高中数学《正态分布》
- 格式:ppt
- 大小:1.62 MB
- 文档页数:57
高中数学正态分布正态分布是高中数学中一个重要的概率分布,也被称为高斯分布。
它在自然界和社会科学中具有广泛的应用,可以描述许多随机变量的分布情况。
正态分布具有许多独特的特性,包括对称性、钟形曲线、均值和标准差等。
本文将介绍正态分布的基本概念、性质以及它在实际问题中的应用。
一、基本概念正态分布是一种连续型的概率分布,它的概率密度函数可以用一个钟形曲线来表示。
钟形曲线关于均值对称,左右两边的面积相等。
正态分布的概率密度函数可以用数学公式表示,但在本文中我们不涉及具体公式。
二、性质1. 对称性:正态分布的钟形曲线关于均值轴对称,即曲线左右两侧的面积相等。
2. 峰度:正态分布的峰度较高,表示数据相对集中,没有明显的长尾巴。
3. 均值和标准差:正态分布的均值和标准差决定了曲线的位置和形状。
均值决定了曲线的中心位置,标准差决定了曲线的宽度。
三、应用举例正态分布广泛应用于各个领域,下面举几个例子说明其具体应用:1. 身高分布:人类的身高大致符合正态分布,均值是一定范围内的平均身高,标准差则决定了身高的变化范围。
2. 考试成绩:在一次考试中,学生的成绩往往呈现出正态分布的特点。
均值代表了班级的平均水平,标准差则反映了学生成绩的离散程度。
3. 生产质量控制:正态分布在生产过程中的质量控制中发挥重要作用。
通过对产品尺寸、重量等特征的测量,可以判断产品是否符合正态分布,从而进行质量控制和改进。
四、正态分布的应用思考正态分布的应用思考是高中数学中常见的问题类型之一。
通过理解正态分布的基本概念和性质,我们可以解决一些实际问题,例如:1. 求解概率:已知某一正态分布的均值和标准差,我们可以求解某个范围内的概率,从而回答一些关于随机事件的概率问题。
2. 参数估计:通过样本数据对总体的均值和标准差进行估计,从而推断总体的特征。
3. 假设检验:通过正态分布的性质,可以进行关于总体均值的假设检验,从而判断总体是否满足某种条件。
高中数学中的正态分布是一种重要的概率分布,具有广泛的应用。
高三数学正态分布知识点正文:正态分布是概率论和统计学中经常应用的一种重要分布。
其特点是在均值附近的概率较高,而在离均值较远处的概率较低。
在高中数学的学习中,正态分布也是一个重要的知识点。
本文将介绍高三数学正态分布的相关知识。
一、正态分布的定义正态分布,又称为高斯分布,是一种连续型概率分布。
对于一个服从正态分布的随机变量X,其概率密度函数可以表示为:f(x) = (1 / sqrt(2 * π * σ^2)) * exp(-(x - μ)^2 / (2 * σ^2))其中,μ是均值,σ是标准差。
二、正态分布的性质1. 对称性:正态分布是以均值为对称轴,两侧面积相等的曲线。
2. 峰度:正态分布的峰度是指曲线的陡峭程度,峰度值为3。
3. 切点:正态分布曲线与均值之间会有两个切点,也即均值加减标准差的位置。
三、标准正态分布标准正态分布是指均值为0,标准差为1的正态分布。
它是对正态分布进行标准化后的结果。
对于一个服从正态分布的随机变量X,可以通过以下公式将其转化为标准正态分布的随机变量Z:Z = (X - μ) / σ四、正态分布的应用正态分布在实际生活和科学研究中具有广泛的应用,以下是几个常见的应用场景:1. 质量控制:正态分布可以帮助企业在生产过程中进行质量控制,通过控制产品的均值和标准差,来确保产品的质量稳定。
2. 统计分析:正态分布在统计学中扮演了重要角色,可以用于分析和描述大量数据的分布情况,从而得出结论或进行预测。
3. 考试评分:在考试评分过程中,教师常常采用正态分布来确定分数段及相应的等级,从而更公平地进行评价。
4. 实验设计:科学实验中常常会涉及到测量误差和数据分布的问题,正态分布可以作为参考,帮助科研人员进行实验设计和数据分析。
五、常用的正态分布应用题1. 求解概率:给定正态分布的均值和标准差,可以求解指定区间的概率。
2. 求解分位数:给定正态分布的均值和标准差,可以求解给定概率下的分位数,即求解落在该概率下的随机变量取值。
高中正态分布三个公式第一,正态分布的概念。
正态分布又称为高斯分布或钟形曲线,是一种对称的连续概率分布。
在数学上,正态分布的概率密度函数可以表达为:f(x)=1/(σ√(2π))*e^(-(x-μ)²/(2σ²))第二,正态分布的性质。
正态分布具有以下几个重要的性质:1.对称性:正态分布是一种对称的分布,即曲线以均值μ为中心点对称。
2.均值与中位数和众数相等:正态分布的均值、中位数和众数都相等,即μ。
3.标准差刻画曲线的宽度:标准差σ越大,曲线越宽;标准差σ越小,曲线越窄。
4.68-95-99.7法则:在正态分布中,约有68%观测值落在均值正负一个标准差范围内,约有95%观测值落在均值正负两个标准差范围内,约有99.7%观测值落在均值正负三个标准差范围内。
第三,正态分布的三个公式。
正态分布有很多重要的公式,这里介绍其中三个常用的公式。
1. Z-Score公式。
Z-Score用于将一些数值转化为标准正态分布下的相对位置,可以计算一些取值离均值的距离,即z=(x-μ)/σ。
其中,z是标准正态分布下的相对位置,x是原始分布中的取值。
2.区域计算公式。
正态分布曲线下的一些区域面积可以通过累积分布函数计算。
对于给定的区间[a,b],可以计算出该区间内的概率P(a≤X≤b)。
这个概率可以通过计算标准化变量的累积分布函数来求得。
3.逆变换公式。
逆变换公式用于计算一些百分位数对应的数值,即给定概率P,求解X,使得P(X≤X)=P。
逆变换公式可以通过标准正态分布的反函数来计算。
以上是关于高中正态分布的概念、性质和三个公式的介绍。
正态分布在诸多领域中都有广泛应用,例如自然科学、社会科学和工程领域等。
了解正态分布的概念和性质,掌握相关的计算公式,可以帮助我们更好地理解和应用正态分布。
第八讲 正态分布【教材扫描】1.正态曲线我们把函数,()x μσϕ=22()2x μσ--,(,)x ∈-∞+∞(其中μ是样本均值,σ是样本标准差)的图象称为正态分布密度曲线,简称正态曲线.正态曲线呈钟形,即中间高,两边低.2.正态分布随机变量X 落在区间(,]a b 的概率为()P a X b <≤=,()d ba x x μσϕ⎰,即由正态曲线,过点(,0)a 和点(,0)b 的两条x 轴的垂线,及x 轴所围成的平面图形的面积,如下图中阴影部分所示,就是X 落在区间(,]a b 的概率的近似值.一般地,如果对于任何实数a ,()b a b <,随机变量X 满足,()()d ba x P a Xb x μσϕ<≤=⎰,则称随机变量X 服从正态分布.正态分布完全由参数μ,σ确定,因此正态分布常记作2(,)N μσ.如果随机变量X 服从正态分布,则记为2(,)X N μσ~.其中,参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.3.正态曲线的性质(1)曲线位于x 轴上方,与x 轴不相交;(2)曲线是单峰的,它关于直线x μ=对称;(3)曲线在x μ=; (4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中,σ越大,曲线越“矮胖”,表示总体的分布越分散.4.正态分布的3σ原则若2(,)X N μσ~,则对于任意的实数0a >,,()d ()a a P a X a x x μμμσϕμμ+--<≤+=⎰为下图中阴影部分的面积,对于固定的μ和a 而言,该面积随着σ的减小而变大.这说明σ越小,X 落在区间(,]a a μμ-+的概率越大,即X 集中在μ周围的概率越大.特别地,有()0.6826P X μσμσ-<≤+=;(22)0.9544P X μσμσ-<≤+=;(3P X μσ-<3)μσ≤+0.9974=.由(33)P X μσμσ-<≤+0.9974=,知正态总体几乎总取值于区间(3,3)μσμσ-+之内.而在此区间以外取值的概率只有0.0026,通常认为这种情况在一次试验中几乎不可能发生.在实际应用中,通常认为服从于正态分布2(,)N μσ的随机变量X 只取(3,3)μσμσ-+之间的值,并简称之为3σ原则.【知识运用】题型一:利用正态曲线的对称性求概率【例1】已知随机变量X 服从正态分布2(2,)N σ,()40.76P X <=,则(0)P X ≤=A .0.24B .0.48C .0.52D .0.76【解析】由2(2,)X N σ~,可知其正态曲线如下图所示,对称轴为直线2x =,则(0)P X ≤=(4)P X ≥=1410().760.24P X =-<=-=.故选A【变式】1.若随机变量ξ服从正态分布(0,1)N ,已知( 1.9)0.028P ξ<-=,则||( 1.9)P ξ<=A .0.028B .0.056C .0.944D .0.972【解析】由随机变量ξ服从正态分布(0,1)N ,可得( 1.9)1( 1.9)P P ξξ<=-≤-,所以||( 1.9)P ξ<=?( 1.9 1.9)( 1.9)( 1.9)12( 1.9)120.0280.944P P P P ξξξξ-<<=<-≤-=-≤-=-⨯=.故选C2.已知随机变量X ~N(2,σ2),若P(X<a)=0.32,则P(a≤X<4-a)=________.解析:由正态分布图象的对称性可得:P(a≤X<4-a)=1-2P(X<a)=0.36.答案:0.363.设随机变量X ~N(2,9),若P(X>c +1)=P(X<c -1).(1)求c 的值;(2)求P(-4<X≤8).解:(1)由X ~N(2,9)可知,密度函数关于直线x =2对称(如图所示).∵P(X>c +1)=P(X<c -1),故有2-(c -1)=(c +1)-2,∴c =2.(2)P(-4<X≤8)=P(2-2×3<X≤2+2×3)=P(μ-2σ<X≤μ+2σ)=0.954 4.题型二:由特殊区间求概率【例2】为了了解某地区高三男生的身体发育状况,抽查了该地区1000名年龄在17岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X (单位:kg )服从正态分布(,4)N μ,且正态分布密度曲线如下图所示.若体重大于58 kg 小于等于62kg 属于正常情况,则这1000名男生中属于正常情况的人数约为A .997B .954C .819D .683【解析】由题意,可知60μ=,2σ=,故(5862)()0.6826P X P X μσμσ<≤=-<≤+=,从而属于正常情况的人数是1 0000.6826683⨯≈.故选D【变式】某设备在正常运行时,产品的质量服从正态分布,其参数为1000μ=g ,21σ=,为了检验设备运行是否正常,质量检查员需要随机地抽取产品,测量其质量.当检验员随机地抽取一个产品,测得其质量为1007g 时,他立即要求停止生产,检查设备.他的决定是否有道理呢?【解析】如果设备正常运行,产品质量服从正态分布2(,)N μσ,根据3σ原则可知,产品质量在3μσ-=10003997g -=和3100031003g μσ+=+=之间的概率为0.9974,而质量超出这个范围的概率只有0.0026,这是一个几乎不可能出现的事件.但是检验员随机抽取的产品为1007g ,这说明设备的运行极可能不正常,因此检验员的决定是有道理的题型三 :正态分布实际运用[例3] 在某次数学考试中,考生的成绩X 服从一个正态分布,即X ~N(90,100).(1)试求考试成绩X 位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?[解] ∵X~N(90,100),∴μ=90,σ=100=10.(1)由于X在区间(μ-2σ,μ+2σ)内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩X位于区间(70,110)内的概率就是0.954 4.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.由于变量X在区间(μ-σ,μ+σ)内取值的概率是0.682 6,所以考试成绩X位于区间(80,100)内的概率是0.682 6,一共有2 000名考生,所以考试成绩在(80,100)间的考生大约有2 000×0.682 6≈1 365(人).【变式】1.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间(单位:分)服从X~N(50,102),则他在时间段(30,70)内赶到火车站的概率为________.解析:∵X~N(50,102),∴μ=50,σ=10.∴P(30<X<70)=P(μ-2σ<X<μ+2σ)=0.954 4.答案:0.954 42.某厂生产的圆柱形零件的外直径X服从正态分布N(4,0.052),质量检查人员从该厂生产的1 000个零件中随机抽查一个,测得它的外直径为3.7 cm,该厂生产的这批零件是否合格?解:由于X服从正态分布N(4,0.052),由正态分布的性质,可知正态分布N(4,0.052)在(4-3×0.05,4+3×0.05)之外的取值的概率只有0.003,3.7∉(3.85,4,15),这说明在一次试验中,出现了几乎不可能发生的小概率事件,据此可以认为该批零件是不合格的.【强化练习】1.关于正态分布N(μ,σ2),下列说法正确的是( )A.随机变量落在区间长度为3σ的区间之外是一个小概率事件B.随机变量落在区间长度为6σ的区间之外是一个小概率事件C.随机变量落在(-3σ,3σ)之外是一个小概率事件D.随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件解析:选D ∵P(μ-3σ<X<μ+3σ)=0.997 4.∴P(X>μ+3σ或X<μ-3σ)=1-P(μ-3σ<X<μ+3σ)=1-0.997 4=0.002 6.∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.2.设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图象如图所示,则有( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2解析:选A μ反映的是正态分布的平均水平,x =μ是正态密度曲线的对称轴,由图可知μ1<μ2; σ反映的正态分布的离散程度,σ越大, 越分散, 曲线越“矮胖”,σ越小,越集中,曲线越“瘦高”, 由图可知σ1<σ2.3.设随机变量X ~N(1,22),则D ⎝ ⎛⎭⎪⎫12X =( ) A .4 B .2 C .12D .1 解析:选D 因为X ~N(1,22),所以D(X)=4,所以D ⎝ ⎛⎭⎪⎫12X =14D(X)=1. 4.若随机变量X 的密度函数为f(x)=12π·e -x 22,X 在区间(-2,-1)和(1,2)内取值的概率分别为p 1,p 2,则p 1,p 2的关系为( )A .p 1>p 2B .p 1<p 2C .p 1=p 2D .不确定 解析:选C 由正态曲线的对称性及题意知:μ=0,σ=1,所以曲线关于直线x =0对称,所以p 1=p 2.5.已知一次考试共有60名同学参加,考生的成绩X ~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内( )A .(90,110]B .(95,125]C .(100,120]D .(105,115] 解析:选C 由于X ~N(110,52),所以μ=110,σ=5,因此考试成绩在区间(105,115],(100,120],(95,125]上的概率分别应是0.682 6,0.954 4,0.997 4,由于一共有60人参加考试,∴成绩位于上述三个区间的人数分别是:60×0.682 6≈41人,60×0.954 4≈57人,60×0.997 4≈60人.6.已知随机变量2(2,)X N σ~,若()0.4P X a <=,则(4)P a X a ≤<-=A .0.4B .0.2C .0.1D .0.6 【解析】因为2(2,)X N σ~,()0.4P X a <=,所以(4)0.4P X a ≥-=,所以(4)P a X a ≤<-10.40.40.2=--=.故选B .7.已知随机变量ξ服从正态分布2(0,)N σ,若( 1.1)0.023P ξ>=,则( 1.1 1.1)P ξ-≤≤=A .0.954B .0.023C .0.977D .0.046【解析】因为随机变量ξ服从正态分布2(0,)N σ,则0μ=,则正态分布密度曲线关于直线0x =对称;由( 1.1)0.023P ξ>=及正态曲线的性质有( 1.1)0.023P ξ<-=,所以( 1.1 1.1)1P ξ-≤≤=-( 1.1)( 1.1)10.0230.0230.954p P ξξ>-<-=--=.故选A .8.已知随机变量2(0,)X N σ~,若(||2)P X a ≤=,则(2)P X >=A .12a -B .2aC .1a -D .12a + 【解析】由题意可得正态分布密度曲线关于直线0x =对称,因为正态分布密度曲线与x 轴围成的面积为1,所以A . 9.已知随机变量X 服从正态分布N(2,σ2),则P(X<2)=________.解析:由题意知曲线关于x =2对称,因此P(X<2)=12.答案:129.已知随机变量ξ服从正态分布(0,2)N ,若(2)P p ξ≥=,则(20)P ξ-<<=______________. 【解析】依题意有11(20)(02)(2)22P P P p ξξξ-<<=<<=-≥=- 10.已知随机变量ξ服从正态分布2(2,)N σ,若(4)0.7P ξ<=,则(02)P ξ<<=______________. 【解析】(02)(24)(4)(2)0.70.50.2P P P P ξξξξ<<=<<=<-<=-=.11()f x(,)μ-∞+∞∈,0σ>,则可以作为正态分布密度函数的为______________.(填函数对应的序号)(,)μ-∞+∞∈,所以(,)μ-∞-+∞∈,故它可以作为正态分布密度函数;对于②,若1σ=0μ=时的正态分布密度函数;对于12.已知随机变量X 服从正态分布2(,)N μσ,其正态曲线在(0),8-∞上是增函数,在(80,)+∞上为减函数,且7288()0.6826P X <≤=.(1)求参数μ,σ的值;(2)求7(64)2P X <≤的值.【解析】(1)因为正态曲线在(0),8-∞上是增函数,在(80,)+∞上为减函数,所以正态曲线关于直线80x =对称,所以80μ=.又7288()0.6826P X <≤=,结合()0.6826P X μσμσ-<≤+=可知8σ=.(2)因为(2P μσ-<2)0.9544X μσ≤+=,且()(6496)P X P X <=>,()640.9772P X >=. 又1()(()1721728810.68260.15872)()2P X P X ≤=-<≤=⨯-=, 所以()()()647264720.9772(10.15870.13)59P X P X P X <≤=>->=--=.13、从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .①利用该正态分布,求(187.8212.2)P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求()E X .附:12.2≈.若2(,)Z N μσ~,则()0.6826P Z μσμσ-<<+=,(22)P Z μσμσ-<<+0.9544=.【解析】(1)抽取产品的质量指标值的样本平均值x 和样本方差2s 分别为1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=.(2)①由(1)知,Z 服从正态分布(200,150)N ,从而(187.8212.2)P Z <<(20012.2P Z =-<< 20012.2)0.6826+=.②由①可知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知(100,0.6826)X B ~,所以()1000.682668.26E X =⨯=.。
知识图谱-正态分布正态分布的概念正态分布的性质与应用第04讲_正态分布错题回顾正态分布知识精讲一. 正态分布密度函数如果随机变量的概率密度函数,,我们称其图象为正态分布密度曲线. 其中是圆周率;是自然对数的底;是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为.二. 正态分布如果随机变量落在区间上的概率为,则称随机变量满足正态分布.正态分布由参数唯一确定,如果随机变量,根据定义有:.三. 正态曲线的性质正态曲线具有以下性质:(1)曲线在轴的上方,与轴不相交.(2)曲线关于直线对称.(3)曲线在时位于最高点.(4)当时,曲线上升;当时,曲线下降.并且当曲线向左、右两边无限延伸时,以轴为渐近线,向它无限靠近.(5)当一定时,曲线的形状由确定.越大,曲线越“矮胖”,表示总体越分散;越小,曲线越“瘦高”,表示总体的分布越集中.四. 标准正态曲线当时,正态总体称为标准正态总体,其相应的函数表示式是,,其相应的曲线称为标准正态曲线,标准正态分布记做.记,指总体取值小于的概率,则.任何正态分布的概率问题均可利用公式转化为标准正态分布的概率问题.五. 正态分布在三个特殊区间的概率值1. 原则在实际应用中,通常认为服从正态分布的随机变量只取之间的值,并简称为原则. 在此区间以外取值的概率只有0.0026,此为小概率事件.2. 三个特殊区间的概率值三点剖析一. 注意事项1. 参数是反映随机变量取值的平均水平的特征数,可以用样本均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.把的正态分布叫做标准正态分布;2. 正态分布是自然界中最常见的一种分布,许多现象都近似地服从正态分布,如长度测量误差,正常生产条件下各种产品的质量指标等;3. 一般的,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似地服从正态分布.题模精讲题模一正态分布的概念例1.1、设随机变量,若,则=()A、B、pC、D、例1.2、设随机变量X~N(μ,62),Y~N(μ,82).记p1=p(X≤μ-6),p2=p (Y≥μ+8),则有()A、p1=p2B、p1>p2C、p1<p2D、p1,p2大小关系无法判断例1.3、设有一正态总体,它的概率密度曲线是函数的图象,且,则这个正态总体的均值与标准差分别是( )A、10与8B、10与2C、8与10D、2与10例1.4、证明若服从()则一定有:.题模二正态分布的性质与应用例2.1、正态总体为,时,概率密度函数是:,.(1)证明是偶函数;(2)求的最大值;(3)利用指数函数的性质说明的增减性.例2.2、若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在以下设计的,如果某地成年男子的身高(单位:cm),则该地公共汽车门的高度应设计为多高?例2.3、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表Φ(x0)=P(x<x0)例2.4、从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z-N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.随堂练习随练1.1、若正态曲线函数为,则( )A、有最大值,也有最小值B、有最大值,没有最小值C、无最大值,也无最小值D、没有最大值,但有最小值随练1.2、若随机变量,且,,则等于()A、B、C、D、随练1.3、已知,若,则()A、0.2B、0.3C、0.7D、0.8随练1.4、设服从,试求:(1)(2)(3)(4)随练1.5、某校在模块考试中约有1000人参加考试,其数学考试成绩ξ~N(90,a2),(a>0试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生人数约为()A、200B、300C、400D、600随练1.6、某县农民平均收入服从元,元的正态分布.求:(1)此县农民年均收入在500元~520元之间的人数的百分比.(2)若要使农民的年均收入在()内的概率不小于0.95,则的值应至少为多大?随练1.7、一投资者在两个投资方案中选择一个,这两个投资方案的利润(万元)分别服从正态分布和,投资者要求利润超过5万元的概率尽量地大,那么他应选择哪一个方案?自我总结课后作业作业1、设随机变量,则的值为()A、1B、2C、D、4作业2、已知随机变量服从正态分布N(2,1),且P(1≤x≤3)=0.6826,则P(x <1)=()A、0.1588B、0.1587C、0.1586D、0.1585作业3、设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为,则μ为()A、1B、4C、2D、不能确定作业4、以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于()A、Φ(μ+σ)-Φ(μ-σ)B、Φ(1)-Φ(-1)D、2Φ(μ+σ)C、Φ()作业5、在下列命题中,①“”是“”的充要条件;②的展开式中的常数项为2;③设随机变量,若,则.其中所有正确命题的序号是()A、②B、③C、②③D、①③作业6、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上(含90分)的学生有12名.(1)试问此次参赛学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表作业7、某厂生产的零件外直径(mm),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9 mm和7.5 mm,则可认为()A、上、下午生产情况均为正常B、上、下午生产情况均为异常C、上午生产情况正常,下午生产情况异常D、上午生产情况异常,下午生产情况正常。