三年级奥数第讲数学趣题
- 格式:docx
- 大小:341.73 KB
- 文档页数:5
三年级奥数趣味题
三年级奥数趣味题
1、小猴分桃子
大猴采到一堆桃子,分给一群小猴吃。
如果其中两个小猴各分得4个桃,其余每只小猴各分得2个桃,则最后剩6个桃;如果其中一只小猴分得6个桃,其余每只小猴各分得4个桃,那么还差12个桃。
大猴共采到多少个桃,这群小猴共有多少只?
答案:(答案)
2、整除
两个正整数相除,商是7,余数是5,如果被除数、除数都扩大到原来的`4倍,那么被除数、除数、商、余数的和等于1039.原来的被除数是多少?除数是多少?
答案:(答案)
3、牛老师多少岁
牛老师带着37名同学到野外春游。
休息时,小强问:"牛老师您今年多少岁啦?"牛老师有
趣地回答:"我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加运动的总人数。
"小朋友们,你知道牛老师今年多少岁吗?
答案:(答案)
4、运沙土
4辆大卡车运沙土,7趟共运走沙土336吨。
现有沙土420吨,增加了3辆相同的卡车,问:几趟可以运完?
答案:(答案)。
楼梯问题讲解第一课时(提示:想从1到4楼中间走几层阶梯)从1楼到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从2楼到6楼要走多少级台阶?有一幢楼高17 层,相邻两层之间都有17级台阶,贝贝从 1 层走到11层,一共要登多少级台阶?琪琪家住在六楼,她从楼底走到二楼要20 秒,那么她从楼底走到六楼要用多少时间?贝贝家住的这幢楼共有 6 层,每层楼梯20 级,她家住在5 层,贝贝每次回家要走多少级台阶才能到自己住的那一层?⑤小雨和小双住在同一幢大楼里,小雨住在6楼,小双住在5楼。
小双每天上楼要走80级台阶,小雨每天上楼要走多少级台阶?⑥一幢楼房每上1层要走16 级台阶,到美雪家要走64 级台阶,美雪家住几楼?第二课时(提示:想敲4 下中间有几个间隔)①时钟4点钟敲4下,用了12秒敲完,那么7点钟敲7下,几秒敲完?②时钟3点钟敲3下,6秒钟敲完;8点钟敲8下,几秒钟敲完?③时钟4时敲4下,9秒敲完;8时敲8下,几秒敲完?④时钟 3 时敲 3 下,7 秒敲完;9 时敲9 下,几秒敲完?⑤时钟 5 时敲 5 下,用了8 秒敲完;11 时敲11 下,用了几秒敲完?⑥时钟 6 时敲 6 下,10 秒敲完;9 时敲9 下,几秒敲完?第三课时①李强用同样的速度在公园的林荫道上散步,他从第 1 颗树走到第7 课树用了18 分钟,当他走到第20 课树时用了几分钟?当李强用同样的速度走了27 分钟时,他走到了第几棵树?②有一条路长100米,在路的一侧每隔10 米栽一棵树。
一共要栽多少棵树?③运动会上长跑比赛,8 人站在14 米长的白线上。
如果每两个人之间的距离相等,请问两人之间的间隔是多少米?第四课时①把一根粗细均匀的木料锯成 5 段,每锯一次要用 3 分钟,一共要用几分钟?②把一根16米长的钢管锯成 4 段,每锯一次需要 6 分钟,一共需要几分钟?③一根木料在24秒内被锯成了 4 段,用同样速度切成 5 段需要多少秒?④体育课上,有10个学生排成一排,相邻两个学生之间间隔1米。
小学三年级奥数趣味题—24点习题大全(含答案)以下是24点题大全,包含答案:1+1+1)*8=241+1+2)*6=241+2)*(1+7)=241*1+2)*8=241+2)*(9-1)=241+1)*(2+10)=241+1)*3*4=241+3)*(1+5)=241*1+3)*6=24 1*1+7)*3=24 1-1+3)*8=241+1)*(3+9)=24 10-(1+1))*3=24 1+1+4)*4=24 1*1+5)*4=24 1-1+4)*6=247-1*1)*4=241+1)*(4+8)=244-1)*(9-1)=241+1)*10+4=245*5-1*1=24以上是一些24点的题和答案。
下面是一些24点的题和答案:1+1+1)*8=241+1+2)*6=241+2)*(1+7)=241*1+2)*8=241+2)*(9-1)=241+1)*(2+10)=241+1)*3*4=241+3)*(1+5)=241*1+3)*6=241*1+7)*3=241-1+3)*8=241+1)*(3+9)=2410-(1+1))*3=241+1+4)*4=241*1+5)*4=241-1+4)*6=247-1*1)*4=241+1)*(4+8)=244-1)*(9-1)=241+1)*10+4=245*5-1*1=24以上是一些24点的题和答案。
删除格式错误和有问题的段落:小幅度改写每段话:1.(5-1*1)*6=241 可以改写为。
用5减去1乘1再乘以6等于241.2.:(1+1)*(5+7)=241 可以改写为。
1加1,再乘以5加7等于241.3.:(5-(1+1))*8=241 可以改写为。
用5减去(1加1)再乘以8等于241.4.:(1+1)*(6+6)=241 可以改写为。
1加1,再乘以6加6等于241.5.6*8/(1+1)=241 可以改写为。
6乘以8除以1加1等于241.6.:(1+1)*9+6=241 可以改写为。
三年级奥数数学趣题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]数学趣题在日常生活中,常有一些妙趣横生,开发智力的问题,如:3个小朋友唱一首歌要3分钟,100个小朋友同时唱一首歌要几分钟?类似这样的问题一般不需要进行较复杂的计算,也不能用常规方法来解决,而常常需要用小朋友的灵感、技巧和机智获得答案。
对于趣味问题,首先读懂题意,然后要经过充分地分析和思考,运用基础知识以及自己的聪明才智巧妙地解决。
例题1:一条毛毛虫由幼虫长成成虫,每天长大一倍,30天能长大到20厘米。
问长大到5厘米要用多少天?☆同类练习:1.如果每人步行的速度相同,2个人一起从学校到儿童乐园要3小时,那么6个人一起从学校到儿童乐园要多少小时?2.一个池塘中的睡莲,每天长大一倍,经过10天可以把整个池塘遮完。
问睡莲要遮住半个池塘需要多少天?3.一条小青虫由幼虫长成成虫,每天长大一倍,20天能长大到36厘米,问长大到9厘米要多少天例题2:小猫要把15条鱼分成数量不等的四堆,问最多的一堆最多可以放多少条鱼?☆同类练习:1.小明要把20颗珠子分成数量不等的五堆,问最多的一堆中可以放多少颗珠子2.兔妈妈拿来一盘萝卜共25个,分给4只小兔,要使每只小兔分得的个数不相同,问分得最多的一只小兔最多分得几个萝卜3.王老师为18人的舞蹈队设计队形,要求分成人数不等的五队,最多的一队最多可以分几人?例题3:把100只桃子分装在7个篮子里,要求每个篮子里桃子的只数都带有6这个数字。
想想该怎么分?☆同类练习:1.把100个鸡蛋分装在6个盒子里,要求每个盒子里装的鸡蛋数目都带有6。
想想看,该怎么分配吧?2.7只箱子分别放有1个、2个、4个、8个、16个、32个、64个苹果,现在要从这7只箱子里取出87个苹果,但每只箱子要么不取,要么全取,你觉得应该怎么取呢?3.有人认为8是个吉祥数字,得到东西的数量都希望含有数字8.现有200块糖要分给5个小朋友,请你帮助设计一个符合要求的分糖方案。
三年级数学有趣经典奥数题一、还原问题1、工程问题绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天?解答:200÷4=50 (棵)(200+400)÷50=12(天)【小结】归一思想.先求出一天种多少棵树,再求共需几天完成任务.单一数:200÷4=50 (棵),总共的天数是:(200+400)÷50=12 (天).2.还原问题3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的鹦鹉一样多.求3个笼子里原来各养了多少只鹦鹉?解答: 78÷3=26(只)第1个笼子:26+8=34(只)第2个笼子:26-8+6=24(只)第3个笼子:26-6=20(只)二、楼梯问题1、上楼梯问题某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?解答:上一层楼梯需要:48÷(4-1)=16(秒)从4楼走到8楼共走:8-4=4(层)楼梯还需要的时间:16×4=64(秒)答:还需要64秒才能到达8层。
2.楼梯问题晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?解:每一层楼梯有:36÷(3-1)=18(级台阶)晶晶从1层走到6层需要走:18×(6-1)=90(级)台阶。
答:晶晶从第1层走到第6层需要走90级台阶。
三、页码问题1.黑白棋子有黑白两种棋子共300枚,按每堆3枚分成100堆。
其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。
那么在全部棋子中,白子共有多少枚?解答:只有1枚白子的共27堆,说明了在分成3枚一份中一白二黑的有27堆;有2枚或3枚黑子的共42堆,就是说有三枚黑子的有42-27=15堆;所以三枚白子的是15堆:还剩一黑二白的是 100-27-15-15=43堆:白子共有:43×2+15×3=158(枚)。
第一讲和差倍中的隐藏条件- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 之前我们已经学习了基础的和差倍问题,而很多时候,无法一眼看出问题中的数量关系,这时候就6需要把“隐藏”了的和差倍关系找出来,其中寻找不变量就是一个重要的手段.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1小高和墨莫玩游戏,每玩一局,输的就要给赢的一枚棋子.一开始小高有18枚棋子,墨莫则有22枚.玩了若干局之后,小高反而比墨莫多了10枚棋子.请问:此时小高有多少枚棋子?分析:在游戏过程中,两人的棋子数始终在变化.那有没有什么量是不变的?练习1有大小两个水瓶,分别装有690毫升和210毫升水.现在从大瓶中倒了一些水到小瓶后(水没有溢出),大瓶里的水量变成了小瓶的2倍.请问:从大瓶中倒了多少毫升水到小瓶?小故事阿呆和阿瓜去包子铺买包子,一共买了250个包子,阿呆看阿瓜不够吃,分了10个包子给阿瓜,阿瓜不好意思,把自己的一半拿出来给了阿呆,阿呆不高兴了,把自己的包子分成10份,挑了其中的8份给阿瓜,阿瓜执拗不过阿呆,最后给了阿呆一个包子,这么折腾下来,现在两人一共有多少个包子?从上面的故事你能得到什么样的结论?总结:___________________________________________________________________________.7例题2小高家有两根绳子,长的那根有163米,短的只有97米.他把两根绳子剪去同样多的长度,结果长绳所剩长度比短绳所剩长度的7倍还多6米.那么两根绳子都剪去了几米?分析:两条绳子同时剪短,那它们的长度和就不是不变量了.这一次,不变量又会是谁呢?练习2两只老鼠“叽叽”和“喳喳”在吃面条,“叽叽”吃的面条比较长,有40厘米;“喳喳”吃的比较短,只有25厘米.它们吃面条的速度相同,过了一段时间后,长面条的长度是短面条的2倍.那么此时短面条还剩多少厘米?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 前面2道例题都是通过寻找不变量来进行解决的,不变量主要有两种情形:“和不变”与“差不变”,在寻找不变量时,有两句小口诀可以记下:给来给去和不变,同增同减差不变.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -小判断小山羊把10捆草分给大山羊,不变量:______.两根木头,每次锯掉的部分一样长,不变量:______.小糊涂和大糊涂去炒股,最后都赚了250元,不变量:______.儿子和爸爸比年龄,无论过了几年,不变量:______.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 当然,并不是所有的题目都能有不变的“和”或“差”,这时分析倍数所对应的和或差就非常重要,我们常用的方法是画出线段图.89- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -分析:寻找题目中的倍数关系,这时的倍数关系所对应的和或差,你知道哪个?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -下面,我们来看看如何找出隐藏的“差”条件.练1:阿呆和阿瓜一样多,阿呆又买了4块,阿瓜买了29块,谁的糖多?多多少块? 练2:阿呆比阿瓜多10个,阿呆又买了4块,阿瓜吃了2块,谁的糖多?多多少块?练习画图画图举例例子:阿呆比阿瓜多18块糖,阿瓜给阿呆2块后,谁的糖多?多多少块?阿瓜 阿呆18 后 后 2222阿呆糖多,多22块.练习3阿呆和阿瓜一起一共有100元钱.阿呆花了10元买零食,阿瓜花了40元买玩具,这时阿呆的钱是阿瓜的4倍.那么后来阿呆有多少钱? 阿呆和阿瓜一共有130元钱.每包瓜子5元钱,阿呆买了两包瓜子两人分着吃,吃完后阿瓜把自己的钱两人平分,这时阿呆的钱是阿瓜的5倍.那么后来阿呆有多少钱?例题3练3:阿瓜给阿呆2块后阿呆和阿瓜一样多,之前谁的糖多?多多少块?练4:阿瓜给阿呆8块后阿瓜比阿呆多27块,之前谁的糖多?多多少块?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4有两根蜡烛,粗蜡烛比细蜡烛长15厘米.把它们同时点燃.1小时后细蜡烛缩短了20厘米,而粗蜡烛只缩短了15厘米.此时粗蜡烛长度正好是细蜡烛的3倍.请问:粗蜡烛还剩多长?分析:寻找3倍关系下粗蜡烛和细蜡烛的长度差?练习4莉娅和萱萱都在织围巾,现在两人已经织好的围巾长度相同,但萱萱织得比较快.在接下来的两个月里,萱萱可以织120厘米,而卡莉娅只能织45厘米,因此两个月后,萱萱围巾的长度将会是卡莉娅的2倍.那么现在卡莉娅的围巾有多长?例题5红、蓝两个盒子中各有一些球,红盒中的球比蓝盒多5个.如果从红盒中取出12个球,然后向蓝盒中放入19个球,那么蓝盒中的球就是红盒的3倍.求最后红盒和蓝盒中各有多少个球?分析:寻找3倍关系下蓝盒和红盒的球数差?试着画出线段图表示一下.10例题6有甲、乙两堆卡片,如果从甲堆中拿出16张放到乙堆中,则两堆卡片的张数相等;如果从乙堆卡片中拿出11张放入甲堆中,则甲堆的张数是乙堆的3倍多10.求甲、乙两堆卡片各有多少张?分析:开始时甲堆和乙堆中的卡片差几张?分析清楚倍数关系下甲乙两堆差多少张?课堂内外爱迪生与电灯爱迪生是美国人,生于1847年.他从小很喜欢问大人“为什么”,让大人无法回答.5岁时,他看见鹅在孵蛋,就把鹅赶走,自己蹲在那里,想帮母鹅孵蛋.爱迪生进小学读了3个月,老师说他是低能儿,只好回家靠妈妈的教导及自修努力学习.爱迪生13岁在火车上边卖报边做实验,一次意外实验的时候磷倒了出来,烧坏了车箱地板,他被管理员打伤右耳,从此成了半个聋子.23岁到纽约闯天下,发明了一部电报机,赚了40000美元,辞掉工作专心研究.爱迪生在1879年10月31日发明电灯.他每天工作超过18小时以上,不停的努力,不断发明有用的东西.他一生中发明1093件专利.有人认为他是天才,他认为天才是百分之一的灵感加上百分之九十九的努力,他有很大的勇气和坚强的毅力承受失败的打击,他也常常鼓励别人.他到80岁还在研究他完全不懂的植物.作业1.有大小两个水瓶,分别装有430毫升和250毫升水.现在从大瓶中倒了一些水到小瓶后(水没有溢出),大瓶里的水量和小瓶一样多.则从大瓶中倒了多少毫升水到小瓶?2.小高的积分比墨莫多30分.老师给他们每人发了100分后,小高的积分比墨莫的2倍少90分.那么墨莫后来有多少分?113.有两支粗细、材料都相同的蜡烛,长的能烧100分钟,短的能烧70分钟.同时点燃这两支蜡烛,过多少分钟后,长蜡烛长度是短蜡烛的3倍?4.小山羊和卡莉娅两人开始有一样多的饼干.小山羊比较贪吃,过了几天,小山羊已经吃了39块饼干,而卡莉娅只吃了17块.此时卡莉娅剩下的饼干数量是小山羊的3倍,那么卡莉娅原来有多少块饼干?5.红、蓝两个盒子中各有一些球,红盒中的球比蓝盒多7个.如果向红盒中放入28个球,并从蓝盒中取出5个球,此时红盒中的球是蓝盒的3倍.则后来红盒里有多少个球?1213第一讲 和差倍中的隐藏条件1.例题1 答案:25枚.详解:后来两人一共40枚棋子.小高(4010)225+÷=枚,墨莫15枚. 2.例题2 答案:87米.简答:开始两根绳子相差1639766-=米,减去同样长的两段后,还是相差66米.后来短绳子长度为()(666)7110-÷-=米.剪去了971087-=米. 3.例题3 答案:100元.简答:买完瓜子后,一共120元.后来阿瓜有()1205120÷+=元.阿呆有205100⨯=元. 4.例题4答案:30厘米.简答:点燃后,粗蜡烛比细蜡烛长15152020-+=厘米.后来细蜡烛有()203110÷-=厘米.粗蜡烛有10330⨯=厘米. 5.例题5答案:13个,39个.简答:后来红盒比蓝盒少1219526+-=个,这时红盒有()263113÷-=个.蓝盒有13339⨯=个. 6.例题6答案:65张,33张.简答:“如果从甲堆中拿出16张放到乙堆中,则两堆卡片的张数相等”说明甲比乙多32张.“从乙堆卡片中拿出11张放入甲堆中”,这时甲比乙多3211254+⨯=张,这时乙有()()54103122-÷-=张,甲有225476+=张.开始甲有761165-=张,乙有221133+=张. 7.练习1答案:90毫升.简答:后来两瓶水一共690210900+=毫升.小瓶有()90021300÷+=毫升,大瓶倒了30021090-=毫升给小瓶. 8.练习2答案:15厘米.简答:减去同样长的两段后,还是相差15厘米.后来短面条长度为()152115÷-=厘米. 9.练习3 答案:40元.简答:买完东西后,一共50元.后来阿瓜有()504110÷+=元.阿呆有10440⨯=元. 10. 练习4答案:75厘米.简答:两个月后,萱萱比卡莉娅长1204575-=厘米.这时卡莉娅有()752175÷-=厘米.1411. 作业1答案:90毫升.简答:倒完后各有()4302502340+÷=毫升,那么倒了43034090-=毫升. 12. 作业2答案:120分.简答:发完后小高还是比墨莫多30分.墨莫后来有()()309021120+÷-=分. 13. 作业3答案:55分钟.简答:能烧的时间差为30分钟,所以过()()70100703155--÷-=分钟. 14. 作业4答案:50块.简答:小山羊剩下的饼干有()()39173111-÷-=块,原来有50块. 15. 作业5答案:60个.简答:后来红盒比蓝盒多728540++=个.则后来蓝盒有()403120÷-=个,红盒有60个.。
第1讲智巧趣题1.盘子里有9个橘子,分给9个人,每人一个,盘子里仍留一个橘子,这是怎么回事?2.一个盒子里有10颗弹子,要分给5个小朋友,每人2颗,最后盒子里还要有2颗,你能做到吗?3.一位农民在自己的自行车两边分别带着5只鸡和4只兔去赶集。
因为兔比鸡重,他把鸡和兔互相交换一只后,两边的重量就相等了。
如果每只兔重3千克,那么每只鸡重多少千克?4.一位渔夫在自己的竹筐两边分别放着5条鱼和4只鸭去赶集。
因为鸭比鱼重,他把鱼和鸭互相交换一只后,两边的重量就相等了。
如果每只鸭重3千克,那么每条鱼重多少千克?5.一个池塘中的睡莲每天长大一倍,经过10天可以把整个池塘全部遮盖住,问睡莲要遮盖半个池塘需要多少天?6.“小淘气”青虫,每天长大一倍,经过3天体重达到20克。
问青虫在第几天达到80克?7.有一个月,星期二的天数比星期一多,星期三的天数比星期四多,这个月8号是星期几?8.有一个月,星期一的天数比星期日多,星期二的天数比星期三多,这个月29号是星期几?9.学校食堂买回100个鸡蛋,每袋装10个。
其中九只袋里装的鸡蛋,每个都是50克重。
另一个袋装的每只都是40克重的。
这十袋混在一起,只准用秤称一次,就能找出哪一袋装的每个是40克重的鸡蛋?10.一袋一袋的洗衣粉堆成十堆,每堆10袋洗衣粉,九堆洗衣粉是合格产品,每袋1斤,唯独有一堆分量不足,每袋只有9两。
从外形上看,看不出哪一堆是9两的。
用台秤一堆一堆去称吧,称的次数比较多。
有人找到一个办法,只称了一次,就找到了9两的那一堆。
这是个什么办法呢?11.有一艘军舰停靠在港口,军舰的外弦有一梯子。
梯子的第一级正好挨着水面,往上每隔25厘米有一级。
这时海水也正巧以每小时25厘米的速度涨潮。
经过多长时间海水涨到梯子的第3级?12.一只麻雀发现一个只装了半瓶果汁的汽水瓶里漂浮着一颗空心球。
小麻雀想用嘴把它叼出来玩耍,可是用什么办法呢?13.两个餐厅合买若干公斤鱼,都付了同样多的钱。
第1讲简单数字谜在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的的数。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
同学们想一想(1)-(4)还可以怎么表示呢?例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7例2下列算式中,□,○,△,☆各代表什么数?(1)□+□+□=48;(2)○+○+6=21-○;(3)5×△-18÷6=12;(4)6×3-45÷☆=13例3(1)满足58<12×□<71的整数□等于几?(2)180是由哪四个不同的且大于1的数字相乘得到的?试把这四个数按从小到大的次序填在下式的□里。
180=□×□×□×□。
(3)若数□,△满足□×△=48和□÷△=3,则□,△各等于多少?(提示:用代换思想)例4在等号左端的两个数中间添加上运算符号,使下列各式成立,你能想出几种呢?(1)4 4 4 4=24;(2)5 5 5 5 5=6。
练习及家庭作业1.在下列各式中,□分别代表什么数?□+16=35; 47-□=12;□-3=15; 4×□=36;□÷4=15; 84÷□=4。
2.在下列各式中,□,○,△,☆各代表什么数?(□+350)÷3=200; (54-○)×4=0; 360-△×7=10; 4×9-☆÷5=1。
三年级奥数专题第三讲数字趣谈【一】盒子里有红球和黄球各5个,最多摸出几个球,才能保证有两种不同颜色的球?练习1、小口袋里混合放着红、黄两种玻璃球各4个,它们的形状、大小完全一样,如果不用眼睛看,要保证一次拿出两粒不同颜色的玻璃球,至少要摸出几粒?2、布袋里有红、绿两种小木块各6块,形状、大小完全一样,要保证一次从布袋里取出颜色不同的木块,至少必须取出几块小木块?【二】一只小白兔5分钟吃一棵大白菜,5只小白兔同时吃5棵同样的大白菜,需要几分钟?练习1、三个人同时吃3个西红柿,用3分钟吃完。
六个人同时吃6个相同大小的西红柿,要几分钟才能吃完?2、4个小朋友同时削4枝同样的铅笔需要4分钟。
照这样的速度,7个小朋友同时削7枝铅笔,需要几分钟?【三】一条毛毛虫由幼虫长成成虫,每天长大一倍,18天能长到32厘米。
问长到4厘米时要用多少天?练习1、一个小池塘内有一片水浮莲,它每天能在水面上长大一倍,28天就把整个池塘全部遮满。
问水浮莲要遮住半个池塘需要多少天?2、一条小青虫由幼虫长成成虫,每天长大一倍,15天能长到6厘米。
问长到48厘米时需要多少天?【四】把14个玻璃球放进4个盒子里,要使每个盒子里都放有玻璃球且放的个数都不想等,问最多的一堆可以放几个玻璃球?练习1、五个同学共有37张画片,每两个同学间的画片张数都不相等,问其中最多的同学最多有多少张?2、20个乒乓球分成数量不相等的5堆,问最多的一堆最多有多少个乒乓球?【五】把100个桔子分装在6个篮子里,要求每个篮子里装的桔子的个数都含有数字“6”,想一想,应该怎么分?练习1、“六一”来临人人喜,10个同学做彩旗,一共要做一百面,每人做的需带“7”。
试问各做几面旗?2、有48个学生参加三项体育比赛,但参加每项活动的人数都不一样,而人数都有一个数字“6”,参加三项体育比赛的学生各有多少人?【六】龙龙和亮亮去公园玩,想买门票,但钱都不够,龙龙缺4元8角,亮亮缺1分,两人的钱加起来仍不够,公园门票多少钱?练习1、小华和小李去书店,想买一本童话书,但钱都不够,小华缺6元4角,小李缺1分,两人合起来每一本仍不够,这本童话书多少钱?2、小红和小明想买一本书。
三年级奥数数字趣题数字趣题是三年级奥数中的一个重要内容,它旨在通过趣味性的数学问题培养学生的数学思维和逻辑推理能力。
在这篇文章中,我将为大家介绍几个有趣的数字趣题。
1. 奇数和偶数问题问题:从1到100的数字中,奇数和偶数的个数各是多少?解答:在1到100的数字中,共有50个偶数和50个奇数。
解析:奇数是指不能被2整除的数,偶数是指能被2整除的数。
在1到100的数字中,首先1是奇数,2是偶数,3是奇数,4是偶数,以此类推。
我们可以观察到,奇数和偶数是交替出现的,而且个数相同,所以在1到100的数字中,奇数和偶数的个数各是50个。
2. 数字组合问题问题:将数字1、2、3、4、5分别排列,可以得到多少个不重复的两位数?解答:可以得到10个不重复的两位数。
解析:将数字1、2、3、4、5分别排列,可以得到以下10个不重复的两位数:12、13、14、15、21、23、24、25、31、32、34、35、41、42、43、45、51、52、53、54。
其中,每个数字只能使用一次,所以得到10个不重复的两位数。
3. 数字之和问题问题:将数字1、2、3、4、5排列成一个五位数,使得这个五位数的个位数加上十位数等于百位数,十位数加上千位数等于个位数,千位数加上百位数等于十位数。
请问这个五位数是多少?解答:这个五位数是54231。
解析:根据题意,我们可以得到以下等式:个位数 + 十位数 = 百位数,十位数+ 千位数 = 个位数,千位数 + 百位数 = 十位数。
根据这些等式,我们可以逐位确定数字的排列。
首先,个位数加十位数等于百位数,所以个位数只能是1,十位数只能是3,百位数只能是4。
然后,十位数加千位数等于个位数,所以千位数只能是2。
最后,千位数加百位数等于十位数,所以百位数只能是3。
根据这些数字的排列,我们可以得到这个五位数是54231。
通过以上的数字趣题,我们可以看到数学问题也可以有趣和有挑战性。
这些问题培养了学生的逻辑思维能力和解决问题的能力,同时也提高了他们对数字的理解和运用能力。
第一讲 智巧趣题从三年级开始,我们就要系统地学习奥数知识,本讲主要是通过数学趣题的研究学习引发学生学习奥数的兴趣,激发学生学习奥数的灵感,充分调动学生学习奥数的积极性.Ⅰ、过河问题(★★★ 奥数网经典题)【例1】 38个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:根据前面的解答,实际上前面每次过河的人数只有3人,最后一次最多过4人,因为38=3×12+2,所以前面3人一次过了12次,来回一共划了12×2=24(次),最后一次是2人过河,还要用1次.所以最终需要渡河的次数是24+1=25(次).[拓展] 37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:如果由37÷5=7……2,得出7+1=8次,那么就错了.因为忽视了至少要有1个人将小船划回来这个特定的要求.实际情况是:小船前面的每一个来回至多只能渡4个人过河去,只有最后一次小船不用返回才能渡5个人过河.因为除最后一次可以渡5个人外,前面若干个来回每个来回只能渡过4个人,每个来回是2次渡河,37=4×8+5,所以渡河次数是8×2+1=17(次). (注:由于数据的特殊性,刚好最后一次5个人过河).教学目标专题精讲和想 挑战吗 ?一个人带着一只狐狸、一只鹅和一些玉米渡河,每次只能带一样,可是人不在时,狐狸要吃鹅,鹅要吃玉米.那么应该怎样渡河呢? 分析:先带鹅过河,自己划船回来,第二次带狐狸过去,再把鹅带回来,第三次带玉米过河,自己划船回来,第四次再把鹅带过去即可.【例2】(★★★★奥数网改编题)赵大爷和一个小八路带着一个负伤的红军战士因为叛徒出卖被日本鬼子追到一条小河边,河岸边只有一条能同时乘坐两人的小船,赵大爷划船需要2分钟,小八路划船需要3分钟,负伤的红军战士划船需要5分钟,现在在危机关头,需要尽快过河,采用怎样的过河方式,三个人全部过河用时最少?分析:赵大爷首先跟小八路或者红军战士一起过河,用时2分钟,再由赵大爷把船划过来,用时2分钟,最后把剩下的人一起载过去,再用时2分钟.一共用时6分钟.[拓展] 有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?分析:小强和中强先过桥,用2分钟;再用小强把电筒送过去,用1分钟,现在由大强跟太强一起过桥,用10分钟,过去以后叫中强把电筒送给小强用2分钟,最后小强与中强一起过河再用2分钟,他们一起用时间:2+1+10+2+2=17(分钟),正好在桥倒塌的时候全部过河.(时间最短过河的原则是:时间长的一起过,时间短的来回过.这样保证总的时间是最短的).【例3】有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢?分析:首先姐姐跟弟弟一起过,用时3分钟,姐姐再回去送油灯,用时3分钟,老爷爷跟爸爸一起过河,用时12分钟,弟弟将灯送回去,用时1分钟,弟弟和母亲一起过,用时6分钟,弟弟送灯过河,用时1分钟,最后与姐姐一起过河,用时3分钟.一共用时:3+3+12+1+6+1+3=29分钟.最后能够安全全部过河.【例4】男女二个主人带着二个仆人和一条狗过河,但船每次只能载二个(包活狗),女主人和仆人在一边,女主人会打死仆人;让仆人和狗在一边,狗会咬死仆人:让仆人在一边,他们会逃走.怎么过河?分析:见下表(二)蜗牛与青蛙趣题【例5】(★★★奥数网原创题)蜗牛沿着9米高的柱子往上爬,白天它向上爬5米,而晚上又下降4米,问蜗牛爬到柱顶需要几天?分析:一昼夜可以爬1米,爬了4昼夜后再经过一个白天即可爬到柱顶,因此需要5个白天4昼夜.[巩固]一口井深10米,一只蜗牛从井底白天往上爬2米,晚上又往下滑1米,请问要多长时间,这只蜗牛能爬出这口井?分析:“白天往上爬2米,晚上又往下滑1米”其实一天只往上爬1米,如果这样理解,说这只蜗牛爬出这口井需要10天就错了.因为最后一次爬出井外不会往下滑,所以蜗牛只要往上爬9米,晚上下滑1米,这时距离井口只有2米了,这样只要一个白天再往上爬2米就到井口了.所以只需要8天再加一个白天.【例6】一只青蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米?分析:实际上青蛙没爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).[拓展] 青蛙沿着10米高的井往上跳,每次它向上跳半米,然后又落下去,问青蛙爬需要跳几次就能跳出井外?分析:每次青蛙向上跳半米,然后又落下去,等于还在原地,所以永远也跳不出去.Ⅲ、火柴棍趣题【例7】桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?分析:获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有55根火柴,55÷4=13……3,所以只要甲第一次取走3根,剩下52根火柴是4的倍数,以后甲总留给乙4的倍数根火柴,甲必胜.[拓展]将“每次取走1~3根”改为“每次取走1~4根”,其余不变,情形会怎样?分析:由上面的分析,只要始终留给对方(1+4=)5的倍数根火柴,就一定获胜.因为55是5的倍数,甲先取,不可能留给乙5的倍数根,而甲每次取完后,乙再取都可能留给甲5的倍数根,所以在双方都采用最佳策略的情况下,乙必胜.[拓展]将“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?分析:因为最后留给对方1根火柴者必胜,按照逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜.甲先取,只要第一次取2根,剩下53根(53除以4余1),以后每次都将除以4余1的根数留给以,甲必胜.【例8】两个人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁获胜.你选择先报数还是后报数?怎样才能获胜?分析:因为50(1+5)=8……2,所以要想获胜,应选择先报,第一次报2个数,剩下48个数是(1+5=)6的倍数,以后总把6的倍数个数留给对方,必胜.[拓展] 1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7个格.规定将棋子移到最后一格者输.甲为了获胜,第一步必须向右移多少格?分析:一开始棋子已占一格,棋子的右面有空格1111-1=1110(个).只要甲始终留给乙(1+7=)8的倍数加1格,就可获胜.(1111-1)(1+7)=138……6,所以甲第一步必须移5格,还剩下1105格,1105是8的倍数加1.以后无论以移几格,甲下次移的格数与乙移的格数之和是8,甲就必胜.【例9】有两堆火柴,一堆35根,另一堆24根.两人轮流在其中一堆中拿取,取得根数不限,但不能不取.规定谁得最后一根火柴谁胜.先取者有何获胜的策略?分析:先取者在35根一堆的火柴中取11根火柴,使得取后剩下两堆的火柴数相同.以后无论对手在某一堆取几根火柴,你只需在另一堆取同样多根火柴.只要对手有火柴可取,你就有火柴可取,也就是说,最后一根火柴总会被你拿到.这样先取者总可获胜.[前铺] 有一堆火柴,甲先乙后轮流每次取走1~3根.取完全部火柴后,如果甲取得火柴总数是偶数,那么甲获胜,否则乙获胜.试分析这堆火柴的根数在1~11根时,谁将获.分析:显然,1根时乙胜,2根或3根时甲胜,4根时乙胜.5根时,甲先取1根,若乙取1根,则甲取3根,若乙取2根或3根,则甲取1根,甲胜.6根时,甲先取1根,若乙取1根或2根,则甲取3根;若乙取3根,则甲取1根,甲胜.7根或8根时,甲先取3根,以后同5根或6根的情况,甲胜.9根时,甲取1~3根,相当于8~6根时乙先取的情况,由上面的分析,最终乙可取得偶数根,则甲为奇数根,乙胜.10根时,甲先取1根,11根时,甲先取2根,转化为9根时乙先取的情况,甲胜.【例10】有3堆火柴,分别有1根,2根与3根火柴.甲先乙后轮流从任意一堆里取火柴,取得根数不限,规定谁能取到最后一根火柴谁获胜.如果采用最佳方法,那么谁将获胜?分析:谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能获胜.甲先取,共有6种取法:从第1堆里取1根;从第2堆里取1根或2根;从第3堆里取1根、2根或3根.无论那种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴,所以乙采用最佳方法一定获胜.Ⅳ、单循环类趣题【例11】(★★★奥数网题库)学校组织一次乒乓球比赛,一共有10名选手,采用单循环制赛(每两位选手之间都进行一场比赛),那么一共要进行多少场比赛?分析:将十位选手编号,1号将与其他九位选手进行比赛,一共要赛9场,2号要与除了1号以外的所有选手比赛,一共进行8场,……,9号选手只要跟10号选手进行比赛,10号选手跟以前的选手都已经进行过比赛,所以不用再进行比赛.所以一共有比赛场次9+8+7+…+2+1=45(场).【例12】纸上有5个点,任意3点都不在一条直线上,如果把每两个点都连接起来,最多能连成多少条线段?分析:取其中一个点跟其余的4个点相连,就可以得到4条线段;再取一个点跟其他的三个点相连,这样又有3条线段,剩下的点可以组成2条线段和1条线段.这样一共可以组成4+3+2+1=10条线段.[拓展1]在学校的一次小型会议中,每两个人见面都要握手,王校长一共跟别人握了10次手,请问这次会议一共有多少人参加?所有参加会议的人握手的总次数有多少?分析:我校长一共跟别人握手10次,说明除了王校长以外,还有10个人,所以参加这次会议的人一共有11人;11个人一共握手的次数是10+9+8+7+6+5+4+3+2+1=55(次).[拓展2] 10个老朋友通过写信联络感情,一年之中每个人都给其余的人写一封信,请问一年之中这10个老朋友一共要寄出多少封信?一共收到多少封信?分析:这道题个内前面的有点区别,就是每个收到别人的信以后还有写一封信出去,所以每个人都要写9封信,10个人一共写了10×9=90封信.寄出的每一封信都会有人收到,寄出的信和收到的信的数量应该是相等的,也应该是90封.专题展望这一讲内容也许带给同学们无限的乐趣,也容同学们对数学产生了浓厚的兴趣,其实学习数学本身就是一中快乐.我们将在三升四的暑假班继续给大家介绍智巧趣题,更多、更有趣的题目等着大家,当然也会有更多的、更加新颖的解题思路和方法等着大家.练习一1.(例1)42个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:如果由42÷4=10……2,得出10+1=11次,那么就错了.因为忽视了至少要有1个人将小船划回来这个特定的要求.实际情况是:小船前面的每一个来回至多只能渡3个人过河去,只有最后一次小船不用返回才能渡4个人过河.42=3×13+3,所以渡河次数是13×2+1=27(次).2.(例6)蜗牛沿着10米高的柱子往上爬,白天它向上爬5米,而晚上又下降3米,问蜗牛爬到柱顶需要几天?分析:一昼夜可以爬2米,爬了3昼夜后再经过一个白天即可爬到柱顶,因此需要3天1夜.3.(例3)一家人 6 口人,夜间要过一架独木桥,他们仅有一盏油灯照明,借助这盏灯,每次最多两人可以走过独木桥.而这 6 人过桥所需要的时间分别是 1 , 3 , 6 , 8 , 12 , 20 分钟,要命的是这盏灯只能点燃 47 分钟了,而没有灯照明,任何人企图过河那是必然跌落到深谷中.分析:有不同的解法,看其中一个.就用1,3,6,8,12,20表示这6人.共计用时45分钟.4.(例7)桌子上放着50根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?分析:获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有55根火柴,50÷4=12……2,所以只要甲第一次取走2根,剩下48根火柴是4的倍数,以后甲总留给乙4的倍数根火柴,甲必胜.5.学校组织一次乒乓球比赛,一共有9名选手,采用单循环制赛(每两位选手之间都进行一场比赛),那么一共要进行多少场比赛?分析:将十位选手编号,1号将与其他九位选手进行比赛,一共要赛8场,2号要与除了1号以外的所有选手比赛,一共进行7场,……,8号选手只要跟9号选手进行比赛,9号选手跟以前的选手都已经进行过比赛,所以不用再进行比赛.所以一共有比赛场次8+7+…+2+1=36(场).成长故事各有所长一只蝙蝠由于懂得一些天文常识,就骄傲起来.它批评大象个头虽大,却大而不当,反而因此行动笨拙缓慢;看见活蹦乱跳的兔子,就说它虽然跳得快,却不懂声纳和气流的原理,光在那儿胡乱跳着;它更不能忍受鸡有翅膀,却不懂得怎么利用它飞行……蝙蝠一天到晚自以为是地说:“我实在无法忍受这些无知又一无是处的家伙!”有一天,蝙蝠不小心落到河里,因为不懂得游泳的技巧,结果被活活淹死了.虽然它懂得天文地理,这时却一点儿也派不上用场.自信并不是自我夸大,唯我独尊.你懂的也许别人不懂,但是别人会的,你也不见得都会.千万不要用自己所具备的条件来衡量别人,这样只会注意到自己的优点,而抹杀了他人的长处.。
三年级奥数5-0鸡兔同笼问题例题及答案一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法板块一、两个对象的“鸡兔同笼”【例 1】 鸡兔同笼,头共46,足共128,鸡兔各几只?【解析】 假设46只都是兔,一共应有446184⨯=只脚,这和已知的128只脚相比多了18412856-=只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228÷=只鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818-=(只).当然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.【巩固】 点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?【解析】 方法一:我们假设,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都是两条后腿,像人一样用两只脚站着.现在,地面上出现的脚是总数的一半,也就是94247÷=(只).在47这个数中,鸡的头数算了一次,兔子的头数相当于算了两次,因此从47减去总头数35,剩下的就是兔子头数,473512-=(只),所以有12只兔子,有351223-=(只)鸡.方法二:假设35只都是兔子,那么就有354140⨯=(只)脚,比94只脚多了1409446-=(只).每只鸡比兔子少422-=(只)脚,那么共有鸡46223÷=(只)方法三:还可以假设35只都是鸡,那么共有脚23570⨯=(只),比94只脚少了947024-=(只)脚,每只鸡比兔子少422-=(只)脚,那么共有兔子24212÷=(只).方法一可以归结为:总脚数2÷-总头数=兔子数.能够这样算,主要是利用了兔和鸡的脚数分别为4和2,而且4是2的2倍.方法二说明假设的35只兔子中有23只不是兔子,而是鸡.由此可以列出公式:鸡数=(兔脚数⨯总头数-总脚数)÷(兔脚数-鸡脚数)方法三说明假设的35只鸡中有12只是兔.由此可以列出公式:兔数=(总脚数-鸡脚数⨯总头数)÷(兔脚数-鸡脚数)【巩固】 鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【解析】 ⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算18010080-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240÷=(只)鸡被当作了兔子,所以共有40只鸡,有45405-=(只)兔子.注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑵“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250÷=(条)腿,比头数多50455-=,所以有5只兔子,另外40只是鸡.【巩固】 动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【解析】 由于每只动物有两只眼睛,由题意知:动物园里鸵鸟和大象的总数为:36218÷=,假设鸵鸟和大象一样也有4只脚,则应该有(418)72⨯=只脚,多了(7252)20-=只脚,由假设引起的差值:422-=,则鸵鸟数为20210÷=(只),大象数为18108-=(头).【巩固】 鸡兔同笼,上有35头,下有94足,求笼中鸡兔各几只?【解析】 有兔(94352)(42)12-⨯÷-= (只),有鸡351223-= (只).【例 2】 动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【解析】 假设梅花鹿和鸵鸟的只数相同,则从总脚数中减去鸵鸟多的20只的脚数得:208202168-⨯=(只).这168只脚是梅花鹿的脚数和鸵鸟的脚数(注意此时梅花鹿和鸵鸟的只数相同)脚数的和,一只梅花鹿和一只鸵鸟的脚数和是:246+=(只),所以梅花鹿的只数是:168628÷=(只),从而鸵鸟的只数是:282048+=(只) (本题也可给学生讲成“捆绑法”,一鸡一兔一组,这个怎么分组时有倍数关系得到的)【巩固】 一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【解析】 已知鸡比兔多36只,如果把多的36只鸡拿走,剩下的鸡兔只数就相等了,拿走的36只鸡有23672⨯=(只)脚,可知现在剩下79272720-=(只)脚,一只鸡与一只兔有6只脚,那么兔有7206120÷=(只),鸡有12036156+=(只).【巩固】 鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【解析】 这道例题和前面的例题有所不同,前面的题是已知头数之和和脚数之和求各有几只,而这道题是已知头数之和和脚数之差,这样就比前面的例题增加了一点难度.我们用两种方法来解这道题.(方法一)考虑如果补上鸡脚少的56只的话,那么就要增加56228÷=(只)鸡.这样一来,鸡、兔共有10728135+=(只),这时鸡脚、兔脚一样多.已知一只鸡的脚数是一只兔的一半,而现在鸡脚、兔脚相同,可知鸡的只数是兔的2倍,根据和倍问题有:兔有:135(21)45÷+=(只)鸡有:135452862--=(只)或者1074562-=(只)(方法二)不妨假设107只都是兔,没有鸡,那么就有兔脚:1074428⨯=(只),而鸡的脚数为零.这样兔脚比鸡脚多428只,而实际上只多56只,这说明假设的兔脚比鸡脚多的数比实际上多:42856372-=(只).现在以鸡换兔,每换一只,兔脚减少4只,鸡脚增加2只,即兔脚与鸡脚的总数差就会减少426+=(只).鸡的只数:372662÷=(只)兔的只数:1076245-=(只)【巩固】 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【解析】 假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多20020180-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而180630÷=,因此有兔子30只,鸡1003070-=(只).【巩固】鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只?【解析】假设60只都是鸡,没有兔,那么就有鸡脚120只,而兔的脚数为零.这样鸡脚比兔脚多120只,而实际上只多60只,这说明假设的鸡脚比兔脚多的数比实际上多1206060-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而60610-=(只).÷=,因此有兔子10只,鸡601050【巩固】鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?【解析】这道例题是已知鸡、兔的脚数和,鸡比兔多的只数,求鸡、兔各几只.我们假设鸡与兔只数一样多,那么现在它们的足数一共有:274226222-⨯=(只),每一对鸡、兔共有足:246+=(只),鸡兔共有对数(也就是兔子的只数):222637+=(只).÷=(对),则鸡有 372663【巩固】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【解析】解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是(100+28÷2)÷(2+1)=38(只).鸡是100-38=62(只).当然也可以去掉兔28÷4=7(只).兔的只数是(100-28÷4)÷(2+1)+7=38(只).也可以用任意假设一个数的办法.解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是4×50-2×50=100, 比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是(100-28)÷(4+2)=12(只). 兔只数是50-12=38(只).【例3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?【分析】假设都是三轮摩托车,应有341123-=(个)轮子.每把一辆汽车假设⨯=(个)轮子,少了1271234为三轮摩托车,会减少431÷=(辆);从而求出三轮摩托车有-=(个)轮子.汽车有414-=(个)轮子;⨯=(个)轮子,多了16412737-=(辆).或者假设都是汽车,应有44116441437所以摩托车有37(43)37÷-=(辆).【巩固】体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?【解析】假设买的都是上衣,那么裤子的件数为:(2421439)(2419)13⨯-÷-=(件),上衣:21138-=(件).【巩固】小建和小雷做仰卧起坐,小建先做了3分钟,然后两人各做了5分钟,一共做仰卧起坐136次.已知每分钟小建比小雷平均多做4次,那么小建比小雷多做了多少次?【解析】假设小建每分钟做仰卧起坐的次数与小雷一样多,这样两人做仰卧起坐的总次数就减少了()()(次),进而可以分别求出-÷++=43532()(次),由此可知小雷每分钟做了136323558⨯+=小建每分钟做的次数以及两人分别做仰卧起坐的总次数之差.假设小建每分钟做仰卧起坐的次数与小雷一样多,两人做仰卧起坐的总次数就减少:43532⨯+=()(次)小雷每分钟做:136323558()()(次);小建每分钟做:8412+=(次)-÷++=小建一共做:123596⨯=(次)()(次);小雷一共做:8540⨯+=小建比小雷多做:964056-=(次)【例4】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?【解析】我们把大碗换小碗,换小碗盛粥!把一大碗粥分成三小碗粥,则原题变为一百个和尚喝三百碗粥,一个大和尚喝九碗粥,一个小和尚喝一碗粥.然后仍然用假设法:假设都是小和尚,只能喝1100100-=(碗)⨯=(碗)粥,有一个大和尚被当成小和尚会少918粥,一共少了300100200-=÷=(个);小和尚有1002575-=(碗)粥.所以大和尚有200825(个).【巩固】 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?【解析】 本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.假设100人全是大和尚,那么共需馍300个,比实际多300140160-=(个).现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少312-=(个),因为160280÷=,故小和尚有80人,大和尚有1008020-=(人).同样,也可以假设100人都是小和尚,这里不再作说明.【巩固】 100个和尚160个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?【解析】 本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.假设100人全是大和尚,那么共需馍300个,比实际多300160140-=(个).现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少312-=(个),因为140270÷=,故小和尚有70人,大和尚有1007030-= (人).同样,也可以假设100人都是小和尚,同学们不妨自己试试.【解析】 从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?【解析】 假设全是抬水,38根扁担应担38个桶,而实际上是58个桶,为什么少了583820-=(个)桶呢?因为当我们把一个挑水的当作抬水的就会少算211-=(个)桶,所以有20120÷=(人)在挑水,拾水的扁担数是382018-=(根),抬水的人数是18236⨯=(人).【例 5】 工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【解析】 本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差10020120+=(元),即损1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250个花瓶都完好,这样可得运费202505000⨯=(元).这样比实际多得50004400600-=(元).就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了202504400100205()()(个).⨯-÷+=【巩固】乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?【解析】假设100只花瓶在搬运过程中一只也没有打破,那么应得运费1100100⨯=(元).实际上只得到92元,少得100928-=(元).搬运站每打破一只花瓶要损失112+=(元).因此共打破花瓶824÷=(只).【巩固】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只【解析】如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是(400-379.6)÷(1+0.2)=17(只).【例6】(2008年第八届“春蕾杯”小学数学邀请赛决赛)甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中发。
第一讲 智巧趣题从三年级开始,我们就要系统地学习奥数知识,本讲主要是通过数学趣题的研究学习引发学生学习奥数的兴趣,激发学生学习奥数的灵感,充分调动学生学习奥数的积极性.Ⅰ、蜗牛与青蛙趣题【例1】 (★★★ 奥数网原创题) 一口井深10米,一只蜗牛从井底白天往上爬2米,晚上又往下滑1米,请问要多长时间,这只蜗牛能爬出这口井?分析:“白天往上爬2米,晚上又往下滑1米”其实一天只往上爬1米,如果这样理解,说这只蜗牛爬出这口井需要10天就错了.因为最后一次爬出井外不会往下滑,所以蜗牛只要往上爬9米,晚上下滑1米,这时距离井口只有2米了,这样只要一个白天再往上爬2米就到井口了.所以只需要8天再加一个白天.[拓展] 蜗牛沿着9米高的柱子往上爬,白天它向上爬5米,而晚上又下降4米,问蜗牛爬到柱顶需要几天几夜?分析:一昼夜可以爬1米,爬了4昼夜后再经过一个白天即可爬到柱顶,因此需要5天4夜.教学目标专题精讲和想 挑战吗 ?一个人带着一只狐狸、一只鹅和一些玉米渡河,每次只能带一样,可是人不在时,狐狸要吃鹅,鹅要吃玉米.那么应该怎样渡河呢? 分析:先带鹅过河,自己划船回来,第二次带狐狸过去,再把鹅带回来,第三次带玉米过河,自己划船回来,第四次再把鹅带过去即可.【例2】青蛙沿着10米高的井往上跳,每次它向上跳半米,然后又落下去,问青蛙爬需要跳几次就能跳出井外?分析:每次青蛙向上跳半米,然后又落下去,等于还在原地,所以永远也跳不出去.[拓展]一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米?分析:实际上青蛙没爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).Ⅱ、过河问题【例3】一个农民携带一只狼,一只羊和一棵白菜,要借助一条小船过河.小船上除了农民只能再带狼、羊、白菜中的一样.而农民不在时,狼会吃羊,羊会吃白菜.农民如何过河呢?【例4】有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢?分析:首先姐姐跟弟弟一起过,用时3分钟,姐姐再回去送油灯,用时3分钟,老爷爷跟爸爸一起过河,用时12分钟,弟弟将灯送回去,用时1分钟,弟弟和母亲一起过,用时6分钟,弟弟送灯过河,用时1分钟,最后与姐姐一起过河,用时3分钟.一共用时:3+3+12+1+6+1+3=29分钟.最后能够安全全部过河.【例5】(★★★★奥数网改编题)有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?分析:小强和中强先过桥,用2分钟;再用小强把电筒送过去,用1分钟,现在由大强跟太强一起过桥,用10分钟,过去以后叫中强把电筒送给小强用2分钟,最后小强与中强一起过河再用2分钟,他们一起用时间:2+1+10+2+2=17(分钟),正好在桥倒塌的时候全部过河.(时间最短过河的原则是:时间长的一起过,时间短的来回过.这样保证总的时间是最短的).[前铺] 赵大爷和一个小八路带着一个负伤的红军战士因为叛徒出卖被日本鬼子追到一条小河边,河岸边只有一条能同时乘坐两人的小船,赵大爷划船需要2分钟,小八路划船需要3分钟,负伤的红军战士划船需要5分钟,现在在危机关头,需要尽快过河,采用怎样的过河方式,三个人全部过河用时最少?分析:赵大爷首先跟小八路或者红军战士一起过河,用时2分钟,再由赵大爷把船划过来,用时2分钟,最后把剩下的人一起载过去,再用时2分钟.一共用时6分钟.【例6】(★★★奥数网经典题) 37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:如果由37÷5=7……2,得出7+1=8次,那么就错了.因为忽视了至少要有1个人将小船划回来这个特定的要求.实际情况是:小船前面的每一个来回至多只能渡4个人过河去,只有最后一次小船不用返回才能渡5个人过河.因为除最后一次可以渡5个人外,前面若干个来回每个来回只能渡过4个人,每个来回是2次渡河,37=4×8+5,所以渡河次数是8×2+1=17(次). (注:由于数据的特殊性,刚好最后一次5个人过河).[拓展] 38个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:根据前面的解答,实际上前面每次过河的人数只有3人,最后一次最多过4人,因为38=3×12+2,所以前面3人一次过了12次,来回一共划了12×2=24(次),最后一次是2人过河,还要用1次.所以最终需要渡河的次数是24+1=25(次).Ⅲ、火柴棍趣题【例7】有两堆火柴,一堆3根,另一堆7根.甲、乙两人轮流取火柴,每次可以从每一堆中取任意根火柴,也可以同时从两堆中取相同数目的火柴.每次至少要取走一根火柴.谁取得最后一根火柴谁胜.如果都采用最佳方法,那么谁将获胜?分析:采用逆推法分析,假设甲获胜,甲最终将两堆火柴都变为0,简记(0,0);因为甲至少取1根火柴,所以甲取之前,即乙留给甲的两堆火柴最少的几种情况是(1,0),(2,0)(1,1);要想乙留给甲上述情况,甲应该留给乙(1,2);再往前逆推,当甲留给乙(3,5)时,无论乙怎样取,甲都可以一次取完所有的火柴或留给乙(1,2).所以甲先从7根火柴的一堆取出2根,留给乙(3,5),甲必胜.[前铺]桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?分析:获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有55根火柴,55÷4=13……3,所以只要甲第一次取走3根,剩下52根火柴是4的倍数,以后甲总留给乙4的倍数根火柴,甲必胜.[拓展]将“每次取走1~3根”改为“每次取走1~4根”,其余不变,情形会怎样?分析:由上面的分析,只要始终留给对方(1+4=)5的倍数根火柴,就一定获胜.因为55是5的倍数,甲先取,不可能留给乙5的倍数根,而甲每次取完后,乙再取都可能留给甲5的倍数根,所以在双方都采用最佳策略的情况下,乙必胜.[拓展]将“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?分析:因为最后留给对方1根火柴者必胜,按照逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜.甲先取,只要第一次取2根,剩下53根(53除以4余1),以后每次都将除以4余1的根数留给以,甲必胜.【例8】黑板上写着一排相连的自然数1,2,3,…,51.甲、乙两人轮流划掉连续的3个数.规定在谁划过之后另一人再也划不成了,谁就算取胜.问:甲有必胜的策略吗?分析:甲先划,把中间25,26,27这三个数划去,就将1到51这51个数分成了两组,每组有24个数.这样,只要乙在某一组里有数字可划,那么甲在另一组里相对称的位置上就总有数字可划.因此,若甲先划,且按上述策略进行,则甲必能获胜.[前铺] 两个人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁获胜.你选择先报数还是后报数?怎样才能获胜?分析:因为50(1+5)=8……2,所以要想获胜,应选择先报,第一次报2个数,剩下48个数是(1+5=)6的倍数,以后总把6的倍数个数留给对方,必胜.【例9】有11根火柴,两人轮流从中拿取,每次至少取1根.先取者第一次取得数目不限(但不能全部取走),以后每人取得数目不得超过另一人上次取得数目的2倍规定取得最后一根者为胜.先取者的获胜策略是什么?分析:甲第一次取3根,可获胜.甲取了3根以后剩下8根,乙如果取3,4,5,6根,那么甲将余下的取完,甲胜;乙如果取1根或者2根,那么甲接着取2根或者1根,此时剩下5根,以后若乙取2,3,4根,加将余下的取完,甲胜;若乙取1根,加再取1根,剩3根,无论乙再如何取,甲必胜.[拓展] 1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7个格.规定将棋子移到最后一格者输.甲为了获胜,第一步必须向右移多少格?分析:一开始棋子已占一格,棋子的右面有空格1111-1=1110(个).只要甲始终留给乙(1+7=)8的倍数加1格,就可获胜.(1111-1)(1+7)=138……6,所以甲第一步必须移5格,还剩下1105格,1105是8的倍数加1.以后无论以移几格,甲下次移的格数与乙移的格数之和是8,甲就必胜.[拓展] 有一堆火柴,甲先乙后轮流每次取走1~3根.取完全部火柴后,如果甲取得火柴总数是偶数,那么甲获胜,否则乙获胜.试分析这堆火柴的根数在1~11根时,谁将获.分析:显然,1根时乙胜,2根或3根时甲胜,4根时乙胜.5根时,甲先取1根,若乙取1根,则甲取3根,若乙取2根或3根,则甲取1根,甲胜.6根时,甲先取1根,若乙取1根或2根,则甲取3根;若乙取3根,则甲取1根,甲胜.7根或8根时,甲先取3根,以后同5根或6根的情况,甲胜.9根时,甲取1~3根,相当于8~6根时乙先取的情况,由上面的分析,最终乙可取得偶数根,则甲为奇数根,乙胜.10根时,甲先取1根,11根时,甲先取2根,转化为9根时乙先取的情况,甲胜.Ⅳ、卖酒趣题【例10】(★★★★奥数网题库)吝啬的卖酒老板老钱招聘卖酒伙计,他只给伙计两个分别为5升和3升的盛酒杯,要求满足所有顾客的买酒需求(当然顾客只需要整数升的酒),这下难倒了很多前来应聘的人,可是有一个聪明的放牛娃娃却做到了,你知道放牛娃娃是怎么样卖出一升酒的吗?分析:先将5升的酒杯盛满,倒入3升的容器中,再将3升的酒倒入酒缸中,将5升的酒杯中剩余的2升酒倒入3升的酒杯中;再次将5升的酒杯盛满,再将其中的酒倒入3升的容器中,使3升的酒杯装满,这样5升酒杯还剩4升酒;最后把3升酒杯里的酒全部倒入酒缸中,再次将5升酒杯中的酒倒入3升的第一次第二次第三次第四次第五次第六次第七次第八次5升 5 2 2 0 5 4 4 13升0 3 0 2 2 3 0 3还有更简单一方法:用3升的酒杯量2次倒入5升酒杯中,即可量出1升酒.[拓展1] 卖牛奶人有两桶10升装的牛奶.两个顾客各带容器去买2升牛奶.一个带的是5升的容器,另一个带的是4升的容器.这位卖牛奶人如何解决问题?分析:如下表:【例11】某人有12升啤酒一瓶,想从中倒出6升.但是他没有6升的容器,只有一个8升的容器和一个5升的容器.怎样的倒法才能使8升的容器中恰好装好了6升啤酒?分析:这个数学游戏有两种不同的解法,如下面的两个表所示.第一种解法:12 12 4 4 9 9 1 1 68 0 8 3 3 0 8 6 65 0 0 5 0 3 3 5 0第二种解法:12 12 4 0 8 8 3 3 11 11 6 68 0 8 8 0 4 4 8 0 1 1 6 5 0 0 4 4 0 5 1 1 0 5 0这一讲内容也许带给同学们无限的乐趣,也容同学们对数学产生了浓厚的兴趣,其实学习数学本身就是一中快乐.我们将在三升四的暑假班继续给大家介绍智巧趣题,更多、更有趣的题目等着大家,当然也会有更多的、更加新颖的解题思路和方法等着大家.1. (例1)蜗牛沿着10米高的柱子往上爬,白天它向上爬5米,而晚上又下降3米,问蜗牛爬到柱顶需要几天?分析:一昼夜可以爬2米,爬了3昼夜后再经过一个白天即可爬到柱顶,因此需要3天1夜.2. (例10)有大、中、小3个瓶子,最多分别可发装入水1000克、700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动动使得中瓶和小瓶上标出装100克水的刻度线,问最少要倒几次水?分析:63. (例7)桌子上放着50根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?分析:获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有55根火柴,50÷4=12……2,所以只要甲第一次取走2根,剩下48根火柴是4的倍数,以后甲总留给乙4的倍数根火柴,甲必胜.4. 学校组织一次乒乓球比赛,一共有9名选手,采用单循环制赛(每两位选手之间都进行一场比赛),那么一共要进行多少场比赛?专题展望练习一分析:将十位选手编号,1号将与其他九位选手进行比赛,一共要赛8场,2号要与除了1号以外的所有选手比赛,一共进行7场,……,8号选手只要跟9号选手进行比赛,9号选手跟以前的选手都已经进行过比赛,所以不用再进行比赛.所以一共有比赛场次8+7+…+2+1=36(场).5.(例5)一家人 6 口人,夜间要过一架独木桥,他们仅有一盏油灯照明,借助这盏灯,每次最多两人可以走过独木桥.而这 6 人过桥所需要的时间分别是 1 , 3 , 6 , 8 , 12 , 20 分钟,要命的是这盏灯只能点燃 47 分钟了,而没有灯照明,任何人企图过河那是必然跌落到深谷中.分析:有不同的解法,看其中一个.就用1,3,6,8,12,20表示这6人.步数此岸过桥彼岸用时1,3,6,8,12,201 1,3> 36,8,12,20 1,32 <1 11,6,8,12,20 33 12,20> 201,6,8 3,12,204 <3 31,3,6,8 12,205 1,3> 36,8 1,3,12,206 <1 11,6,8 3,12,207 6,8> 81 3,6,8,12,208 <3 31,3 6,8,12,209 1,3> 31,3,6,8,12,20共计用时45分钟.成长故事各有所长一只蝙蝠由于懂得一些天文常识,就骄傲起来.它批评大象个头虽大,却大而不当,反而因此行动笨拙缓慢;看见活蹦乱跳的兔子,就说它虽然跳得快,却不懂声纳和气流的原理,光在那儿胡乱跳着;它更不能忍受鸡有翅膀,却不懂得怎么利用它飞行……蝙蝠一天到晚自以为是地说:“我实在无法忍受这些无知又一无是处的家伙!”有一天,蝙蝠不小心落到河里,因为不懂得游泳的技巧,结果被活活淹死了.虽然它懂得天文地理,这时却一点儿也派不上用场.自信并不是自我夸大,唯我独尊.你懂的也许别人不懂,但是别人会的,你也不见得都会.千万不要用自己所具备的条件来衡量别人,这样只会注意到自己的优点,而抹杀了他人的长处.。
三年级奥数数字趣题在三年级的奥数学习中,数字趣题是一种很有趣且具有挑战性的题型。
通过这些数字趣题,孩子们可以在玩耍中培养对数字的敏感度和操作能力。
本文将介绍一些有趣的数字趣题,帮助三年级的孩子们提高数学思维和解题能力。
1. 乘法华容道这是一个类似于华容道的数字趣题。
首先,画一个3x3的方格,每个方格中填入1-9的数字,使得每行和每列的数字之积都相等。
通过调整数字的位置,孩子们需要找到符合要求的数字排列。
这个游戏可以培养孩子们对乘法的理解,同时也锻炼了孩子们的逻辑思考能力。
2. 完美算式这是一个关于相等关系的数字趣题。
给孩子们一列数字,比如1、2、3、4、5,在数字之间插入加号或减号,使得最终的算式结果为一个给定的目标数字。
孩子们需要根据数字间的相对大小和加减号的选择,灵活地运用计算能力来达成目标。
例如,给定的目标数字为10,那么可能的算式有1+2+3+4=10或者5+3+2-1=10等。
这个题目可以锻炼孩子们的运算和创新思维。
3. 数字填充这是一个填空题型的数字趣题。
在一个数独的方格中,给出一些已填数字和一些对应的条件,要求孩子们填入剩余的数字,使得每行、每列和每个宫内的数字都不重复。
通过考察孩子们对数独规则的理解和逻辑推理的能力,这个数字趣题可以帮助孩子们提高自己的数学思维和解题能力。
通过解决这些数字趣题,孩子们可以在玩耍中提高数学能力,培养对数字的敏感度和逻辑思考能力。
这些趣题不仅能够激发孩子们对数学的兴趣,还能够锻炼他们的计算能力、推理能力和创新思维。
家长和老师可以通过布置这些数字趣题的方式来激发孩子们的学习兴趣和积极性,帮助他们在数学学习中取得更好的成绩。
总结:在三年级的奥数学习中,数字趣题是一种有趣且具有挑战性的题型。
通过乘法华容道、完美算式和数字填充等数字趣题,孩子们可以在玩耍中培养对数字的敏感度和操作能力。
这些趣题不仅能够激发孩子们对数学的兴趣,还能够锻炼他们的计算能力、推理能力和创新思维。
三年级数学有趣经典的奥数题45道附答案1. 阿姨买了18个苹果,妈妈又给她买了6个苹果,那么阿姨一共有多少个苹果?答案:18 + 6 = 24个苹果。
2. 有12只小猫,其中有4只是白色的,请问白色猫的比例是多少?答案:4 ÷ 12 = 1/3,白色猫的比例是1/3。
3. 有一辆汽车每小时可以行驶60公里,那么它行驶100公里需要多长时间?答案:100 ÷ 60 = 1小时又40分钟。
4. 小明有10张贴纸,他送给好朋友2/5张,还剩下多少张贴纸?答案:10 × 2/5 = 4张贴纸。
5. 小明有15支铅笔,他送给同学3支,还剩下多少支铅笔?答案:15 - 3 = 12支铅笔。
6. 一链条有24个环,如果其中有3个环断裂了,那么还剩下多少个完整的环?答案:24 - 3 = 21个完整的环。
7. 一束鲜花有18朵,小明给了妈妈2/3朵鲜花,还剩下多少朵?答案:18 × 2/3 = 12朵鲜花。
8. 大象的鼻子有1.5米长,长颈鹿的颈子有2.2米长,哪个动物的颈子更长?答案:2.2 > 1.5,长颈鹿的颈子更长。
9. 一根绳子有2米长,小明用剪刀剪掉了1/4的长度,还剩下多长?答案:2 × 3/4 = 1.5米,还剩下1.5米长。
10. 一个长方形的周长是28厘米,它的宽度是6厘米,求它的长度。
答案:周长 = 2(长度 + 宽度),28 = 2(长度 + 6),长度 + 6 = 14,长度 = 14 - 6 = 8厘米。
11. 如果8个鸡蛋需要4分钟煮熟,那么12个鸡蛋需要多长时间煮熟?答案:8个鸡蛋煮熟需要4分钟,所以12个鸡蛋煮熟需要 12 ÷ 8 ×4 = 6分钟。
12. 三个相邻的整数之和是42,求这三个整数分别是多少?答案:42 ÷ 3 = 14,所以三个整数分别是13、14、15。
13. 一个数的三分之二等于15,求这个数是多少?答案:三分之二等于15,所以整个数等于 15 ÷ (2/3) = 15 × (3/2) = 22.5。
三年级数学有趣经典的奥数题及答案解析一、还原问题1、工程问题绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天?解答:200+ 4=50 (棵)(200+400) +50=12 (天)【小结】归一思想.先求出一天种多少棵树,再求共需几天完成任务.单一数:200+ 4=50 (棵),总共的天数是:(200+400) +50=12 (天).2.还原问题3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的鹦鹉一样多.求3个笼子里原来各养了多少只鹦鹉?解答:78 + 3=26 (只)第1个笼子:26+8=34 (只)第2个笼子:26-8+6=24 (只)第3个笼子:26-6=20 (只)二、楼梯问题1、上楼梯问题某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?解答:上一层楼梯需要:48+ (4-1 ) =16(秒)从4楼走到8楼共走:8-4=4 (层)楼梯还需要的时间:16X 4=64 (秒)答:还需要64秒才能到达8层。
2.楼梯问题晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?解:每一层楼梯有:36+ (3-1) =18 (级台阶)晶晶从1层走到6层需要走:18X (6-1 ) =90 (级)台阶。
答:晶晶从第1层走到第6层需要走90 级台阶。
三、页码问题1.黑白棋子有黑白两种棋子共300枚,按每堆3枚分成100堆。
其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。
那么在全部棋子中,白子共有多少枚?解答:只有1枚白子的共27堆,说明了在分成3枚一份中一白二黑的有27堆;有2枚或3枚黑子的共42堆,就是说有三枚黑子的有42-27=15 堆;所以三枚白子的是15堆:还剩一黑二白的是100-27-15-15=43 堆:白子共有:43X 2+15X 3=158 (枚)。
小学三年级奥数试题集锦1第一讲智巧趣题1.用6根长短、粗细一样的火柴棍拼出四个等边三角形(即三边相等的三角形),如何拼?2.一只挂钟,1点整敲1下,2点整敲2下……12点整敲12下,每半点整敲1下。
一昼夜(24时)一共要敲多少下?3.打靶时,小林和小峰各打了三枪,环数为1,2,4,5,7,9环。
已知小林的总环数比小峰的总环数多6环。
哪几环是小峰打的?4.五个小朋友围坐在一个大圆桌边,按顺时针方向依次编为1,2,3,4,5号。
老师给1,2,3,4,5号小朋友分别发1,2,3,4,5个苹果。
从5号小朋友开始,依次按顺时针方向看,若邻坐的苹果比自己少,则送给对方一个;若邻坐的苹果不比自己少就不送。
照此做下去,到第三圈为止,他们每人手中各有多少个苹果?5.球场休息时,保管员慌忙中把甲、乙、丙三个运动员先前交给他的水瓶都递送错了,结果甲喝的是丙的。
乙、丙各喝的是谁的?6.有一个台称,只能称40千克以上的重量,甲、乙、丙三个小朋友的体重都在20~39千克之间,他们都想知道自己的体重。
用这台称怎样才能知道他们各自的体重?7.(1)三个小朋友三分钟削三支铅笔,九个小朋友六分钟削几支铅笔?(2)三只猫三天吃三只老鼠,六只猫几天吃18只老鼠?第二讲速算与巧算一、用简便方法计算下面各题①17×100②1112×5③23×9④23×99⑤12345×11⑥56789×11⑦36×15⑧123×25×4⑨456×2×125×25×5×4×8⑩25×32×125(11)3600÷25提高班一、用简便方法计算下列各题。
1.(1)12×4×25;(2)125×13×8;(3)125×56;(4)25×32×125。
三年级奥数第讲数学趣
题
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
数学趣题
在日常生活中,常有一些妙趣横生,开发智力的问题,如:3个小朋友唱一首歌要3分钟,100个小朋友同时唱一首歌要几分钟?类似这样的问题一般不需要进行较复杂的计算,也不能用常规方法来解决,而常常需要用小朋友的灵感、技巧和机智获得答案。
对于趣味问题,首先读懂题意,然后要经过充分地分析和思考,运用基础知识以及自己的聪明才智巧妙地解决。
例题1:一条毛毛虫由幼虫长成成虫,每天长大一倍,30天能长大到20厘米。
问长大到5厘米要用多少天?
☆同类练习:
1.如果每人步行的速度相同,2个人一起从学校到儿童乐园要3小时,那么6个人一起从学校到儿童乐园要多少小时?
2.一个池塘中的睡莲,每天长大一倍,经过10天可以把整个池塘遮完。
问睡莲要遮住半个池塘需要多少天?
3.一条小青虫由幼虫长成成虫,每天长大一倍,20天能长大到36厘米,问长大到9厘米要多少天
例题2:小猫要把15条鱼分成数量不等的四堆,问最多的一堆最多可以放多少条鱼?
☆同类练习:
1.小明要把20颗珠子分成数量不等的五堆,问最多的一堆中可以放多少颗珠子
2.兔妈妈拿来一盘萝卜共25个,分给4只小兔,要使每只小兔分得的个数不相同,问分得最多的一只小兔最多分得几个萝卜
3.王老师为18人的舞蹈队设计队形,要求分成人数不等的五队,最多的一队最多可以分几人?
例题3:把100只桃子分装在7个篮子里,要求每个篮子里桃子的只数都带有6这个数字。
想想该怎么分?
☆同类练习:
1.把100个鸡蛋分装在6个盒子里,要求每个盒子里装的鸡蛋数目都带有6。
想想看,该怎么分配吧?
2.7只箱子分别放有1个、2个、4个、8个、16个、32个、64个苹果,现在要从这7只箱子里取出87个苹果,但每只箱子要么不取,要么全取,你觉得应该怎么取呢?
3.有人认为8是个吉祥数字,得到东西的数量都希望含有数字8.现有200块糖要分给5个小朋友,请你帮助设计一个符合要求的分糖方案。
例题4:舒舒和思思到书店买书,两个人都买动脑经这本书,但是钱都不够,舒舒缺2元8角,思思缺1分钱,用两个人合起来的钱买一本书还是不够。
这本书多少钱?
☆同类练习:
1.李华和张洁到书店买同一种练习本,但发现钱都没有带够,李华缺6角,张洁缺1分钱,但两人合起来买一本还是不够,这种本子多少钱一本?
2.小华和娟娟到商店买文具盒,两人看中了同一个文具盒,但钱都不够,小华缺9元4角,娟娟缺1分钱,两人的钱合起来买这个文具盒仍然不够。
这个文具盒多少钱?
3.张明和李亮到超市去买玩具,两人同时看一款玩具枪,但钱都不够,张明缺54元,李亮缺1分钱,两人的钱合起来买这把玩具枪仍然不够。
这个玩具枪多少钱?
例题5:王阿姨和李阿姨到商场买电视机,两人都看中了同一款电视机,但王阿姨缺600元,李阿姨缺900元,把两人的钱合起来正好可以买这样的一台电视机。
这台电视机多少钱?
☆同类练习:
1.小红和小丽去买彩笔,两人看中了同一款彩笔,但小红缺12元,小丽缺15元,把两人的钱合起来正好可以买这款彩笔。
这款彩笔多少钱?
2.张叔叔和李叔叔去买自行车,两人看上了同一个自行车,但张叔叔缺167元,李叔叔缺143元,把两人的钱合起来正好够买这辆自行车。
这辆自行车多少钱?
3.植树节到了,张俊和王明去植树,两人要植树的棵树是一样多的,张俊植的棵树笔要求少9棵,王明植的棵树笔要求少8棵,两人合起来植的棵树正好够一个人的要求。
要求两人共植树多少棵?
例题6:
大杯子能装50克水,小杯子能装30克水,你能用两个杯子量出70克水吗?
☆同类练习:
1.一休去海边打水,他有两个桶,大桶能装9升水,小桶能装4升水。
要想恰好从河中打6升水带回去,他应该怎么办?
2.有两个砝码,一个重5克,另一个重7克,你能用这两个砝码称出9克重的沙子吗如果能,怎样称
3.有大、中、小三个瓶子,分别能装水1000毫升、700毫升和300毫升。
现在大瓶中装满水,希望利用三个瓶子相互间倒水,使得在中瓶和小瓶上能够标出100毫升的刻度线,但是水不能洒地上。
可以怎么办?
课外练习
1、5只猫5天能捉5只老鼠,照这样计算,要在100天里捉100只老鼠要多少只猫?
2、一条小青虫由幼虫长成成虫,每天长大一倍,20天能长到36厘米。
问长到9厘米时要用几天?
3、老师为共有18人的舞蹈队设计队形,要求分成人数不等的5队,问最多的一队最多可排几人?
4、有人认为8是个吉祥数字,他们得到的东西的数量都要含有数字8。
现在有200块糖要分给一些人,请你帮助设计一个吉祥的分糖方案。
5、李华和张洁到商店买同一种练本,但发现钱都没带够,李华缺6角,张洁缺2分钱,但两人合起来买一本仍不够。
这种本子一本多少钱?。