阴离子沥青乳化剂(羧酸盐型)
- 格式:pdf
- 大小:56.11 KB
- 文档页数:1
表面活性剂在石油工程中的应用研究进展论文表面活性剂在石油工程中的应用研究进展论文摘要:表面活性剂在石油工程的油气钻井、开采及储运中均有很广泛的应用。
综述了表面活性剂在石油工程中的研究及应用现状,由于国内一些大型油气藏已到开采后期,油田采收率较低,利用表面活性剂可以提高采收率。
高分子类型的表面活性剂既能提高波及系数,又能提高洗油效率,是很好的驱油助剂。
目前不少油田在开采低渗透油藏以及页岩油气藏,压裂液助剂的开发研究是现在及将来的一个研究热点。
关键词:表面活性剂;石油工程;应用;研究表面活性劑是一类分子由极性的亲水部分和非极性的亲油部分组成的,少量存在即能显著降低溶剂表面张力的物质。
它们广泛用于日常生活[1,2],以及石油工程。
例如,在油气钻井工作中可以用作钻井液的杀菌剂、缓蚀剂、起泡剂、消泡剂、解卡剂、乳化剂等;在油气开采作业中可以用作黏土稳定剂、驱油剂、清防蜡、酸压助剂(可用于乳化酸、泡沫酸,成胶和破胶、助排剂等);在油气田地面工程中可以用作减阻剂、破乳剂、杀菌剂、絮凝剂等,于浩洋等[3-6]对其在油田中的主要应用及其作用机理进行过归纳。
目前国内一些大型油藏已到开发后期,原油采收率较低,可以采用化学驱进行驱油。
例如,大庆油田的碱-表面活性剂-聚合物(ASP)三元复合驱为大庆油田的增产和稳产作出了巨大贡献[7]。
对低孔低渗的油气藏如目前国内外热门的页岩油/气藏的开采则多用压裂工艺,其中关键的化学剂常用到表面活性剂[8-11]。
根据表面活性剂在水中起活性作用的亲水基团来进行分类,可以将其分为阴离子型、阳离子型、两性离子型、非离子型及特种类型(包括含氟和含硅、Gemini、Bola及生物表面活性剂等)表面活性剂。
现根据其类型对其在石油工程尤其是在低孔低渗油气藏中的研究及应用现状进行综述,以供我国页岩油/气藏开采技术的研究人员作参考。
1普通表面活性剂的研究及应用1.1阴离子型在水中起活性作用的部分为离子的表面活性剂。
煤焦油沥青乳化剂及其助剂摘要:我国煤炭产量和消费量均居世界首位。
高温炼焦是煤炭转化的重要方向之一。
今年来,随着我过钢铁工业的快速发展,促进了炼焦工业的发展,使得焦油的集中和估摸加工成为可能。
此外,随着石油资源的短缺和与原油价格的高攀,使得重油燃料油的供应紧张。
以煤沥青调和燃料油代替重油作为燃料油,不但可以弥补重油供应的缺口,而且在价格上具有优势,已经获得了广泛应用,因而可以彻底解决煤焦油加工的瓶颈问题,即沥青的处理,为煤焦油加工的发展奠定了基础。
煤焦油沥青煤焦油沥青简称煤沥青,是煤焦经煤蒸馏后所得到的煤焦油中最重要的馏分,作为煤油加工过程中分离出的大宗产品,产率高,约占煤焦油的50%~60%,其加工利用水平和效益对整个煤焦油加工工艺来说是至关重要的。
乳化沥青稀释沥青需要大量的容积,而汽油、煤油、柴油等溶剂都是宝贵的能源,并且稀释沥青铺到路上后要让这些溶剂挥发掉才能成型,这会污染环境,同时稀释沥青使用时也不安全。
因此,现在在公路工程中很少使用稀释沥青。
目前广泛使用的是热沥青,但热沥青施工需要大量的热能,特别是大量的沙石料需要烘烤热,操作人员施工环境差,劳动强度大。
使用乳化沥青施工时,不需要加热,可以在常温下进行喷洒或拌和摊铺,可以铺筑各种结构的路面,更为重要的是,乳化沥青在常温下可以自由流动,并且可以根据需要做成不同浓度的乳化沥青,做贯入式或透层容易达到所要求的沥青膜厚度,这是热沥青不可达到的。
沥青乳化原理所谓的乳化沥青,就是将沥青热熔,经过机械的作用,沥青以细小的微滴状态分散于含有乳化剂的水溶液中,形成水包油状的沥青乳液,这种乳状液在常温下呈液态。
乳化沥青是沥青以很小的颗粒分散在水中形成的低粘度、能满足不同施工要求的乳状液。
这种乳液不是溶液,溶液是以一种或多种物质的分子均匀的分散在另一种物质中,没有明显的界面;乳状液是一种物质以抖个分子形成的集合体分散在另一种物质中,两种物质之间没有明显的界面。
改性乳化沥青的种类及应用作者:陈德金万东来源:《城市建设理论研究》2013年第24期摘要:随着交通量及轴载的迅速增加,路面的磨耗和损害大大加剧,导致公路在使用年限内较早出现病害;同时生活质量的提高,人们对环境质量的要求不断提高。
因此,在公路路面铺设、养护及环境保护方面具有很大优势的改性乳化沥青便成为了沥青路面胶结料的首选材料。
本文详细阐述了改性乳化沥青的种类及其应用,为改性乳化沥青的推广应用提供可靠的依据。
关键词:道路工程;沥青路面;改性乳化沥青一、改性剂改性剂一般可分为非聚合物改性剂和聚合物改性剂两大类:(1)非聚合物改性剂包括填充料类、天然沥青、矿物纤维类等;(2)聚合物改性剂包括热塑性树脂类、热塑性弹性体类和橡胶类三类。
(一)热塑性树脂热塑性树脂,如乙烯一乙酸乙烯醋共聚物(EVA),聚乙烯(PE)、无规聚丙烯(APP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚酰胺、乙烯丙烯类共聚物(APAO)等;热固性树脂也有作为改性剂使用的,如环氧树脂(EP)等。
这类材料对沥青的高温性能的改善较为明显,改性后沥青的软化点大幅度上升;但热塑性树脂的加入,并不能使沥青混合料的弹性增加,改善沥青的低温性能,而且加热后容易离析,再次冷却时会产生众多的弥散体。
热塑性树脂共同的特点是加热后软化,冷却时固化变硬。
(二)热塑性弹性体主要是苯乙烯类嵌段共聚物,如苯乙烯—丁二烯—苯乙烯(SBS)、苯乙烯—异戊二烯—苯乙烯(SIS)、苯乙烯—聚乙烯/丁基—聚乙烯(SB)等嵌段共聚物及聚烯烃等,由于它兼具橡胶和树脂两类改性沥青的性质,故也称橡胶树脂类。
常用的热塑性弹性体以SBS为代表。
SBS改性剂最大的特点就是高温下不软化,低温下不发脆,用它做改性剂,不仅改善沥青的高温性能,同时沥青的低温性能也得到改善。
(三)橡胶类常用的橡胶改性剂有天然橡胶(NR)、丁苯橡胶(SBR)、氯丁橡胶(CR)、丁二烯橡胶(BR)、异戊二烯(IR)、乙丙橡胶(EPDM)、丙烯睛丁二烯共聚物(ABR)等,其中SBR胶乳应用最为广泛。
沥青乳化剂乳化原理武城县博斯特筑路机械有限公司沥青乳化剂定义:沥青乳化剂是表面活性剂的一种类型。
它是能吸附在沥青颗粒与水界面,从而显著降低沥青与水界面的自由能,使其构成均匀而稳定的乳浊液的一种表面活性剂。
在水中加入沥青乳化剂以后,乳化剂的亲水基与水分子之间有很强的吸引力,乳化剂分子在液体表面上基本是无一定方向的,多处于平躺状态。
由于溶液中乳化剂的浓度由小变大,亲油基的烃基部分,因憎水性排斥于水体系之外,产生疏水效应。
这样就使乳化剂产生了一个方向性,水面上溶解的是亲水基,水面最远方向为亲油基,形成了乳化剂定向排列于界面上,使自由能趋于最小,保持了最稳定位置。
这样乳化剂与空气界面上形成了一层单分子膜。
这种有规则的分子排列现象称作分子定向排列或配位。
这种单分子定向排列现象称为单分子吸附膜。
沥青乳化剂分子在水溶液中定向排列的吸附现象,不仅在空气和水相之间,也可发生在空气以外的沥青相中。
这种吸附现象有物理吸附和化学吸附,以化学吸附为主,随着亲油基碳链长度增加吸附速度加快,分子定向排列的吸附速度加快,最后水的表面形成单分子层,使水的表面张力下降。
在乳化剂水溶液中加入过量的乳化剂,不仅可以形成单分子定向的吸附膜,而且能形成复杂的多层吸附膜和乳化剂分子集束,以尽量保持最小的自由能。
如果沥青液经高速剪切成细小微粒(0.01mm-0.001mm)而均匀的分散在水中,溶入水中的乳化液分子会立即在沥青微粒界面被吸附,从而产生新的吸附排列,亲油基一段吸附于沥青内部,亲水基一端吸附于水中,以钳形固定于界面上,从而降低了沥青与水的界面张力。
当吸附的乳化剂分子达到饱和状态时,在沥青微粒表面形成一层被乳化剂分子包封的有一定机械强度的坚固的分子薄膜,使沥青微粒具有亲水性,而均匀稳定地分散在水中,形成乳化沥青。
沥青乳液是一个多相分相体系,沥青是以微粒形式均匀分散于水中的稳定乳状液,其稳定度因乳化剂大大加强。
其中沥青为分散相,为不连续相或称内相;水为分散介质,为连续相或称外相,为水包油(O/W)型乳化沥青。
沥青乳化剂特征、作用及种类摘要:沥青乳化剂是表面活性剂的一种类型,它具有表面活性剂的基本特性。
由于带有亲油基与亲水基,在这两个基团作用下,使它能够吸附在沥青和水的相互排斥的界面上,从而降低它们之间的界面张力。
沥青乳化剂的分类方法很多,最常用的是按离子类型分类。
这种分类法是指沥青乳化剂溶解于水溶液时,凡能电离成离子或离子胶束的叫做离子型沥青乳化剂,凡不能电离成离子或离子胶束的叫非离子型乳化剂,离子型乳化剂又分为阴离子型、阳离子型和两性离子型。
关键词:沥青乳化剂;特征;作用;分类。
1引言在世界性的能源危机影响下,在筑路工程中要求节省能源、节省资源、减少污染的呼声越来越高,已引起人们的高度重视。
在这种形势下,人们经过长期筑路实践,发展应用乳化沥青铺筑路面是达到上述要求的可取途径。
采用乳化沥青铺路,现场施工简化,不需将沥青加热到170~180℃高温后再去使用,砂石等矿料也不需烘干加热,可以节省大量的燃料与热能。
由于沥青乳液具有良好的工作度,可以均匀地分布在骨料表面上,并与其产生较好的粘附性,因而可节省沥青用量,简化施工程序,改善施工条件,也减少对周围环境的污染。
由于这些优点,乳化沥青不仅适用于铺筑路面,而且在填方路堤的边坡保护,建筑屋面及洞库防水,金属材料表面防腐,农业土壤改良及植物养生,铁路的整体道床,沙漠固沙等许多工程中得到广泛的应用【1】。
既然乳化沥青这么重要,那么就让我们看看乳化沥青的关键成分——沥青乳化剂的一些情况。
21沥青乳化剂的特征沥青乳化剂是表面活性剂的一种其分子结构由亲油基、链接基和亲水基组成。
衡量表面活性剂亲水性大小的重要参数是表面活性剂的亲水亲油平衡值(HLB)。
作为水包油型乳化沥青所用的乳化剂,通常要求HLB在8~18之间。
HLB的计算公式为HLB=20(1-M0/M)式中M0—亲油基的分子量;M—乳化剂的总分子量。
在合成具有某一特性的乳化剂而进行分子设计时,由于亲油基通常为长链脂肪族基,分子量较大,在原料相对固定时,亲油基部分变化不大,而亲水基部分通常为小分子,容易进行改性和变换,因此上述计算公式有利于估计产品的亲水亲油平衡值。
技术与检测Һ㊀简析提高乳化沥青储存稳定性的方法林凯灿摘㊀要:乳化沥青在路面工程中有着广泛的应用ꎬ适用于沥青路面的维修养护ꎬ喷洒透层㊁封层㊁粘层等ꎮ储存稳定性对乳化沥青的生产及应用有着很大的影响ꎬ是判断乳化沥青质量好坏的一个很主要的指标ꎮ怎么提高储存稳定性是乳化沥青生产及应用中需要重点解决的问题ꎮ通过研究分析ꎬ确定了影响乳化沥青储存稳定性的因素ꎬ并简要分析了提高其储存稳定性的方法ꎮ关键词:乳化沥青ꎻ储存稳定性ꎻ方法一㊁前言乳化沥青现在被大量用在路面封层㊁粘层和透层中ꎬ并在沥青路面的维修和养护中也起到了很大作用ꎮ乳化沥青的储存稳定性是判断乳化沥青质量好坏的一个很主要的指标ꎮ怎么提高储存稳定性是乳化沥青生产及应用中需要重点解决的问题ꎮ二㊁影响因素文章从乳化生产制备过程㊁乳化沥青原材料的应用㊁存储过程等有关方面ꎬ对乳化沥青储存稳定性的影响因素进行研究和分析ꎬ通过一定的试验总结出了影响乳化沥青储存稳定性的相关因素ꎮ(一)乳化生产设备生产乳化沥青的设备主要有胶体磨类乳化机㊁均化器类乳化机㊁搅拌式乳化机等三种ꎮ这些设备生产制备的过程主要是通过机械的大功率的搅拌㊁研磨ꎬ将沥青剪切形成微小的颗粒悬浮在乳化剂水溶液中ꎮ沥青的这些微粒研磨的程度越细ꎬ乳化沥青的储存稳定性就越好ꎮ虽然均化器类乳化机㊁搅拌式乳化机等机器的结构比较的简单ꎬ沥青乳化制备相对简易ꎬ但两者的产能都相对较低ꎬ研磨出的乳化沥青微粒较粗ꎬ储存稳定性较差ꎬ目前这两种设备已基本被淘汰ꎮ而胶体磨类乳化机是利用转子和定子间大功率的转动从而产生的大的剪切力对沥青的这些微粒进行了很好得研磨和分散ꎬ其乳化的程度很好㊁粒度的分布很均匀ꎬ是目前使用最多的沥青乳化设备ꎮ为分析胶体磨磨体间隙对乳化沥青存储稳定性的影响ꎬ在其他条件不变得情况下ꎬ调节磨体间隙ꎬ对不同磨体间隙下生产得乳化沥青进行稳定性试验ꎬ试验数据如表1:表1㊀胶体磨间隙与乳化沥青存储稳定性的试验数据磨体间隙/mm1.41.21.00.80.6恩格拉粘度8.468.678.058.298.45稳定性%1d0.560.480.330.390.325d1.251.301.030.960.91㊀㊀通过试验分析得出ꎬ当胶体磨间隙ɤ1.0mmꎬ胶体磨转速ȡ2400r/min时ꎬ所制备的乳化沥青储存稳定性较好ꎮ(二)基质沥青乳化沥青中的重要组成是基质沥青ꎬ生产中基质沥青一般占乳化沥青总量的50%~70%ꎬ基质沥青的性能对乳化沥青性能有直接性的影响ꎮ根据有关的研究ꎬ乳化沥青的乳化效果与基质沥青的软硬程度有着很大关联ꎬ乳化沥青的针入度越低ꎬ乳化的制备就较困难ꎮ此外乳化沥青中基质沥青的含量影响着乳化沥青的粘度ꎬ其含量越高ꎬ乳液的粘度越大ꎬ乳化沥青储存稳定性越好ꎮ但还要考虑沥青含量不宜过高ꎬ否则乳化沥青内部水包油的体系会发生反转ꎬ会变为油包水型ꎬ使得乳化沥青储存稳定性存在降低的风险ꎮ通过变化几种不同浓度进行生产ꎬ试验不同浓度下乳化沥青的存储稳定性ꎬ结果如表2:表2㊀乳化沥青浓度与乳化沥青储存稳定性的试验数据浓度%5055606570恩格拉粘度5.367.598.058.386.33稳定性%1d0.880.650.400.330.675d4.333.012.510.953.12㊀㊀通过试验分析得出ꎬ基质沥青含量在55%~65%范围时ꎬ沥青含量增加时乳液粘度也大幅度增加ꎬ乳化沥青储存稳定性越好ꎮ(三)乳化剂品种及皂液pH值乳化剂虽然在乳化沥青中只占了很小的一部分ꎬ但其对沥青的乳化起着关键作用ꎬ乳化剂的性能直接影响着乳化沥青制备㊁存储效果ꎮ它所具备两亲基团有两个关键的作用:其一是吸附或聚集在沥青与水之间的界面上ꎬ从而降低其界面张力ꎻ其二是使粒子产生电荷ꎬ从而使粒子间产生静电斥力ꎬ或在粒子的周边形成一定的保护层ꎮ沥青乳化剂的种类有非离子㊁两性离子㊁阳离子㊁阴离子等型态ꎬ现在在施工中常用的为阴离子或阳离子型等沥青乳化剂ꎬ这两种乳化剂能在水中电离ꎬ从而使沥青微粒产生了正或负电荷ꎬ形成了在沥青微粒周围的双电层ꎬ在双电层的作用下沥青微粒间能产生静电排斥ꎬ从而产生了ξ电位(电势差)ꎬ它是用来表示静电斥力的大小ꎬ这个电位值越大ꎬ所反映出来的排斥力越大ꎬ聚并就比较越难产生ꎬ储存稳定性就越好ꎮ经过有关的试验ꎬ我们得出了不同乳化剂产生的电位值与沥青储存稳定性的相关性ꎬ如表3:表3㊀不同类型乳化剂对储存稳定性的影响乳化剂浓度ꎬ%电位/mv稳定性(5d)ꎬ%木质素11009.33季铵盐11951.21酰胺多胺1>2003.96㊀㊀对沥青乳化有较大影响的还有乳化剂的掺量ꎬ但这种掺量也要通过试验来确定一最佳掺量才能保证效果好并有经131济性ꎮ通过研究分析ꎬ不同品种㊁不同掺量的乳化剂制备的乳化沥青储存稳定性有较大差异ꎬ因此在实际使用时应根据实际情况选用多种乳化剂通过试验比对确认选用品种及其合适掺量ꎮ我们做了季铵盐类乳化剂的有关试验ꎬ当乳化剂用量加大时ꎬ沥青微粒之间的电位也会随之增大ꎬ单我们发现当掺量达到临界浓度附近时ꎬ乳化沥青储存稳定性的效果最好ꎬ再但增加乳化剂掺量后稳乳化沥青的储存稳几乎不变定性ꎮ从而ꎬ我们可以得出选择合理的乳化剂的品种和最佳掺量ꎬ能得到较好的乳化沥青的稳定性ꎬ如表4:表4㊀不同浓度乳化剂对储存稳定性的影响乳化剂浓度ꎬ%电位/mv稳定性(5d)ꎬ%季铵盐0.5938.520.81753.161.01951.211.51841.771.81911.32㊀㊀还有乳化沥青的储存稳定性还与乳化皂液的pH值有较大关联ꎮ通过研究分析ꎬ不同品种的乳化剂其适宜的pH值范围不同ꎮ阴离子型乳化沥青需掺加NaOH㊁KOH等碱性化合物ꎬ将皂液pH调整到9~12ꎮ单对于季胺盐类和胺型等乳化剂皂液活性较低ꎬ需添加无机酸或有机酸来增加活性ꎬ使乳化沥青的储存稳定性得到提高ꎮ其中胺型乳化剂皂液适宜的pH值为3~5之间ꎬ季胺盐类乳化剂皂液适宜的pH值在5~6之间ꎮ所以可知ꎬ沥青乳化剂在不同pH值产生的效果是不一样的ꎮ使沥青的乳液效果也不同ꎮ我们根据不同pH皂液下乳化沥青储存稳定性做了相关试验ꎬ如表5:表5㊀不同pH值下乳化沥青储存稳定性乳化剂pH值稳定性(5d)ꎬ%酰胺多胺1.5%1.04.362.03.553.04.084.08.77㊀㊀(四)稳定剂乳化沥青的不稳定主要是由于它的成分中水与油存在排斥ꎬ又因水相与沥青相密度的差异ꎬ乳化沥青在存储过程中ꎬ沥青微粒会慢慢下沉ꎮ对乳化沥青存储的稳定性起决定性作用的是沥青微粒的沉降速度ꎮ掺加稳定剂能有效降低沥青相与水相的分离沉降ꎬ提高乳化沥青储存稳定性ꎮ它有两种不同的类型稳定剂都能提高乳液的稳定性ꎬ分别为无机和有机稳定剂ꎬ它们作用原理不同ꎮ无机稳定剂它包含了氯化镀㊁氯化钙和氯化钠等无机盐类ꎮ无机稳定剂是通过减小与沥青相的密度差ꎬ增大水相密度ꎬ从而增强乳液颗粒周围的双电层效应ꎬ提高了电位ꎬ使颗粒之间的相互排斥力也变大了ꎬ从而减缓颗粒之间的凝聚速度ꎬ乳化能力就提高了ꎬ促使乳液的稳定性得到改善ꎬ增强与骨料之间的粘附能力ꎮ而有机稳定剂它是通过形成微粒表面的保护膜ꎬ使乳液稠度变大来使沥青微粒之间的碰撞ꎬ微粒凝聚减少的原理来实现乳化沥青稳定性的ꎮ选用适宜的稳定剂ꎬ能有效提高乳化沥青储存稳定性ꎬ生产过程应根据实际情况比选应用ꎮ(五)乳化制备温度及储存温度生产乳化沥青时需要将基质沥青加热到一定的流动状态ꎬ通常加热温度一般为130ħ~160ħ间ꎬ取决于基质沥青的品牌㊁标号ꎮ通常沥青温度较高时粘度较低ꎬ流动状态较好ꎬ便于乳化制备ꎬ但沥青的加热温度也不是越高越好ꎬ由于乳化沥青是水包油型的胶体体系ꎬ温度过高时沥青相热量会迅速转移到水相ꎬ形成大量气泡ꎬ造成乳化不良ꎬ从而影响乳化沥青的储存稳定性ꎮ所以在乳化沥青生产制备时ꎬ应根据所采用的基质沥青品种ꎬ通过试验比选出其适宜的加热温度ꎮ乳化沥青制备完成后存储的温度条件对其稳定性也有很大程度上的影响ꎮ由于乳液中的水分会随着储存温度的升高而不断蒸发ꎬ温度越高ꎬ蒸发的越快ꎬ使其稳定性变差ꎬ还会有结团现象ꎮ尤其是表层水分流失严重时ꎬ表层会破乳结皮从而导致分层结团ꎮ而且当乳液的内部温度较高时ꎬ沥青微粒之间的布朗运动加快ꎬ使得微粒之间的碰撞频率加大ꎬ会出现部分乳液破乳ꎬ使得油水产生分离现象ꎬ从而使乳液的机存储稳定性变差ꎮ因此乳化沥青生产制备完成后ꎬ应尽快将乳液降至常温ꎬ从而提高其储存稳定性ꎮ三㊁结束语研究分析表明ꎬ乳化沥青生产设备㊁基质沥青㊁乳化剂㊁皂液pH值㊁稳定剂㊁乳化温度㊁存储温度ꎬ这些对乳化沥青储存稳定性都有着重要影响ꎬ生产应用时应综合考虑以上因素ꎬ并结合施工现场的情况来提高乳化沥青的储存稳定性ꎮ参考文献:[1]王明锋.乳化沥青技术特点及其稳定性研究现状[J].中华建设科技ꎬ2017.[2]余静.乳化沥青存储稳定性的影响因素[J].建材世界ꎬ2009.[3]杨炎生.乳化条件对高黏改性乳化沥青储存稳定性的影响[J].石油炼制与化工ꎬ2017.[4]田俊壮ꎬ孙增智ꎬ武书华ꎬ夏慧芸ꎬ陈华鑫.基于模拟试验的沥青路面层间黏结性能研究[J].公路ꎬ2016(4). [5]王文峰ꎬ张志祥ꎬ潘友强ꎬ牛晓伟ꎬ李锋ꎬ钟钧祥.高黏改性乳化沥青的研制及其关键性能研究[J].石油沥青ꎬ2014(2). [6]王红ꎬ王子军ꎬ王翠红ꎬ佘玉成.SBS改性乳化沥青储存稳定性研究[J].石油学报:石油加工ꎬ2013(6). [7]赵品晖ꎬ范维玉ꎬ董爽ꎬ南国枝ꎬ张守杰.阴离子乳化沥青稳定性与油水界面张力的关系[J].中国石油大学学报(自然科学版)ꎬ2012(3).[8]郭寅川ꎬ申爱琴ꎬ张金荣ꎬ孙增智.沥青路面粘层材料性能的试验[J].长安大学学报(自然科学版)ꎬ2011(6).作者简介:林凯灿ꎬ厦门捷航工程检测技术有限公司ꎮ231。
表面活性剂1.表面活性剂:在加入量很少时即能明显降低溶剂的表面或界面张力,改变物系的界面状态,能够产生润湿,乳化,起泡,增溶及分散等一系列作用,从而达到实际应用的要求。
2.表面:液体或固体与气体的接触面称为液体或固体的表面。
3.界面:液液,固固,或液固的接触面。
4.表面张力:(1)从分子运动的角度来看,气相中分子浓度低于液相,液体内部的分子从各个方向所受的引力相互平衡,合力为0。
液体表面分子的合力不为0,所以液滴自动收缩。
(2)从力的角度来看,是作用于表面单位长度边缘上的力。
(3)从能量角度来看,表面张力是单位表面的表面自由能,是增加单位表面积液体的自由能的增值,也是单位表面上的液体分子处于液体内部的铜梁分子的自由能过剩值。
5.表面自由能:增加单位表面积液体时自由能的增值。
6.表面活性:因溶质在表面发生了正吸附而使溶液表面张力降低的性质。
7.(非)表面活性物质:(不)能使溶液表面张力降低而(不)具有表面活性的物质。
8.吸附现象:当物质加入液体后,它在液体表面层的浓度与液体内部的浓度不同,这种改变浓度的现象。
9.分类按离子类型:非离子、离子(阴、阳、两性);按亲水基结构;按疏水基种类;按表面活性剂的特殊性(碳氟、含硅、高分子、生物、冠醚);按溶解性(水溶、油溶);按相对分子质量(高、低);按应用功能(乳化剂、洗涤剂、润湿剂、发泡剂、消泡剂、分散剂、絮凝剂、渗透剂、增溶剂)。
10.测定方法:(1)滴重法:自一毛细管滴头滴下液体是,液滴的大小与液体表面张力有关,张力越大,液滴越大。
γ=W/(2πRf)=Vρg/(2πRf)(2)毛细管上升法:当毛细管插入液体时,管中的弯液会上升或下降一定高度,γ=1/2RΔρg(h+r/3)。
(3)环法:把一圆环平置于液面上,测定将环拉离液面所需的最大力。
γ=PF/(4πR)(4)吊片法γ=P/2(l+d)(5)最大气泡压力法γ=Pm/2R(6)滴外形法:表面吸附速率很慢的溶液只能采用滴外形法。
专利名称:一种羧酸盐型阴离子复配沥青乳化剂及应用专利类型:发明专利
发明人:肖富荣,曹春霞,贡月娥,卢峰,许虎君
申请号:CN201810594701.0
申请日:20180611
公开号:CN108794763A
公开日:
20181113
专利内容由知识产权出版社提供
摘要:本发明公开了一种羧酸盐型阴离子复配沥青乳化剂及应用,所述复配沥青乳化剂由
Ⅱ‑12‑EO2与DLMC组成,当复配沥青乳化剂为乳化沥青总量的1%时,所述的Ⅱ‑12‑EO2与DLMC(摩尔比)为5:5时,乳化沥青具有良好的储存稳定性,且无需添加促凝剂和缓凝剂即可达到开放交通的优点。
申请人:江苏金阳新材料科技有限公司
地址:212006 江苏省镇江市镇江新区绿色化工新材料产业园镇澄路89号
国籍:CN
代理机构:上海海颂知识产权代理事务所(普通合伙)
代理人:陈丽君
更多信息请下载全文后查看。
阴离子沥青乳化剂(羧酸盐型)
羧酸盐型乳化剂,它是由大分子链的羧酸与碱作用而生成的阴离子沥青乳化剂。
常用的有脂肪酸盐和环烷酸盐。
其化学结构为:RCOOM
R为憎水烃基,为长烃脂肪烃或环烷烃基,碳原子个数为9-21.
M为金属离子,包括K+ Na+
在羧酸盐型沥青乳化剂中应用最多的为油酸钠、松香酸钠、月桂酸钠、环烷酸钠等。
脂肪酸的碳链越长,亲油性越强,凝固点越高,制成的脂肪酸皂越硬,在水中的溶解性越差。
脂肪酸的碳链越短在水中的溶解性越好,亲油性越差,对沥青的乳化效果越差。
选择脂肪酸盐乳化剂一般选择碳数为12-20之间,其中应用最多的碳原子为12-18.
环烷酸存在于很多沥青中,可以从沥青中提取。
用作沥青乳化剂的环烷酸的酸值应在75-175之间,沥青酸值在0.75KOH/g左右或更高的环烷酸沥青,可简单的用碱性乳化剂所乳化,可获得较满意的环烷皂乳化沥青。
(一) 油酸皂
油酸皂是用天然油脂与氢氧化钠进行化学反应而生成的一种阴离子型乳化剂,学名为顺-9-十八碳烯酸盐,是含一个双键的不饱和脂肪皂。
其化学式为:
CH3(CH2)7-CH=CH-(CH2)7COONa
油酸是橄榄油、牛脂的主要成分,碳数均为18,由于分子中含有双键,增加了亲水性,在水中溶解性增强,具有极强的表面活性,是乳化沥青中常用的沥青乳化剂。
但在硬水中与铝、镁等离子形成不溶性的铝皂、镁皂,影响乳化效果。
(二) 硬脂酸钠
硬脂酸钠是由硬脂酸和碱作用而生成的硬脂酸皂。
其化学式为CH3(CH2)16Na
硬脂酸钠多数是含有十八碳的饱和脂肪酸皂。
其碳链越长,憎水性越强,亲水性羧酸基仅为一个,亲水性不足,顾在冷水中溶解性较差,易溶于热水。
但对沥青亲和力较大,是沥青较好的乳化剂。
油酸皂虽与硬脂酸皂的碳链基本相等,均为18个碳组成,但因含有双键,其性质很不相同。
由于受双键的影响,亲水性较好,易溶于水,对沥青的乳化能力较硬脂酸皂好。
(三) 月桂酸皂
月桂酸皂是月桂酸油脂与氢氧化钠作用而生成的一种阴离子乳化剂。
其化学式为
C11H23COONa
月桂酸脂主要存在于椰子油中,由于碳数为12,疏水基较短,易溶于水,同样是沥青乳化中较好的乳化剂。
(四) 松香油皂
松香油皂是天然松香和碱作用而生成的一种阴离子乳化剂。
其化学式为C19H29COONa。
松香是从切开针叶树干渗出的粘稠性树脂类物质,在室温下呈半透明状态,主要成分是松香酸和松香酸酐,为不饱和化合物,活性较大,易于造化,形成松香酸皂。
在每个松香酸皂分子中含有两个不饱和双键,由于双键的存在可增强对水的亲和力,但影响沥青的乳化性能,通常是加氢除去双键。
松香皂易溶于水,有较好的水溶性和抗硬水能力,润湿能力较好,为沥青常用的阴离子乳化剂。