22谓词公式与解释讲解
- 格式:ppt
- 大小:452.50 KB
- 文档页数:19
谓词基本推理公式
谓词逻辑是逻辑学中的一种形式系统,它使用谓词来表达命题的性质和关系。
基本推理公式是谓词逻辑中的一些基本规则,用于推导命题的真假。
以下是几个常用的谓词逻辑基本推理公式:
1. 交换律:A→B ↔ B→A
2. 结合律:(A→B)→C ↔ A→(B→C)
3. 吸收律:A→(B∧C) ↔ (A→B)∧(A→C)
4. 分配律:(A∧B)→C ↔ A→(B→C)
5. 重写律:A→B ↔ ¬B→¬A
6. 否定引入律:¬(A∧B) ↔ (¬A∧¬B)
7. 否定消去律:¬¬A ↔ A
8. 双条件引入律:A↔B ↔ (A→B)∧(B→A)
9. 双条件消去律:A↔B ↔ (A∧B)∨(¬A∧¬B)
10. 全称量词引入律:∀x(P(x)) ↔ P(y)/y (y属于某个集合)
11. 存在量词引入律:∃x(P(x)) ↔ P(y)/y (y属于某个集合)
这些基本推理公式是谓词逻辑的基础,可以用于推导其他命题的真假。
在具体使用时,需要根据命题的具体情况进行选择和应用。
第二节 谓词公式的分类与解释为了给出谓词公式的定义,先给出项和原子公式的定义。
定义2.1 项:(1) 个体常项和个体变项是项;(2) 设),...,,(21n x x x ϕ是任意的n 元函数,n t t t ,...,,21是项,则),...,,(21n t t t ϕ是项;(3) 有限地使用(1),(2)形成的符号串是项。
定义2.2 设),...,,(21n x x x R 是任意的n 元谓词,n t t t ,...,,21是项,则称),...,,(21n t t t R 是原子公式。
定义2.3合式公式:(1) 原子公式是合式公式;(2) 若A 是合式公式,则)(A ¬也是合式公式;(3) 若B A ,是合式公式,则)(),(),(),(B A B A B A B A ↔→∨∧也是合式公式;(4) 若A 是合式公式,则(),()xA xA ∀∃也是合式公式。
其中x 为任意的个体变项;(5) 有限次地应用(1)~(4)形成的字符串是合式公式。
这样定义的合式公式又称作谓词公式,简称公式。
合式公式的最外层括号可以省去。
定义2.4(1) 在公式xA ∀和xA ∃中,A 是相应量词的辖域,x 称为指导变量。
(2) 在公式xA ∀和xA ∃中,x 的所有出现都是约束出现的,不是约束出现的变项称为自由出现的。
例如:在公式))),,()((),((z y x L y G y y x F x ∧∃→∀中,∀的辖域为))),,()((),((z y x L y G y y x F ∧∃→∃的辖域为)),,()((z y x L y G ∧x ∀中的x 和y ∃中的y 都是指导变量。
x 的出现都是约束的,),(y x F 中的y 是自由出现的,)(y G 与),,(z y x L 中的y 是约束出现的,z 的出现是自由的。
一般情况下,在一个谓词公式A 中,除了可能含若干个个体常项,函数常项,谓词常 项外,还可能含个体变项,函数变项,谓词变项等。