∠B 相等的角和所有与∠C 相等的角,并说明理由;(2)若∠C -∠B =50°,∠BAD =x°(0<x≤45).①求∠B的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,求x 的值;若不存在,请说明理由.图20期中综合测评参考答案:一、1.A 2.C 3.C 4.C 5.D 6.B 7.C 8.C 9.A 10.B二、11.300° 12.2a b - 13.4 14.100° 15.36 16.20202α 三、17.解:如图1所示,△AMN 即为所求.图118.解:在Rt △ACB 中,AC 2+BC 2=AB 2.设秋千的绳索长为xm ,则AC =(x -3)m ,故x 2=62+(x -3)2,解得x =7.5,所以绳索AD 的长为7.5m .19.解:(1)因为BE 平分∠ABC ,所以∠ABF =∠CBF =21∠ABC .因为AB ∥CD ,所以∠ABF =∠E ,所以∠CBF =∠E ,所以BC =CE ,所以△BCE 是等腰三角形.因为F 为BE 的中点,所以CG 平分∠BCD .(2)因为AB ∥CD ,所以∠ABC+∠BCD =180°.因为∠ABC =52°,所以∠BCD =128°.因为CG 平分∠BCD ,所以∠GCD =2 1∠BCD =64°.因为∠ADE =110°,所以∠CDG =70°,所以∠CGD =180°-∠GCD -∠GCD=46°.20.解:(1)因为P 关于l 1,l 2的对称点分别为P 1,P 2,所以∠P 1OA =∠AOP ,∠P 2OB =∠POB ,所以∠P 1OP 2=2(∠AOP+∠POB )=2∠AOB =2×60°=120°.(2)因为P 关于l 1,l 2的对称点分别为P 1,P 2,所以OP 1=OP =OP 2=3.因为P 1P 2=5,所以△P 1OP 2的周长=OP 1+OP 2+P 1P 2=3+3+5=11.21.解:(1)因为DB 是高,所以∠ABE =∠DBC =90°.在△ABE 和△DBC 中,因为AB =DB ,∠ABE =∠DBC ,BE =BC ,所以△ABE ≌△DBC .(2)BM =BN ,MB ⊥BN .理由如下:因为△ABE ≌△DBC ,所以∠BAM =∠BDN .在△ABM 和△DBN 中,因为AB =DB ,∠BAM =∠BDN ,AM=DN ,所以△ABM ≌△DBN ,所以BM =BN ,∠ABM =∠DBN ,所以∠DBN+∠DBM =∠ABM+∠DBM =∠ABD =90°,所以MB ⊥BN .22.解:(1)在△ABC 中,∠ACB =90°,AB =10cm ,BC =6cm ,则由勾股定理,得AC 2=AB 2-BC 2=102-62=64,所以AC =8cm .设存在点P ,使得PA =PB ,此时PA =PB =t ,PC =8-t ,在Rt △PCB 中,PC 2+CB 2=PB 2,即(8-t )2+62=t 2,解得t =425,所以当t =425时,PA =PB .(2)当点P 在∠BAC 的平分线上时,如图2所示,过点P 作PE ⊥AB 于点E ,此时BP =14-t ,PE =PC =t -8,BE =10-8=2.在Rt △BEP 中,PE 2+BE 2=BP 2,即(t -8)2+22=(14-t )2,解得t =332,所以当t =332时,点P 在△ABC 的角平分线上.图223.解:(1)与∠B相等的角有∠E,∠CAF;与∠C相等的角有∠CDE,∠BAF.理由如下:因为∠BAC=90°,AE⊥BC,所以∠CAF+∠BAF=90°,∠B+∠BAF=90°,所以∠CAF=∠B.由翻折可知∠B=∠E,所以∠B=∠CAF=∠E,同理∠CAF+∠BAF=90°,∠C+∠CAF=90°,所以∠C =∠BAF.因为∠CAF=∠E,所以AC∥DE,所以∠C=∠CDE,所以∠C=∠CDE=∠BAF.(2)①因为∠C-∠B=50°,∠C+∠B=90°,所以∠C=70°,∠B=20°.②因为∠BAD=x°,则∠ADF=(20+x)°,所以∠ADB=∠ADE=(160-x)°,所以∠FDE=∠ADE-∠ADF=(140-2x)°.因为∠B=∠E=20°,所以∠DFE=180°-∠E-∠FDE=(2x+20)°,分情况求解如下:当∠EDF=∠DFE时,140-2x=2x+20,解得x=30.当∠DFE=∠E=20°时,2x+20=20,解得x=0.因为0<x≤45,所以不合题意,舍去;当∠EDF=∠E=20°,140-2x=20,解得x=60.因为0<x≤45,所以不合题意,舍去.综上可知,存在这样的x的值,使得△DEF中有两个角相等,且x =30.。
最新鲁教版七年级数学上册期中测试题一、选择题 (30 分 )1、下列图形不是轴对称图形的是()2、如图,已知1 2 ,要说明ABD ≌ACD ,还需从下列条件中选一个,错误的选法是()( A)ADB ADC(B)BC( C)AB AC(D)DBDC3、将一副三角板,按如图所示叠放在一起,则图中的度数是()(A)45(B)60(C)75(D)904、在ABC中,AB 13,AC15 ,高 AD12 ,则 BC 的长是()(A)14(B) 4(C)14 或 4( D)以上都不对5、在ABC中,A, B, C的对边分别是a, b,c,则满足下列条件但不是直角三角形的是()(A) a2c2b2(B) a : b : c4:5:6( C)A: B: C 1:1: 2( D)A B C6、等腰三角形的顶角为80,则它的底角是()(A)20(B)50(C)60(D)807、如图所示,线段AB,AC的垂直平分线相交于点P,则 PB 与 PC的关系是()(A)PBPC(B)PBPC(C)PBPC(D)PB2PC8、如图,AOC BOC,点 P在OC上, PD OA于点 D, PE OB于点 E,若OD8, OP 10,则 PE 的长为()( A)5(B) 6( C)7(D) 89 、如图,四边形ABCD 中,AB3cm, BC4cm , CD12cm , DA 13cm ,且ABC 90,则四边形 ABCD的面积是()(A) 36cm 2251 cm2(B) 84cm(C)2( D)无法确定ABC 中, ADBC于 D,且AD1BCABC底角的度数为10 、已知等腰2,则()(A)45(B)75(C)45或75(D)60二、填空题(30 分)11、如图,在ABC 中,D,E分别是AB,AC上的点,点F在BC的延长线上,DE∥BC,A46,152,则 2_____________度 .12 、如图,ACB DFE , BC EF ,要使ABC ≌DEF ,则需要补充一个条件,这个条件可以是________________________ (只需填写一个) .13、如图,AE∥BD,C 是BD 上的点,且AB BC,ACD 110 ,则EAB__________ 度 .14、李老师要做一个直角三角形教具,做好后量得三边长分别是30cm, 40cm 和 50cm ,则这个教具 _____(填“合格”或“不合格”) .15、如图,等腰ABC 中, AB AC ,AD平分BAC ,点C在AE的垂直平分线上,若DE10cm,则 AB BD_________ cm.16 、如图,以Rt ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S14,S28,则S3__.17、如图所示, E 为ABC 的边AC的中点,CN∥AB,过E点作直线交AB于M点,交CN于 N点,若MB6cm , CN 4cm ,则 AB ______________.18 、在Rt ABC中, C 90 ,AB10cm ,BD平分ABC ,交AC于点D,若CD 3cm ,则SABD_________cm2.19、如图,在ABC中,AB AC,A40,BD 是ABC的平分线,则 BDC 的度数为_________.20 .如图,△ ABC 中, AB=AC=CD, BD=AD,则A=______,B=______,C=______.三、解答题21、(本题 8 分 ) 如图, AD 为△ ABC的中线, BE为△ ABD 的中线 .(1)∠ ABE=15°,∠BAD=40°,求∠ BED的度数;(2)若△ ABC的面积为 40,BD=5,则 E 到 BC边的距离为多少 .22、( 8 分)如图所示, E 是等边三角形ABC边 AC 上一点,1 2,BE CD,试判断ADE 的形状.23、( 8 分)如图,ABC中,ACB90 ,AD平分BAC , DE AB于E.试说明直线 AD 是 CE的垂直平分线 .24、( 8 分)如图,正方形ABCD 的面积为16,点 E 是 CD 的中点,点 F 在 BC 上,且BF 3 ,求 AEF 的度数.25.(本题 10 分)如图,点 B 在线段 AC上,点 E 在线段 BD上,∠ ABD=∠ DBC ∠ABD=∠ DBC,AB= DB, EB=CB,M ,N 分别是 AE, CD 的中点 .试探索BM 和 BN 的关系,并证明你的结论 .DEMA C26、( 8 分)(1)如图1,C 90,图中有阴影的三个半圆的面积S1,S2,S3 有什么关系?( 2)如图 2,C90 ,ABC的面积为 20,在 AB 的同侧,分别以 AB, BC,AC 为直径作三个半圆,求阴影部分的面积.27、( 10 分)如图,点 C 为线段BD 上的点,分别以BC,CD 为边作等边△ABC 和等边△ECD,连接BE 交 AC 于点 M ,连接 AD 交 CE于点 N,连接 MN.试说明:( 1)1 2 ;(2)CMN为等边三角形.附加题28.( 20 分)如图,已知△ ABC 中, AB=AC,∠ BAC=90°,点 D 为 BC的中点,点 E、F 分别在直线 AB、AC 上运动,且始终保持AE=CF.(1)如图①,若点 E、 F 分别在线段 AB,AC上,求证: DE=DF且 DE⊥DF;(2)如图②,若点 E、F 分别在线段 AB, CA 的延长线上,( 1)中的结论是否依然成立?说明理由.。
一、选择题1.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1 C .5 D .112.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 3.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .324.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣45.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个6.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .7387.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个 B .2个 C .3个 D .4个8.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④ 9.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .410.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+ D .10.01->-11.如果向右走5步记为+5,那么向左走3步记为( )A .+3B .-3C .+13D .-1312.下列分数不能化成有限小数的是( )A .625B .324C .412D .116二、填空题13.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 14.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.15.一列数a1,a2,a3…满足条件a1=12,a n=111na--(n≥2,且n为整数),则a2019=_____.16.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.17.(1)-23与25的差的相反数是_____.(2)若|a+2|+|b-3|=0,则a-b=_____.(3)-13的绝对值比2的相反数大_____.18.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.19.填空:20.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.阅读下列材料:(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,即当0x<时,1xx xx==--.用这个结论可以解决下面问题:(1)已知a,b是有理数,当0ab≠时,求a ba b+的值;(2)已知a,b,c是有理数,0a b c++=,0abc<,求b c a c a ba b c+++++的值.22.计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭23.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由;(4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.24.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯-(3)1373015-⨯(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦.25.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x的值是墨迹遮盖住的最大整数,y的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.26.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 3.A解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.4.A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误;235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.6.B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.7.A解析:A【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.8.D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D .【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.9.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.10.A解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B .12.C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A 、625的分母中只含有质因数5,所以625能化成有限小数; B 、31248=,18的分母中只含有质因数2,所以324能化成有限小数; C 、41123=,13的分母中含有质因数3,所以412不能化成有限小数; D 、116的分母中只含有质因数2,所以116能化成有限小数. 故选:C .【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.二、填空题13.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.14.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m+-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.15.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a2,a3,a4,a5,a6,观察发现3次一个循环,所以a2019=a3.【详解】a1=12,a2=111-2=2,a3=11-2=﹣1,a4=11=1--12(),a5=111-2=2,a6=11-2=﹣1…观察发现,3次一个循环,∴2019÷3=673,∴a2019=a3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.16.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 17.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.18.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.19.166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1.【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.24.(1)3;(2)37;(3)﹣236;(4)72 【分析】(1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷=912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.25.xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.26.是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +. 故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。
期中达标测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上.在下列苏州园林的窗户简图中,不是轴对称图形的是()A B C D 2.如果将一副三角尺按图1方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°图1 图2 图33.图2是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角4.如图3,在四边形ABCD中,AB=AD,CB=CD,AC,BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对5.图4为由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD2等于()A.a2+b2B.a2-b2C.222a b-D.222a b+图4 图56.某木材市场上木棒规格与对应价格如下表:小明的爷爷要做一个三角形木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场购买一根木棒,则小明的爷爷至少带的钱数为()A.10 B.15 C.20 D.257.如图5,已知△ABC中,CD⊥AB,垂足为D,CE平分∠ACD交AD于点E,若CD=12,BC=13,且△BCE的面积为48,则点E到AC的距离为()A.5 B.3 C.4 D.18.图6-①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图6-②所示的“数学风车”,则这个风车的外围周长是()A.148 B.100 C.196 D.144图6 图7 图89.如图7,在△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°10.如图8,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的有()A.①B.①②C.①②③D.①②④二、填空题(本大题共6小题,每小题4分,共24分)11.如图9,△ACF≌△DBE,若AD=11,BC=3,则线段AB的长为.图9 图10 图1112.如图10,一条船从海岛A处出发,向正北方向航行8海里到达海岛B处,从C处望海岛A,A在C的南偏东42°方向上;从B处望灯塔C,C在B的北偏西84°方向上,则海岛B 到灯塔C的距离是海里.13.如图11,有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,且使AC⊥BC,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE.经测量EC,DC的长度分别为300 m,400 m,则A,B之间的距离为m.14.如图12,在△ABC中,AD为中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.图12 图13 图1415.图13是放在地面上的一个长方体盒子,其中AB=18 cm,BC=12 cm,BF=10 cm,点M在棱AB上,且AM=6 cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为cm.16.如图14,在△ABC中,AI平分∠BAC,BI平分∠ABC,点O是AC,BC的垂直平分线的交点,连接AO,BO,若∠AIB=α,则∠AOB的大小为.三、解答题(本大题共7小题,共66分)17.(6分)如图15,已知△ABC是等边三角形,D是BC边的中点,点E在AC的延长线上,且∠CDE=30°.若AD=5,求DE的长.图15 图1618.(8分)如图16,MN为我国领海线,MN以西为我国领海,以东为公海.上午9时50分我国缉私艇A发现在其正东方向有一走私艇C正以每小时16海里的速度偷偷向我国领海驶来,便立即通知距其6海里,正在MN上巡逻的缉私艇B密切注意,且已知A和C两艇的距离是10海里,缉私艇B与走私艇C的距离为8海里,若走私艇C 的速度不变,最早在什么时间进入我国领海?19.(8分)如图17,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠B=39°,求∠CAD的度数;(2)若点E在边AC上,EF∥AB交AD的延长线于点F.试说明:AE=FE.图17 图1820.(8分)如图18,三角形纸片ABC中,∠C=90°,AC=BC=2,D为BC的中点,折叠三角形纸片使点A与点D重合,EF为折痕,求AF的长.21.(10分)如图19,△ABC的顶点A,B,C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短;(3)在直线l上找一点Q,使点Q到边AC,BC的距离相等.图1922.(12分)如图20,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,交BC于点D,交AB于点E.(1)试说明:△ABC为直角三角形;(2)求DE的长.图2023.(14分)如图21,在△ABC中,AM是△ABC的中线,MP平分∠AMB,MQ平分∠AMC,且BP⊥MP于点P,CQ⊥MQ于点Q,连接PQ.试说明:(1)MP⊥MQ;(2)△BMP≌△MCQ.图21期中达标测试卷参考答案:一、1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A 9.D 10.D二、11.4 12.8 13.500 14.2 15.20 16.4α-360°三、17.解:因为△ABC是等边三角形,D是BC边的中点,所以AD⊥BC,∠DAC=12∠BAC=30°.因为∠ACB=60°,∠CDE=30°,所以∠E=30°,所以∠DAC=∠E,所以DE=AD =5.18.解:设MN与AC相交于点E,则∠BEC=90°.因为AB2+BC2=62+82=102=AC2,所以△ABC为直角三角形,且∠ABC=90°.由于MN⊥CE,所以走私艇C进入我领海的最近距离是CE.由S△ABC=12AB×BC=12AC×BE,得BE=4.8.由勾股定理,得CE2+BE2=BC2,所以CE=6.4,所以6.4÷16=0.4(h)=24(min).9时50分+24分=10时14分.所以走私艇C最早在10时14分进入我领海.19.解:(1)因为AB=AC,AD⊥BC于点D,所以∠BAD=∠CAD,∠ADC=90°.因为∠B=39°,所以∠BAD=∠CAD=90°-39°=51°.(2)因为AB=AC,AD⊥BC于点D,所以∠BAD=∠CAD.因为EF∥AC,所以∠F=∠BAD.所以∠BAD=∠F,所以AE=FE.20.解:因为BC=2,D为BC的中点,所以CD=1.由折叠的性质,得AF=DF.所以CF=AC-AF=2-DF.在Rt△CDF中,由勾股定理,得DF2=CF2+CD2,即DF2=(2-DF)2+12,解得DF=54.所以AF=54.21.解:(1)如图所示,△A1B1C1即为所求作的三角形;(2)如图所示,连接A1B交直线l于点P,点P即为所求作的点;(3)如图所示,由网格的特征易知射线CC1为∠ACB的平分线,其与直线l交于点Q,点Q即为所求作的点.22.解:(1)在△ABC中,AB=4,AC=3,BC=5,因为42+32=52,即AB2+AC2=BC2,所以△ABC是直角三角形.(2)连接CE.因为DE是BC的垂直平分线,所以EC=EB.设AE=x,则EC=4-x,所以x2+32=(4-x)2,解得x=78,即AE=78.所以BE=4-78=258.因为BD=12BC=5 2,所以DE2=BE2-BD2=(258)2-(52)2=22564,所以DE=158.23.解:(1)因为MP平分∠AMB,MQ平分∠AMC,所以∠AMP=12∠AMB,∠AMQ=1 2∠AMC,所以∠PMQ=∠AMP+∠AMQ=12∠AMB+12∠AMC=12(∠AMB+∠AMC)=12×180°=90°,所以MP⊥MQ.(2)由(1)知,MP⊥MQ.因为BP⊥MP,所以BP∥QM,∠BPM=90°,∠CQM=90°,所以∠PBM=∠QMC.因为AM是△ABC的中线,所以BM=MC.在△BMP和△MCQ中,∠BPM=∠MQC,∠MBP=∠CMQ,BM=MC,所以△BMP≌△MCQ.。
一、选择题1.下列合并同类项正确的是 ( ) A .22232x y yx x y -=- B .224x y xy +=C .43xy xy -=D .23x x x +=2.若关于x ,y 的多项式()()222232x xy yxnxy y +---+中不含xy 项,则n 值是( ) A .3-B .3C .32-D .323.下列说法中,正确的是( ) A .单项式21πxy 2的系数12B .单项式25x y -的次数为2C .多项式x 2+2xy+18是二次三项式D .多项式12 x 3 -2 3x 2y 2-1次数最高项的系数是124.下列说法正确的是( ) A .绝对值是本身的数都是正数 B .单项式23x y 的次数是2C .除以一个不为0的数,等于乘以这个数的相反数D .3π是一个单项式5.如图,一个动点从原点O 开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2021秒时所对应的数是( )A .-406B .-405C .-2020D .-20216.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A .B .C .D .7.下列图形中,不是正方体平面展开图的是( )A .B .C .D .8.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚90︒,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是( )A .2B .3C .4D .59.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3C ︒时,气温变化记作C 3︒+,那么气温下降10C ︒时,气温变化记作( ) A .C 13︒-B .10C ︒-C .7C ︒-D .C 7︒+10.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为( ) A .0.324×108B .32.4×106C .3.24×107D .324×10811.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为2-、1,若点B 与点C 之间的距离是1,则点A 与点C 之间的距离是( ) A .5B .2C .2或4D .2或612.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友二、填空题13.有理数a 、b 、c 在数轴上的位置如图所示,化简:如│a -b│-│a +c│的值为_____.14.用相同的黑色棋子如图所示的方式摆放,第1个图由6个棋子组成,第2个图由15个棋子组成,第3个图由28个棋子组成……按照这样的规律排列下去,第6个图由__________个棋子组成……15.如果定义新运算“&”,满足a&b=a×b+a-b,那么1&3=________.16.已知有理数a在数轴上的位置如图所示,试判断a,2a,1a-三者的大小关系,并用不等号“<”连接起来,则结果是____________________.17.0.47249≈_________(精确到千分位).18.简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表:多面体顶点数面数棱数四面体446长方体86正八面体812现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=_____.19.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高________cm.20.如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是______.三、解答题21.先化简,再求值:(1)()()2345n n n -+--+,其中54n =-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭,其中7a =,17b =-.22.若21202x y ⎛⎫++-= ⎪⎝⎭,求323211223533x x y x x y ⎛⎫---+ ⎪⎝⎭的值. 23.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升? 24.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和6 (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一个动点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.25.如图,是由9个大小相同的小立方块搭成的一个几何体. (1)请在指定位置画出该几何体从正面、上面看到的形状图;(2)在不改变几何体中小立方块个数的前提下,从中移动一个小立方块,使所得新几何体与原几何体相比,从正面、上面看到的形状图保持不变,但从左面看到的形状图改变了.请在指定位置画出一种新几何体从左面看到的形状图.26.如图是一个正方体的平面展开图,标注了A 字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等. ①求x 的值.②如果这个正方体前后左右四个面的数字和为12-,求正面字母A 所表示的数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先判断是否是同类项,后合并即可. 【详解】∵22232x y yx x y -=-, ∴选项A 正确;∵2x 与2y 不是同类项,无法计算, ∴选项B 错误; ∵43xy xy xy -=, ∴选项C 错误;∵2x 与x 不是同类项,无法计算, ∴选项D 错误; 故选A. 【点睛】本题考查了整式的加减,熟练判断同类项并灵活进行合并同类项是解题的关键.2.C解析:C 【分析】先合并同类项,令xy 的系数为0即可得出n 的值. 【详解】()()222232x xy y x nxy y +---+ =()()22223222x xy y x nxy y +---+=22223222x xy y x nxy y +--+- =22(32)3x n xy y -++-, ∵多项式()()222232x xy y xnxy y +---+中不含xy 项,∴320n +=, ∴n=32-, 故选C . 【点睛】本题考查了合并同类项法则及对多项式“项”的概念的理解,关键是掌握合并同类项与去括号法则.3.C解析:C 【分析】利用单项式的系数与次数定义,以及多项式项数定义依次判断各项即可. 【详解】 解:A. 单项式21πxy 2的系数12π,故此选项不符合题意; B. 单项式25x y -的次数为3,故此选项不符合题意; C. 多项式x 2+2xy+18是二次三项式,故此选项符合题意; D. 多项式12x 3 -23x 2y 2-1次数最高项是-23x 2y 2,此项的的系数是-23,故此选项不符合题意; 故选:C . 【点睛】此题考查了多项式,单项式,熟练掌握多项式和单项式的有关定义是解本题的关键.4.D解析:D 【分析】根据绝对值的意义、有理数的除法法则、单项式的定义进行判断即可. 【详解】解:A 选项,绝对值是本身的数是正数或0,故原说法错误;B 选项,单项式23x y 的次数是3,故原说法错误;C 选项,除以一个不为0的数,等于乘这个数的倒数,故原说法错误;D 选项,3表示一个数,是一个单项式,故正确;故选:D . 【点睛】本题主要考查了绝对值、单项式的定义以及有理数的除法,熟记相关定义和法则是解答本题的关键.5.B解析:B 【分析】根据每向左运动3秒就向右运动2秒,也就是每经过3+2秒就向左移动1个单位,解答即可. 【详解】解: ∵每向左运动3秒就向右运动2秒,即每经过3+2秒就向左移动1个单位, ∴2021÷5=404……1,即经过404个5秒后,又经过1秒的左移, ∴404+1=405个单位,∴动点运动到第2021秒时所对应的数是-405, 故选B . 【点睛】本题考查了数轴,解题的关键是根据题目给出的条件,找出规律.6.A解析:A 【解析】 【分析】根据从左边看得到的图形是左视图,可得答案. 【详解】该几何体的左视图为故选A . 【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7.B解析:B 【分析】由平面图形的折叠及正方体的展开图解题.解:A、C、D都能够折叠成正方体,而B选项不是正方体的展开图,故选:B.【点睛】本题考查正方体的展开图,熟知正方体的11种展开图是解题的关键.8.D解析:D【分析】根据正方体的表面展开图,可得各个面上的数字,由2019次翻转为第505组的第三次翻转,即可得到答案.【详解】正方体的表面展开图,相对面之间一定相隔一个正方形,“2点”与“5点”是相对面,“3点”与“4点”是相对面,“1点”与“6点”是相对面,÷=,∵201945043∴完成2019次翻转为第505组的第三次翻转,∴骰子朝下一面的点数是5.故选D.【点睛】本题主要考查正方体的表面展开图各个面上的数字规律,掌握相对面上的数字规律,是解题的关键.9.B解析:B【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:如果温度升高3℃记作+3℃,那么温度下降10℃记作-10℃.故选:B.【点睛】本题考查了正数和负数的知识,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将3240万用科学记数法表示为:3.24×107.故选:C.本题考查了科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.正确掌握知识点是解题的关键;11.C解析:C【分析】分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:由题可知:点C在线段AB内或在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为-2、1,∴AB=3第一种情况:点C在点B右侧,AC=3+1=4;第二种情况:点C在点B左侧,AC=3-1=2故选C.【点睛】本题考查了数轴上点之间的距离,关键是要学会分类讨论的思想,要防止漏解.12.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.b +c 【分析】由题意得到然后由绝对值的意义进行化简即可得到答案【详解】解:根据数轴则∴∴;故答案为:【点睛】本题考查数轴绝对值等知识解题的关键是记住绝对值的性质:数a 绝对值要由字母a 本身的取值来确定解析:b +c 【分析】由题意,得到0a b -<,0a c +<,然后由绝对值的意义进行化简,即可得到答案. 【详解】 解:根据数轴,则0c a b <<<,c a >,∴0a b -<,0a c +<,∴()()a b a c a b a c b c --+=--++=+; 故答案为:b c +. 【点睛】本题考查数轴、绝对值等知识,解题的关键是记住绝对值的性质:数a 绝对值要由字母a 本身的取值来确定:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.14.91【分析】根据前3个图形中棋子的个数归纳类推出一般规律由此即可得出答案【详解】由图可知第1个图形中棋子的个数为第2个图形中棋子的个数为第3个图形中棋子的个数为归纳类推得:第n 个图形中棋子的个数为其解析:91 【分析】根据前3个图形中棋子的个数归纳类推出一般规律,由此即可得出答案. 【详解】由图可知,第1个图形中棋子的个数为623(11)(211)=⨯=+⨯⨯+, 第2个图形中棋子的个数为1535(21)(221)=⨯=+⨯⨯+, 第3个图形中棋子的个数为2847(31)(231)=⨯=+⨯⨯+,归纳类推得:第n 个图形中棋子的个数为(1)(21)n n ++,其中n 为正整数, 则第6个图形中棋子的个数为(61)(261)71391+⨯⨯+=⨯=, 故答案为:91. 【点睛】本题考查了用代数式表示图形的规律,正确归纳类推出一般规律是解题关键.15.1【分析】原式利用题中的新定义代入计算即可求出值【详解】解:根据题中的新定义a&b =a×b +a -b 代入得:1&3=1×3+1-3=3+1-3=1故答案为:1【点睛】此题考查了有理数的混合运算熟练掌握解析:1【分析】原式利用题中的新定义代入计算即可求出值.【详解】解:根据题中的新定义a&b =a×b +a -b ,代入得:1&3=1×3+1-3=3+1-3=1.故答案为:1.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【分析】根据数轴可判断出在利用特殊值的方法进行计算即可得到答案【详解】由点在数轴上的位置可得:令则故答案为:【点睛】本题考查了实数的大小比较比较简单利用特殊值的方法进行比较以简化计算 解析:21||a a a<<- 【分析】根据数轴可判断出10a -<<,在利用特殊值的方法进行计算即可得到答案.【详解】由点a 在数轴上的位置可得:10a -<< 令12a =- 则1122a =-= 221124a ⎛⎫== ⎪⎝⎭ 11212a -=-=- 11242<< 21a a a ∴<<- 故答案为:21a a a<<-. 【点睛】本题考查了实数的大小比较,比较简单,利用特殊值的方法进行比较,以简化计算. 17.472【分析】由四舍五入法进行计算即可得到答案【详解】解:0472490472;故答案为:0472【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止所有的数字都是这个解析:472.【分析】由四舍五入法进行计算,即可得到答案.【详解】解:0.47249≈0.472;故答案为:0.472.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18.819.或120.国三、解答题21.(1)413n -,18-;(2)22a ab -,99【分析】(1)先去括号合并同类项化简,再将n 的值代入计算即可;(2)先去括号合并同类项化简,再将a 和b 的值代入计算即可.【详解】解:(1)()()2345n n n -+--+=685n n n -+---=413n -, 当54n =-时, 原式=54134⎛⎫⨯-- ⎪⎝⎭=51318--=-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭ =222236252a ab b a ab b ---++=22a ab -,当7a =,17b =-时, 原式=212777⎛⎫⨯-⨯- ⎪⎝⎭=()2491⨯--=98199+=. 【点睛】本题主要考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握法则是解决本题的关键.22.32+25x x y +;1【分析】整式的加减运算,先去括号,合并同类项化简,然后根据绝对值和偶次幂的非负性确定x 和y 的值,从而代入求值即可.【详解】 解:323211223533x x y x x y ⎛⎫---+ ⎪⎝⎭ =3232124++6533x x y x x y -+ =32+25x x y + 又∵21202x y ⎛⎫++-= ⎪⎝⎭且2120,02x y ⎛⎫+≥-≥ ⎪⎝⎭ ∴20x +=且2102y ⎛⎫-= ⎪⎝⎭,解得:2x =-,1=2y 当2x =-,1=2y 时,原式=()()3212+22584512-⨯-⨯+=-++=. 【点睛】 本题考查整式的加减运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.24.(1)8;(2)见解析;MN 的长度不会发生改变,线段MN =4.【分析】(1)数轴上两点之间的距离等于较大数与较小数的差;(2)根据中点的意义,利用线段的和差可得出答案.【详解】解:(1)AB =|﹣2﹣6|=8,答:AB 的长为8;(2)MN 的长度不会发生改变,线段MN =4,理由如下:如图,因为M 为PA 的中点,N 为PB 的中点,所以MA =MP =12PA ,NP =NB =12PB , 所以MN =NP ﹣MP=12PB ﹣12PA =12(PB ﹣PA ) =12AB =12×8 =4.【点睛】本题考查了数轴上两点之间的距离,数轴上线段中点的意义,熟练掌握两点间距离计算方法,灵活运用中点的意义是解题的关键.25.(1)见解析;(2)见解析【分析】根据从不同方向看几何体的定义画出图形即可.【详解】解:(1)从正面、上面看到的形状图如图所示;(2)新几何体从左面看到的形状图如图所示;【点睛】本题考查从不同方向看几何体-,掌握分别是从物体的正面,左面,上面看几何体得到的相应的平面图形是解题关键.26.①1x =;②12A =-.【解析】【分析】()1正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;()2确定前后左右四个面上的4个数字,然后相加即可和为12-即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“2-”是相对面,“3”与“1”是相对面,-”是相对面,“x”与“3x2()1正方体的左面与右面标注的式子相等,∴=-,x3x2=.解得x1()2正方体前后左右四个面的文字分别是:A、2-、x、3x2-,-++-=-依题意得A2x3x212-++-=-A213212=-.A12【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.。
一、选择题1.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 2.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .223.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a4.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 5.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + 6.如果m ,n 都是正整数,那么多项式的次数是( ) A . B .m C . D .m ,n 中的较大数 7.13-的倒数的绝对值( )A .-3B .13- C .3 D .138.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <09.下列正确的是( )A .5465-<-B .()()2121--<+-C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭ 10.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|11.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 12.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018二、填空题13.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.“a 的3倍与b 的34的和”用代数式表示为______. 16.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________ 17.计算(﹣1)÷6×(﹣16)=_____. 18.等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.19.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______.20.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.三、解答题21.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 22.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n 个点阵图相对应的等式.23.若关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值. 24.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ). 星期一 二 三 四 五 六 日 与计划量的差值 4+ 3- 5- 14+ 8- 21+ 6-)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ; (3)若脐橙按4.5元/kg 出售,且小明需为买家支付运费(平均0.5元/kg ),则小明本周一共赚了多少元?25.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭26.列出下列代数式:(1)a、b两数差的平方;(2)a、b两数平方的差;(3)a、b两数的和与a、b两数的差的积;(4)a的相反数与b的平方的和.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.2.D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.3.A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.4.C解析:C【分析】由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.5.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.6.D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m,n中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.7.C解析:C【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3,故答案为:C.【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.8.C解析:C【分析】根据数轴的性质,得到b>0>a,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b>0>a,所以A、D错误,C正确;而a和b异号,因此乘积的符号为负号,即ab<0所以B错误;故选C.【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a和b的位置正确判断a和b的大小.9.A解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 10.D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A 、B 、C 中,a 与b 的关系还有可能互为相反数,故选项A 、B 、C 不一定成立,D.若a =﹣b ,则|a|=|b|,正确,故选D .【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.11.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题13.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.14.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.15.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a+34 b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.16.-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x、-2、y2组成一个单项式,这个单项式可以为-2xy2,由x、-2、y2组成一个二项式,这个二次项式可以为-2x+y2.故答案为:-2xy2;-2x+y2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.17.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.18.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.19.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB 盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n (n 为正整数)的线段盖住n 或n +1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.20.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.三、解答题21.(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦() 2189 =÷--() 2117 =÷-2117=-;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯⎪⎝⎭255104=-⨯+54=-.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.23.-3.【分析】先合并同类项,根据已知得出m+2=0,3n-1=0,求出m、n的值后代入进行计算即可.【详解】my3+3nx2y+2y3-x2y+y=(m+2)y3+(3n-1)x2y+y,∵此多项式不含三次项,∴m+2=0,3n-1=0,∴m=-2,n=13,∴2m+3n=2×(-2)+3×13=-4+1=-3.【点睛】本题考查了合并同类项和解一元一次方程的应用,关键是求出m 、n 的值.24.(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg ),故答案为:296;(2)(+21)-(-8)=29(kg ),故答案为:29;(3)4-3-5+14-8+21-6=17(kg ),17+100×7=717(kg ),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.25.(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.26.(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.。
一、选择题1.如图,数轴上的三个点对应的数分别是a ,a ,b ,化简a b a b -++的结果是( )A .2aB .2a -C .2bD .2b -2.小张在做数学题时,发现了下面有趣的结果321-=87654+--=1514131211109++---=242322212019181716+++----=……根据以上规律可知,第20行左起第一个数是( ) A .360B .339C .440D .4833.一个三位数,百位上的数字为x ,十位上的数字比百位上的数字少3,个位上的数字是百位上的数字的2倍,这个三位数用含有x 的代数式表示为( ) A .11230x - B .10030x - C .11230x +D .10230x +4.下列计算正确的是( ) A .325a b ab += B .22550ab a b -= C .277a a a +=D .32ab ba ab -+= 5.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 十六进制 0 1 2 3 4 5 6 7 8 9 A B C DEF 十进制12345678910111213141519F A -=,则A E ⨯,用A E ⨯十六进制可表示为( )A .8CB .140C .32D .EO 6.若数轴上点A 表示的数是5-,则与它相距2个单位的点B 表示的数是( )A .5±B .7-或3-C .7D .8-或37.已知12320,,,x x x x ⋅⋅⋅都是不等于0的有理数,若111x y x =,则1y 等于1或1-;若12212x x y x x =+,则2y 等于2或2-或0;若320122012320x x x x y x x x x =+++⋅⋅⋅+,则20y 所有可能等于的值的绝对值之和等于( )A.0 B.110 C.210 D.2208.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.9.如图是一个几何体的表面展开图,这个几何体是()A.B.C.D.10.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚90 ,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是()A.2 B.3 C.4 D.511.棱长为acm的正方体表面积是( )cm2.A.42a B.63a C.3a D.62a12.下列说法正确的有()①0是绝对值最小的有理数;②-a是负数;③任一个有理数的绝对值都是正数; ④数轴上原点两侧的数互为相反数. A .1个B .2个C .3个D .4个二、填空题13.乐乐家离姥姥家20km ,乐乐坐公交从家到姥姥家,需要xh ,骑自行车从家到姥姥家所用的时间比坐公交所用的时间多1h .则骑自行车的平均速度为___km/h (用含x 式子表示).14.若多项式23352x kxy --与2123xy y -+的和中不含xy 项,则k 的值是______. 15.若2302|()|y x ++-=,则x y +=________.16.计算:2120192-⎛⎫-= ⎪⎝⎭______. 17.计算:1141(1)63793÷-+-= __________ ; 18.如图:把一张边长为15cm 的正方形硬纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm 变为6cm 后,长方体纸盒容积变______(填大或小)了________2cm .19.扬州前一段时间天气变化无常,很多同学感冒生病。
一、选择题(每小题4分,共48分)1.如图所示,下列图形中,是轴对称图形的是( D )2.(2021淄博桓台期中)已知三角形的两边长分别为7 cm和9 cm,则该三角形第三边的长不可能是( A )A.2 cmB.3 cmC.5 cmD.6 cm3.如图所示,D是线段AC,AB的垂直平分线的交点,若∠CAD=32°, ∠ABD=28°,则∠BCD的大小是( C )A.32°B.28°C.30°D.60°第3题图4.小强家有两块三角形的菜地,他想判断这两块三角形菜地的形状大小是否完全一样,他设想了如下四种方法,下列方法中,不一定能判定两个三角形全等的是( C )A.测量三边对应相等B.测量两角及其夹边对应相等C.测量两边及除夹角外的另一角对应相等D.测量两边及其夹角对应相等5.如图所示,在△ABC中,∠C=90°,∠B=30°,分别以A,B为圆心,大AB的长为半径画弧交于点E和F,连接FE并延长交BC于点D,则下于12列说法中不正确的是( B )A.AD是∠BAC的平分线B.S△ABD=3S△DACC.点D在AB的垂直平分线上D.∠ADC=60°第5题图6.(2021泰安东平实验中学期中)如图所示,在△ABC中,ED∥BC, ∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=2,ED=6,则EB+DC的值为( C )A.6B.7C.8D.9第6题图7.如图所示,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC,交AC于点M,若CM=5,则CE2+CF2等于( B )A.75B.100C.120D.125第7题图8.如图所示,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC 于点D,交AB于点E,下列结论错误的是( D )A.BD平分∠ABCB.△BCD的周长等于AB+BCC.AD=BD=BCD.点D是线段AC的中点第8题图9.如图所示,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=40°,∠C=45°,则∠CDE的度数为( D )A.35°B.40°C.45°D.50°第9题图10.如图所示,△ABC的面积为8 cm2,AP垂直∠ABC的平分线BP于点P,则△PBC的面积为( B )A.3 cm2B.4 cm2C.5 cm2D.6 cm2第10题图11.如图所示,将矩形ABCD沿对角线BD折叠,点C落在了点E处,BE与AD交于点F,再将△DEF沿DF折叠,点E落到了点G处,此时DG为∠ADB的平分线,则∠BDE的度数为( A )A.54°B.60°C.72°D.48°第11题图12.如图所示,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF, ∠EAB=40°,AB交EF于点D,连接EB.下列结论:①∠FAC=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°,其中正确的有( C )A.1个B.2个C.3个D.4个第12题图二、填空题(每小题4分,共24分)13.(2021泰安东平期中)在Rt△ABC中,斜边AB=2,则AB2+BC2+ CA2= 8 .14.(2021聊城)如图所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE∶AD∶BF值为12∶15∶10 .第14题图15.如图所示,在三角形ABC中,∠ACB=86°,点D为AB边上一个动点,连接CD,把三角形ACD沿着CD折叠,当∠A′CB=20°时,∠DCB= 33°.第15题图16.如图所示的是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是16 .第16题图17.如图所示,有一个棱柱,底面是边长为2.5 cm的正方形,侧面都是长为12 cm的长方形.在棱柱一底面的顶点A处有一只蚂蚁,它想吃B 点的食物,那它需要爬行的最短路程是13 cm.第17题图18.如图所示,在四边形ABCD中,AB=AD=6,∠A=60°,∠ADC=150°, BC-CD=4,则四边形ABCD的周长是21 .第18题图三、解答题(共78分)19.(8分)如图所示,在3×3的正方形网格图中,△ABC和△DEF是关于某条直线成轴对称的两个格点三角形,现给出了△ABC,在下面的图中画出4个符合条件的△DEF,并画出对称轴.解:(答案不唯一)如图所示.20.(8分)如图所示,在四边形ABCD中,AD∥BC,∠A=90°,AD=4 cm, BD=BC=7 cm,CE⊥BD于点E,求DE的长.解:因为AD∥BC,所以∠ADB=∠DBC.因为CE⊥BD,所以∠BEC=90°.因为∠A=90°,所以∠A=∠BEC.在△ABD 和△ECB 中,因为∠A=∠BEC,∠ADB=∠DBC,BD=BC,所以△ABD ≌△ECB(AAS).所以BE=AD=4 cm.所以DE=BD-BE=3 cm.21.(12分)如图所示,在△ABC 中,点D 是BC 边的中点,DE ⊥BC 交AB 于点E,且BE 2-EA 2=AC 2.(1)试说明:∠A=90°;(2)若AC=6,BD=5,求AE 的长度.解:(1)连接CE(图略),因为D 是BC 的中点,DE ⊥BC,所以CE=BE. 因为BE 2-EA 2=AC 2,所以CE 2-EA 2=AC 2,所以EA 2+AC 2=CE 2,所以△ACE 是直角三角形,即∠A=90°.(2)因为D 是BC 的中点,BD=5,所以BC=2BD=10.因为∠A=90°,AC=6,所以根据勾股定理求得AB=8.在Rt △AEC 中,EA 2+AC 2=CE 2.因为CE=BE,所以62+AE 2=(8-AE)2,解得AE=74,所以AE 的长为74. 22.(12分)如图所示,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E.(1)试判断△BDE 的形状,并说明理由;(2)若AB=4,AD=8,求△BDE 的面积.解:(1)△BDE 是等腰三角形.理由如下:由折叠的性质,知∠CBD=∠EBD.在长方形ABCD 中,AD ∥BC,所以∠CBD=∠EDB.所以∠EBD=∠EDB.所以BE=DE.所以△BDE 是等腰三角形.(2)设DE=x,则BE=x,AE=8-x.在Rt △ABE 中,根据勾股定理,有AB 2+AE 2=BE 2,即42+(8-x)2=x 2,解得x=5.所以S △BDE =12DE ·AB=12×5×4=10. 23.(12分)某校一班学生到野外活动,为测量一池塘两端A,B 之间的距离,设计出如下几种方案:方案a:如图①所示,先在平地上取一个可直接到达A,B 的点C,再连接AC,BC,并分别延长AC 至D,BC 至E,使DC=AC,EC=BC,最后测出DE 的长即为A,B 之间的距离;方案b:如图②所示,过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B之间的距离.阅读后回答下列问题:(1)方案a是否可行?请说明理由.(2)方案b是否可行?请说明理由.(3)方案b中作BF⊥AB,ED⊥BF的目的是 ;若仅满足∠ABD=∠BDE,方案b的结论是否成立?①②解:(1)可行.理由:在△ABC和△DEC中,AC=DC,∠ACB=∠DCE(对顶角相等),BC=EC,所以△ACB≌△DCE(SAS),所以DE=AB.(2)可行,理由:因为AB⊥BF,ED⊥BF,所以∠B=∠CDE=90°.因为BC=DC,∠ACB=∠ECD(对顶角相等),所以△ABC≌△EDC(ASA),所以DE=AB.(3)作BF⊥AB,ED⊥BF的目的是使对应角∠ABD=∠BDE=90°,只要∠ABC=∠BDE,方案b的结论仍成立.24.(12分)(2021威海乳山期中)如图所示,两根旗杆间相距11 m,某人从B点沿BA走向A点,一定时间后到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高度为5 m,该人运动速度为1.5 m/s.(1)求这个人还需运动多长时间到达点A;(2)求旗杆DB有多高.解:(1)因为∠CMD=90°,所以∠CMA+∠DMB=90°.因为∠CAM=90°,所以∠CMA+∠ACM=90°.所以∠ACM=∠DMB.在△ACM和△BMD中,因为∠A=∠B,∠ACM=∠BMD,CM=DM,根据AAS,所以△ACM≌△BMD.所以BM=AC=5 m.所以AM=11-5=6(m).所以他到达点A时,运动时间为6÷1.5=4(s).答:这个人还需运动4 s到达点A.(2)因为Rt△ACM≌Rt△BMD,所以DB=AM=6 m.答:旗杆DB高6 m.25. (14分)如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,延长AE交BC的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,判断BE与AF的位置关系,并说明理由.解:(1)FC=AD.理由如下:在△ADE和△FCE中,因为AD∥BC,所以∠ADC=∠ECF.因为E是CD的中点,所以DE=EC.因为∠AED=∠FEC,根据ASA,所以△ADE≌△FCE.所以FC=AD.(2)BE⊥AF.理由如下:因为AB=BC+AD,AD=CF,所以AB=BC+CF,即AB=BF.所以△ABF是等腰三角形.因为△ADE≌△FCE,所以AE=EF.所以BE⊥AF.。
初中数学试卷
(时间:90分钟,满分:120分)
一、选择题:(每题3分,共36分)
1.若一个棱柱有10个顶点,则下列说法正确的是( )
A.这个棱柱有4个侧面
B.这个棱柱有5条侧棱
C.这个棱柱的底面是十边形
D.这个棱柱是一个十棱柱
2.将一个正方体截去一个角,则其面数()
(1)到这个周末,李强有多少节余?
(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
22.(9分)由7个相同的棱长为2的小立方块搭成的几何体如图所示.
(1)请画出它从三个方向看到的形状图.
(2)请计算几何体的表面积
23.(4分)已知0)2(12
=+++y x ,求y x 3-的值.
24、(8) 观察算式:
(13)2(15)3(17)4(19)513,135,1357,13579,,2222
+⨯+⨯+⨯+⨯+=++=+++++++=L 按规律计算:(1)1+3+5+…+99 (2) 1+3+5+7+…+(21)n -=
25.( 12分)用小立方块搭成的几何体如下,问这样的几何体有多少可能?它最多需要多少小立方块,最少需要多少小立方块,请画出最少和最多时的左视图;
答:最多________________ 块;最少__________________块
最多时的左视图:
最少时的左视图:
初一数学答案:
19.正数:5,+41,,3/4
负数:-3.1,2--,722-,)18.0(+-, 整数:5,2--,+41,0
分数:1.3-,7
22-,)18.0(+-,3/4 非正整数:2--,0。
2012—2013年度第一学期期中学业水平检测初一数学试题
(时间120分钟满分120分)
一、选择题(30分)
1、-3的倒数是() A、-3 B、3 C、11 D、- 33
2、今年中秋、国庆长假,全国首次实行公路免费和174家景区门票降价两大民生利好政策,据全国假日办初步统计,全国纳入检测的119个直报景区点共接待3425万人次,“3425万”
8 6 7 6 用科学计数法表示为()A、0.3425×10 B、3.425×10 C、3.425×10D、34.25×10
3、下列图形中,不是正方体展开图的是()
A. B. C. D.
4、下列说法正确的是()
A、有理数都有倒数
B、两个互为相反数的有理数相乘,积为正数
C、若两个有理数的商是正数,和是负数,这两个数都是正数
D、最大的负整数是﹣1
325、若a=(-2)×(-3),b=(-2),c=-(-3),则a、b、c的大小关系是()
A、a>b>c
B、c>b>a
C、c>a>b
D、a>c>b
6、一个棱柱有12个顶点,所有侧棱长的和为72cm,则每条侧棱长为()
A、3cm
B、6cm
C、12cm
D、24cm
2x7、若(x-3)+|y+1|=0,则y等于() A、1 B、-1 C、3 D、-3
8、用一个平面去截一个正方体,截面不可能是()
A、梯形
B、正方形
C、六边形 D七边形
9、有下列几种说法:(1)球能展成平面图形;(2)圆锥的表面展开图中既有圆又有扇形;
(3)直棱柱、圆柱的侧面展开图都是长方形;(4)将正方体用刀切去一块,还能得到三棱柱,四棱柱、五棱柱。
其中正确的有() A、1个 B、2个 C、3个 D、4个
10、你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,第一次能拉出两根面条,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,这样捏合到第()次后可拉出64根面条 A、5 B、6 C、7 D、8
二、填空题(30分)
11、如果运进72吨记作+72吨,那么运出56吨记作________.
12、|-5|=_____.
13、在2,0,1,-6中,任取两个数相乘,最小的积是__________. 3
14、请写出一个乘积为-9的算式:________________.
15、小明在超市买一食品,外包装上印有总净含量“(±5)g”的字样。
小明拿去称了一下,发现总净含量只有297g。
则食品生产厂家________(填“有”或“没有”) 欺诈行为。
16、近似数54.25精确到___________位。
17、已知:点A在数轴上-3的位置,点B也在数轴上,且A、B两点之间的距离是2,则点B表示的数是______________。
18、计算:22÷(-8)÷(-4)=__________。
3
19、由地理知识可知,气温受海拔的影响明显,海拔每升高100m,气温就下降0.6℃。
现
已知某山峰的海拔约为1500m,在200m的高处有一个休息台,当休息台的气温为28℃时,山顶的气温为__________。
20、已知有一个立体图形由几个相同的小立方体组成,如图是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形最多有_____个立方体,最小有____个立方体。
三、解答题
211+(-)-(-0.25)-1 362
12322(2)(-3)÷2×(-)-2÷(-) 43821、(8分)计算:(1)-
22、(6分)把下列各数填入相应的集合中:-27,0.5,-412,20,0,4,-5.2, 55
整数集合:{}
正数集合:{}
负分数集合:{}
正整数集合:{}
有理数集合:{}
23、(6分)如图所示的几何体是由7个相同的正方体搭成的,从正面、左面、上面观察,分别画出所看到的几何体的形状图。
24、(6分)如图是一个长方体墨水瓶纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数。
(1)(3分)填空:a=_________,b=___________,c=_________________;
(2)(3分)求(a+b)·c -(b+c)·a +
c?b的值。
a
25、(8分)请你做评委:在一堂数学活动课上,同一合作学习小组的小亮、小明、小丁、小鹏对刚学过的知识各自谈了自己的一些体会:
8小亮说:“(-6)表示的意义是8个-6相加。
”
小明说:“绝对值不大于4的整数有7个。
”
小丁说:“若字母a表示一个有理数,则它的相反数是-a.”
小鹏说:“若|a|=3,|b|=2,则a+b的值等于5或1.”
你觉得他们的说法正确吗?如不正确,请帮他们修正,写出正确的说法。
26、(8分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼。
(1)(3分)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置。
(2)(2分)小明家与小刚家相距多远?
(3)(3分)若货车每千米耗油0.12升,那么,这辆货车此次送货共耗油多少升?
27、(9分)如图是一个粮仓,已知粮仓底面直径为8m,粮仓顶部顶点到地面的垂直距离为9m,粮仓下半部分高为6m,观察并回答下列问题:
(1)(2分)粮仓是由两个几何体组成的,他们分别是________;
(2)(2分)用一个平面去截粮仓,截面可能是____________(写出一个即可)
(3)(2分)如图,将下面的图形分别绕虚线旋转一周,哪一个能形成粮仓?用线连一连;
(4)(3分)求出该粮仓的容积(结果精确到0.1,∏取3.14)
28、(9分)某商店的店主用4000元购买了8
套成人服装,准备以一定的价格出售,如果每套以600元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+28,-32,+24,+36,-19,-23,0,-29.(1)(2分)这8套服装最贵的比最便宜的多卖多少钱?
(2)(4分)当店主卖完这8套服装后是盈利还是亏损?盈利或亏损多少钱?
(3)(3分)如果计算利润率的公式是:利润率=
8套服装后的利润率(保留小数点后一位)
利润×100℅,请计算一下该店销售完这成本。