正态分布教学设计方案书
- 格式:doc
- 大小:128.00 KB
- 文档页数:7
正态分布示范教案第一章:正态分布的定义与特征1.1 引入:通过现实生活中的例子(如考试分数、人的身高等)引导学生了解正态分布的概念。
1.2 讲解正态分布的定义:一个连续型随机变量X服从正态分布,如果其概率密度函数为f(x) = (1/σ√(2π)) e^(-(x-μ)^2/(2σ^2)),其中μ是分布的均值,σ是分布的标准差。
1.3 分析正态分布的特征:均值、标准差、对称性、拖尾现象等。
1.4 练习:让学生通过图表或计算器观察正态分布的特性。
第二章:正态分布的参数估计2.1 引入:讲解参数估计的概念,以及正态分布参数估计的重要性。
2.2 讲解均值和标准差的点估计:利用样本均值和样本标准差来估计总体均值和总体标准差。
2.3 讲解置信区间:以样本均值为例,讲解如何计算置信区间,并解释其含义。
2.4 练习:让学生运用给出的数据,计算正态分布的均值和标准差的点估计,以及置信区间。
第三章:正态分布的假设检验3.1 引入:讲解假设检验的概念,以及正态分布假设检验的应用。
3.2 讲解单样本Z检验:通过给出样本数据,引导学生了解如何进行正态分布的单样本Z检验。
3.3 讲解两样本Z检验:通过给出两个样本数据,引导学生了解如何进行正态分布的两样本Z检验。
3.4 练习:让学生运用给出的数据,进行正态分布的假设检验。
第四章:正态分布的应用4.1 引入:讲解正态分布在日常生活中的应用,如质量控制、医学等领域。
4.2 讲解正态分布的应用案例:如某产品的质量控制,如何利用正态分布进行控制限的确定。
4.3 讲解正态分布在其他领域的应用:如医学中正常值的判断、心理测量等。
4.4 练习:让学生通过实例,运用正态分布解决实际问题。
第五章:总结与拓展5.1 总结:回顾本章所讲内容,让学生掌握正态分布的定义、特征、参数估计和假设检验。
5.2 拓展:讲解其他连续型分布,如t分布、卡方分布等,以及它们与正态分布的关系。
5.3 练习:让学生运用所学的知识,解决更复杂的实际问题。
A版)选修2-32.4 正态分布设计教师:高二数学组一、教学目标及其解析(一)教学目标:1.通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.2.了解正态曲线的基本特点.3.了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.(二)解析:正态分布在统计中是很常见的分布,它能刻画很多随机现象。
从生活实践入手,描绘频率直方图,进而理解正态曲线,结合定积分的有关知识理解其概率分布列,结合图象认识参数μ,σ的几何意义.提高学生用数学知识分析现实问题的能力.善于从复杂多变的现象中发现问题的实质,提高识别能力.二、教学重难点解析(一)重点、难点:重点:了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.难点:通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.(二)解析:正态分布密度函数的推导是十分困难的,一般教科书采用直接给出正态分布密度函数表达式的方法,这使学生在很长一段时间是不理解正态分布的实际含义。
可以通过直观方法引入正态分布密度曲线,也可以用样本平均值和样本标准差来估计,正态曲线的特点包括图像与坐标轴之间的关系,单峰性,对称性,峰值的位置环境等。
三、教学过程设计问题1.什么是正态曲线?问题2.什么是正态分布?正态分布又有哪些特点?例1.如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机总量的均值和方差.[解] 从正态曲线可知,该正态曲线关于直线x =20对称,最大值为12π,所以μ=20, 12πσ=12π, ∴σ= 2.于是φμ,σ(x )=12π·e-x -2024,x ∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.方法归纳本题主要考查正态曲线的图象及性质特点,其具有两大明显特征:1.对称轴方程x =μ;2.最值1σ2π.这两点把握好了,参数μ,σ便确定了,代入φμ,σ(x )中便可求出相应的解析式.变式训练1.如图,曲线C 1:f (x )=12πσ21e -x -μ2 2σ2(x ∈R ),曲线C 2:φ(x )=12πσ2e-x -μ2 2σ2(x ∈R ),则( )A .μ1<μ2B .曲线C 1与x 轴相交 C .σ1>σ2D .曲线C 1,C 2分别与x 轴所夹的面积相等解析:选D.由正态曲线的特点易知μ1>μ2,σ1<σ2,曲线C 1,C 2分别与x 轴所夹面积相等,故选D.例2.设X ~N (1,22),试求: (1)P (-1<X ≤3);(2)P (3<X ≤5).[解]因为X~N(1,22),所以μ=1,σ=2.(1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ)=0.682 6.(2)因为P(3<X≤5)=P(-3≤X<-1),所以P(3<X≤5)=12[P(-3<X≤5)-P(-1<X≤3)]=12[P(1-4<X≤1+4)-P(1-2<X≤1+2)]=12[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12(0.954 4-0.682 6)=0.135 9.方法归纳对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:(1)对任意的a,有P(X<μ-a)=P(X>μ+a);(2)P(X<x0)=1-P(X≥x0);(3)P(a<X<b)=P(X<b)-P(X≤a).变式训练2.在某项测量中,测量结果服从正态分布N(1,4),求正态总体X在区间(-1,1)内取值的概率.解:∵由题意知μ=1,σ=2,∴P(-1<X≤3)=P(1-2<X≤1+2)=0.682 6.又∵密度函数关于直线x=1对称,∴P(-1<X<1)=P(1<X<3)=12P(-1<X<3)=0.341 3.例3.某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少?(2)成绩在80~90之间的学生占多少?[解](1)设学生的得分情况为随机变量X,则X~N(70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P(70-10<X≤70+10)=0.682 6=68.26%,∴不及格的学生所占的比为12×(1-0.682 6)=0.158 7=15.87%.(2)成绩在80到90之间的学生所占的比为12×[P(70-2×10<X≤70+2×10)-P(70-10<X≤70+10)]=12×(0.954 4-0.682 6)=13.59%.方法归纳运用3σ原则时,关键是将给定的区间转化为用μ再加上或减去几个σ来表示;当要求服从正态分布的随机变量的概率其所在的区间不对称时,不妨先通过分解或合成,再求其对称区间概率的一半解决问题.变式训练3.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X(单位:分)近似服从正态分布X~N(50,102),求他在(30,60]分内赶到火车站的概率.解:∵X~N(50,102),∴μ=50,σ=10.∴P(30<X≤60)=P(30<X≤50)+P(50<X≤60)=12P(μ-2σ<X≤μ+2σ)+12P(μ-σ<X≤μ+σ)=12×0.954 4+12×0.682 6=0.818 5.即他在(30,60]分内赶到火车站的概率是0.818 5.例4.(1)如图为σ取三个不同值σ1,σ2,σ3时的三种正态曲线N(0,σ2)的图象,那么σ1,σ2,σ3的大小关系是()A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ3[解析]当μ=0,σ=1时,正态分布密度函数f(x)=12πe-x22,x∈(-∞,+∞),当x =0时,取得最大值12π,所以σ2=1.由正态曲线的特点知:当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”;σ越大,曲线越“矮胖”,于是有0<σ1<σ2=1<σ3.[答案] D(2)把一条正态曲线C 沿着x 轴正方向移动2个单位,得到一条新的曲线C ′,下列说法不正确的是( )A .曲线C ′仍然是正态曲线B .曲线C 和曲线C ′的最高点的纵坐标相等C .以曲线C ′为概率密度曲线的总体的方差比以曲线C 为概率密度曲线的总体的方差大2D .以曲线C ′为概率密度曲线的总体的均值比以曲线C 为概率密度曲线的总体的均值大2[解析] 在正态曲线沿着x 轴方向水平移动的过程中σ始终保持不变,所以曲线的最高点的纵坐标⎝ ⎛⎭⎪⎫即正态分布密度函数的最大值1σ2π和方差σ2没有变化.设曲线C 的对称轴为x =m ,那么曲线C ′的对称轴为x =m +2,说明均值从m 变到了m +2,增大了2.[答案] C(3)已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个曲线中的μ值为________.[解析] 正态总体的数据落在这两个区间内的概率相等,说明在这两个区间上位于正态曲线下方的面积相等;又两个区间的长度相等,所以正态曲线在这两个区间上是对称的.易知区间(-3,-1)和区间(3,5)关于直线x =1对称,因此μ=1.[答案] 1[名师点评] (1)正态曲线在x =μ处达到峰值1σ2π及当μ一定时,曲线的形状由σ确定这两条性质.根据题设中的图象,数形结合易得到结论.(2)理解正态分布的实质,由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线及x 轴所围成的平面图形的面积,就是随机变量X 落在区间(a ,b )的概率的近似值,以及正态曲线的对称性.应注意的是,如果两个区间的长度不相等,就不能根据这两个区间上位于正态曲线下方的面积相等得出正态曲线在这两个区间上是对称的.例5.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)=( )A .0.158 8B .0.158 7C .0.158 6D .0.158 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3. 所以P (X >4)=P (X <2),故P (X >4)=1-P 2≤X ≤42=0.158 7.[答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.四.目标检测1.判断下列各题.(对的打“√”,错的打“×”) (1)函数φμ,σ(x )中参数μ,σ的意义分别是样本的均值与方差.( )(2)正态曲线是单峰的,其与x 轴围成的面积是随参数μ,σ的变化而变化的.( ) (3)正态曲线可以关于y 轴对称.( ) 答案:(1)× (2)× (3)√2.下列函数是正态分布密度函数的是( )A .f (x )=12πσex -μ2 2σ2,μ,σ(σ>0)都是实数B .f (x )=2π2π·e -x 22C .f (x )=122πex -12 σD .f (x )=12πe x 22解析:选B.f (x )=2π2π·e -x 22=12πe -x 22.3.设X ~N (μ,σ2),当X 在(1,3]内取值的概率与在(5,7]内取值的概率相等时,μ=________.解析:根据正态曲线的对称性知μ=4. 答案:44.如何求服从正态分布的随机变量X 在某区间内取值的概率?解:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在x =μ对称的区间上概率相等求得结果.五.课堂小结 六.课后作业:[学业水平训练]1.(2014·东营检测)设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c =( )A .1B .2C .3D .4解析:选B.∵μ=2,由正态分布的定义知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2.故选B.2.设随机变量X ~N (1,32),则D (13X )等于( )A .9B .3C .1D.13解析:选C.∵X ~N (1,32),∴D (X )=9. ∴D (13X )=19D (X )=1.3.(2014·沈阳高二检测)设随机变量ξ~N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( ) A.12+p B .1-p C .1-2pD.12-p 解析:选D.如图,P (ξ>1)表示x 轴、x >1与正态密度曲线围成区域的面积,由正态密度曲线的对称性知:x 轴、x <-1与正态密度曲线围成区域的面积也为p ,所以P (-1<ξ<0)=1-2p 2=12-p .4.关于正态分布N (μ,σ2),下列说法正确的是( ) A .随机变量落在区间长度为3σ的区间之外是一个小概率事件 B .随机变量落在区间长度为6σ的区间之外是一个小概率事件 C .随机变量落在(-3σ,3σ)之外是一个小概率事件 D .随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件 解析:选D.∵P (μ-3σ<X <μ+3σ)=0.997 4.∴P (X >μ+3σ或X <μ-3σ)=1-P (μ-3σ<X <μ+3σ)=1-0.997 4=0.002 6. ∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.5.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为99.7%,则该正态总体对应的正态曲线的最高点的坐标为( )A .(1,12π)B .(1,2)C .(12π,1) D .(1,1)解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x =1对称,所以μ=1.又在区间(-2,4)内的概率为99.7%, ∴1-3σ=-2,1+3σ=4,∴σ=1. ∴f (x )=12πe-x -122,x ∈R ,∴最高点的坐标为⎝⎛⎭⎪⎫1,12π.6.(2014·临沂一中检测)如图是三个正态分布X ~N (0,0.25),Y ~N (0,1),Z ~N (0,4)的密度曲线,则三个随机变量X ,Y ,Z 对应曲线分别是图中的________、________、________.解析:在密度曲线中,σ“瘦高”. 答案:① ② ③7.若随机变量X ~N (μ,σ2),则P (X ≤μ)=________.解析:由于随机变量X ~N (μ,σ2),其中概率密度函数关于x =μ对称,故P (X ≤μ)=12. 答案:128.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P (ξ>2)=12×[1-2P (0<ξ<1)]=12×(1-0.8)=0.1.答案:0.19.设X ~N (5,1),求P (6<X ≤7). 解:由已知得P (4<X ≤6)=0.682 6P (3<X ≤7)=0.954 4.又∵正态曲线关于直线x =5对称, ∴P (3<X ≤4)+P (6<X ≤7)=0.954 4-0.682 6 =0.271 8.由对称性知P (3<X ≤4)=P (6<X ≤7), 所以P (6<X ≤7)=0.271 82=0.135 9.10.商场经营的某种包装的大米质量X 服从正态分布N (10,0.12)(单位:kg),任取一袋大米,质量在10 kg ~10.2 kg 的概率是多少?解:∵X ~N (10,0.12), ∴μ=10,σ=0.1.∴P (9.8<X ≤10.2)=P (10-2×0.1<X ≤10+2×0.1)=0.954 4. 又∵正态曲线关于直线x =10对称,∴P (10<X ≤10.2)=12P (9.8<X ≤10.2)=0.477 2,∴质量在10 kg ~10.2 kg 的概率为0.477 2.。
人教版高中选修2-3《正态分布》教案一、教学目标1.知识与技能:–能够通过计算、观察与分析进行正态分布的基本参数估计与计算;–能够根据数据特征确定正态分布的使用条件,并运用正态分布解决实际问题。
2.过程与方法:–提高学生数理思维能力及运用计算机软件进行数据统计和分析的能力;–提高学生观察、归纳、分析问题及解决问题的能力。
3.情感态度与价值观:–培养学生科学态度,认识正态分布的重要性和应用价值,拓宽学生科学视野。
二、教学重、难点1.教学重点:–正态分布的基本概念与相关参数的计算;–正态分布的性质及模型的应用;–正态分布与假设检验。
2.教学难点:–正态分布在实际中的广泛应用。
三、教学内容1. 正态分布的基本概念与参数1.正态分布的定义–介绍正态分布的基本特征和概念。
2.正态分布的概率密度函数和分布函数–掌握正态分布的概率密度函数和分布函数的定义;–画出正态分布的概率密度函数和分布函数的图像。
3.正态分布的标准化–掌握正态分布的标准化转化法,以及标准正态分布表的使用方法。
2. 正态分布的参数估计与计算1.正态分布的基本形式–介绍正态分布的基本形式,以及参数的含义;–学习如何通过样本来估计总体的参数。
2.样本均值和样本标准差–掌握样本均值和样本标准差的定义和计算方法;–从样本中估计总体的均值和标准差。
3.抽样分布–掌握样本均值和样本标准差的概率分布,以及如何计算抽样分布。
3. 正态分布的应用1.正态分布的性质及模型的应用–描述正态分布的各种统计特征;–掌握利用正态分布进行概率估计的方法;–了解正态分布在实际问题中的应用,如质量控制、投资、风险评估等。
2.正态分布与假设检验–了解假设检验的基本内容及步骤;–学习如何从正态分布的角度来诠释假设检验。
四、教学方法1.授课讲解:对正态分布相关概念和公式进行讲解,以期解决学生对于正态分布不熟悉的情况。
2.讲解示范法:用实例向学生呈现正态分布的应用场景及应用方法,以期加深学生对于正态分布在实践中的应用认识。
2.4正态分布教案篇一:2.4正态分布教学设计教案教学准备1.教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3σ原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。
2.教学重点/难点1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3σ原则简单应用3.教学用具课件4.标签正态分布,正态曲线性质教学过程山东省信息技术与课堂整合优质课评选《正态分布》教学设计五莲县第三中学李治国《正态分布》教学设计一、教学分析(一)教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3σ原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。
(二)重难点:1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3σ原则简单应用二、教学过程及多媒体的应用本课主要利用powerpoint,数学专用scilab随机数表生成程序,几何画板,mathtype编辑程序制作了教学课件,因为本节内容所用数据以及公式较多,又需要使用数据构造作图并估计,是本节教学中的一个难点,传统教学很难解决课堂上大量的数据分组和作图问题,而利用以上媒体设计使数据分组快速直接,并能让图像动起来,能够节省课堂上的教学时间,提高教学效率,加大课堂容量,利用动画设计突破了研究正态曲线性质的教学难点,更有利于学生直观感知,总之,使用多媒体技术能够化抽象为具体,化分散为紧凑。
给学生以动感的认识,高度浓缩时空,有效突破重难点,激活课堂,起到事半功倍的效果。
(-)(复习导入)1、(1)运用多媒体画出频率分布直方图和总体密度曲线.(2)当样本容量n无限增大时,频率分布直方图变化的情况?(3)重新感知“样本容量越大,总体估计就越精确”.2.通过实例,说明正态分布(密度)是最基本、最重要的一种分布.如学生的学习成绩、气象中的平均气温、平均湿度等等,都服从或近似地服从正态分布.多媒体的作用:展示以前学习知识,回顾总结,引出课题(二)具体学习阶段自主学习探究一:概率密度函数的概念和函数形式其中:π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差,正态分布一般记为n(μ,σ2).注意:①函数表达式的形式②当μ=0、σ=1时,正态总体称为标准正态总体,其相应的函数表示式是其相应的曲线称为标准正态曲线.多媒体作用:用图形展示数据的总体趋势,引出概念,展示函数形式,给学生以函数的认识。
正态分布示范教案第一章:正态分布的基本概念1.1 引入:通过引入日常生活中的例子,如考试成绩、身高、体重等,引导学生理解数据的分布规律。
1.2 定义:介绍正态分布的定义,解释均值、标准差等基本术语。
1.3 图形表示:教授如何绘制正态分布曲线,并解释曲线特点。
1.4 实例分析:分析一些实际数据集,让学生通过计算和绘图验证它们是否符合正态分布。
第二章:正态分布的性质2.1 引入:通过讲解正态分布的性质,使学生理解正态分布的重要性和广泛应用。
2.2 均值、中位数和众数:解释正态分布中均值、中位数和众数的关系,并通过实例进行说明。
2.3 概率密度函数:教授正态分布的概率密度函数公式,并解释其意义。
2.4 标准正态分布:介绍标准正态分布的概念,并解释其与普通正态分布的关系。
第三章:正态分布的应用3.1 引入:通过实际案例,让学生了解正态分布在实际问题中的应用。
3.2 假设检验:讲解如何使用正态分布进行假设检验,包括Z检验和t检验。
3.3 置信区间:教授如何计算正态分布数据的置信区间,并解释其含义。
3.4 数据分析:通过实际数据集,让学生运用正态分布进行数据分析,解决实际问题。
第四章:正态分布在实际领域的应用4.1 引入:通过讲解正态分布在不同领域的应用,让学生了解其广泛性。
4.2 医学领域:介绍正态分布在医学领域的应用,如疾病风险评估、药物剂量确定等。
4.3 工程领域:解释正态分布在工程领域的应用,如产品质量控制、可靠性分析等。
4.4 金融领域:讲解正态分布在金融领域的应用,如投资组合优化、风险管理等。
第五章:正态分布的扩展5.1 引入:引导学生思考正态分布的局限性,引出正态分布的扩展。
5.2 非正态分布:介绍一些常见的非正态分布,如泊松分布、二项分布等,并解释其特点。
5.3 转换方法:教授如何将非正态分布数据转换为正态分布,以及如何将正态分布数据转换为其他分布。
5.4 应用案例:通过实际案例,让学生了解在实际问题中如何灵活运用正态分布及其扩展。
《正态分布》教学设计教学目标:1.理解正态分布的概念及其特点;2.掌握正态分布的性质和应用;3.能够解决与正态分布相关的问题。
教学重点:1.正态分布的定义和特征;2.正态分布的性质和参数;3.正态分布的应用。
教学难点:1.正态分布的参数的计算;2.正态分布在实际问题中的应用。
教学准备:1. PowerPoint课件;2.实例数据和计算工具;3.板书和笔。
教学过程:Step 1:引入(5分钟)通过画出一条曲线图,向学生展示一个正态分布的图像,引发学生的兴趣和思考。
然后提问:这个图像代表了什么?Step 2:概念解释(10分钟)分别解释正态分布的定义、特点和常见的应用领域。
Step 3:性质讲解(15分钟)通过讲解正态分布的性质来加深学生对正态分布的理解。
讲解内容如下:1.正态分布的均值和标准差的意义;2.标准正态分布的含义和性质;3.正态分布的对称性;4.正态分布的变换性质。
Step 4:参数计算(20分钟)通过实例演示和计算来教授如何计算正态分布的参数。
计算包括:1.标准正态分布的概率计算;2.给定正态分布的均值和标准差,计算特定区间内的概率;3.给定正态分布的概率,求对应的分位数。
Step 5:实际应用(25分钟)通过给出一些实际问题,如身高、体重等的正态分布相关问题,引导学生运用所学知识解决问题。
Step 6:练习与总结(15分钟)让学生在课堂上独立完成一些正态分布相关的练习题,并让他们互相交流和讨论答案。
最后总结课程内容,并回答学生的问题。
Step 7:作业布置(5分钟)布置相关的作业,包括练习题和思考题,以巩固和深化学生对正态分布的理解。
教学评价:1.课堂问答:通过提问来检验学生对概念和性质的理解程度;2.作业批改:对学生的作业进行批改,对错误进行纠正;3.学生的参与程度:通过学生的课堂互动情况来评价他们的学习热情和参与度。
拓展延伸:在学生掌握了正态分布的基本概念和性质后,可以进一步引入相关的高级统计方法,如假设检验和置信区间的概念和方法,并进行示范和实践应用。
1. 知识与技能目标:(1)了解正态分布的概念、特征和性质;(2)掌握正态分布的概率密度函数、分布函数及其图形;(3)学会正态分布的应用,如求概率、计算置信区间等。
2. 过程与方法目标:(1)通过实例分析,培养学生观察、分析、归纳和总结的能力;(2)通过小组合作,培养学生的沟通、协作和解决问题的能力;(3)通过实际问题,培养学生运用正态分布解决实际问题的能力。
3. 情感态度与价值观目标:(1)激发学生对概率统计的兴趣,培养其严谨的科学态度;(2)树立正确的世界观,认识到正态分布在社会生活中的广泛应用;(3)培养学生具有创新精神,勇于探索未知领域。
二、教学重难点1. 教学重点:(1)正态分布的概念、特征和性质;(2)正态分布的概率密度函数、分布函数及其图形;(3)正态分布的应用。
2. 教学难点:(1)正态分布的应用,如求概率、计算置信区间等;(2)正态分布的图形和性质的理解与运用。
三、教学过程1. 导入新课通过实际生活中的例子,如人体身高、考试成绩等,引入正态分布的概念,激发学生的学习兴趣。
2. 新课讲解(1)正态分布的概念、特征和性质;(2)正态分布的概率密度函数、分布函数及其图形;(3)正态分布的应用,如求概率、计算置信区间等。
3. 实例分析通过实例分析,让学生掌握正态分布的应用方法,如求概率、计算置信区间等。
4. 小组合作将学生分成小组,每组选取一个实际问题,运用正态分布的知识进行解决,培养学生的沟通、协作和解决问题的能力。
5. 课堂小结总结本节课所学内容,强调正态分布的概念、特征、性质和应用。
6. 作业布置布置相关练习题,巩固学生对正态分布的理解和应用。
四、教学评价1. 课堂表现:观察学生在课堂上的参与度、回答问题的情况,了解学生的学习状态。
2. 实例分析:评价学生在实例分析中的表现,如观察、分析、归纳和总结的能力。
3. 小组合作:评价学生在小组合作中的表现,如沟通、协作和解决问题的能力。
《正态分布》的教学设计《正态分布》的教学设计作为一名教职工,就不得不需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
那么你有了解过教学设计吗?下面是小编收集整理的《正态分布》的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
今天我说课的内容是《正态分布》。
下面我从教材分析、目标分析、教学方法、学法指导、教学程序等几个方面来汇报对教材的钻研情况和本节课的教学设想。
一、教材分析正态分布是高中新教材人教A版选修2-3的第二章《随机变量及其分布》的最后一节内容,前面学习了离散型随机变量,离散型随机变量的取值是可列的。
今天我们会学习连续型随机变量,连续型随机变量是在某个区间内可取任何值。
其重要的代表——正态分布。
《正态分布》该节内容通过研究频率分布直方图、频率分布折线图、总体密度曲线,引出拟合的函数式,进而得到正态分布的概念,然后,分析正态曲线的特点和性质,最后研究了它的应用——随机变量落在某个区间的概率。
教材利用高尔顿板引入正态分布的密度曲线。
更直观,更易于解释曲线的来源。
正态分布是描述随机现象的一种最常见的分布,在现实生活中有非常广泛的应用。
二、目标分析本节课是一节概念课教学,应该让学生参与讨论、发现规律、探索并总结出性质和特点。
教学目标:1、理解并掌握正态分布和正态曲线的概念、意义及性质,并会画正态曲线。
2、通过正态分布的图形特征,归纳正态曲线的性质。
3、会用函数的概念、性质解决有关正态分布的问题。
能力目标:能用正态分布、正态曲线研究有关随机变量分布的规律,引导学生通过观察并探究规律,提高分析问题,解决问题的能力;培养学生数形结合,函数与方程等数学思想方法。
教学重点:归纳正态分布曲线的性质特点,掌握3σ原则。
教学难点:正态分布的意义的理解和性质的应用。
三、教法分析1.教学手段:运用多媒体辅助教学,增强教学的直观性,激发学生的学习兴趣。
《正态分布》教案一、教学目标1. 让学生理解正态分布的概念和特点。
2. 让学生掌握正态分布的图形绘制和参数计算。
3. 让学生能够应用正态分布解决实际问题。
二、教学内容1. 正态分布的定义和性质2. 正态分布的概率密度函数和累积分布函数3. 正态分布的参数估计和假设检验4. 正态分布的应用实例三、教学方法1. 采用讲授法讲解正态分布的基本概念和性质。
2. 采用案例分析法分析正态分布的实际应用。
3. 采用互动讨论法引导学生探讨正态分布的问题解决方法。
四、教学准备1. 正态分布的教学PPT2. 正态分布的案例资料3. 正态分布的计算软件或工具五、教学过程1. 导入:通过一个与生活相关的正态分布实例,如身高、体重等,引出正态分布的概念。
2. 讲解:讲解正态分布的定义、性质、概率密度函数和累积分布函数。
3. 案例分析:分析正态分布的实际应用,如医学、工程等领域。
4. 实践操作:引导学生使用计算软件或工具,绘制正态分布图形,计算相关参数。
5. 互动讨论:引导学生探讨正态分布的问题解决方法,如参数估计、假设检验等。
6. 总结:对本节课的主要内容进行总结,强调正态分布的重要性和应用价值。
7. 作业布置:布置相关的练习题,巩固所学内容。
六、教学评估1. 课堂问答:通过提问的方式,了解学生对正态分布概念的理解程度。
2. 练习题:布置针对性的练习题,检查学生对正态分布知识的掌握情况。
3. 小组讨论:评估学生在小组讨论中的表现,了解他们能否将正态分布应用于实际问题。
七、教学拓展1. 对比其他概率分布:介绍与正态分布相关的其他概率分布,如二项分布、Poisson分布等,让学生了解它们的异同。
2. 正态分布的近似:讲解正态分布的近似方法,如68-95-99.7规则,让学生了解如何快速判断正态分布的数据范围。
八、教学难点与解决策略1. 正态分布的图形绘制和参数计算:通过示例和软件工具,让学生直观地理解正态分布的图形和参数。
2. 正态分布的假设检验:通过实际案例,讲解正态分布的假设检验方法,让学生掌握如何应用。
《正态分布》教案1【教学目标】1、了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单应用。
2、了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对生产过程进行控制。
【教学重难点】教学重点:1.正态分布曲线的特点;2.正态分布曲线所表示的意义.教学难点:1.在实际中什么样的随机变量服从正态分布;2.正态分布曲线所表示的意义.【教学过程】一、设置情境,引入新课这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。
问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗?问题2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么?问题3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗?问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化?二、合作探究,得出概念随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线这条曲线可以近似下列函数的图像:21 斗・A(x) e 2- ,x (八,),72心其中实数丄和二(二.0)为参数,我们称的图像为正态分布密度曲线,曲线。
问题5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度, 一个随机变量,X落在区间(a,b]的概率为什么?其几何意义是什么?一般地,如果对于任何实数a :::b,随机变量X满足bP(a<X 兰b) = f %^(x)dx,a2则称X的分布为正态分布,记作(」,二),如果随机变量X服从正态分布, X L (「二2)。
问题6.在现实生活中,什么样的分布服从或近似服从正态分布?问题7.结合;_(x)的解析式及概率的性质,你能说说正态分布曲线的特点吗? 简称正态X表示则记为可以发现,正态曲线有以下特点:(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线X -对称;1(3)曲线在x -「•处达到峰值一(4)曲线与x轴之间的面积为1 ;(5)当二一定时,曲线随着」德变化而沿x轴平移;(6)当」一定时,曲线的形状由匚确定,匚越小,曲线越“瘦高”,表示总体的分布越集中;二越大,曲线越“矮胖”,表示总体的分布越分散。
《正态分布》教案一、教学目标1. 让学生理解正态分布的概念,掌握正态分布曲线的特点及应用。
2. 培养学生运用正态分布解决实际问题的能力。
3. 引导学生运用数形结合的思想方法,分析正态分布的概率性质。
二、教学内容1. 正态分布的概念2. 正态分布曲线的特点3. 正态分布的应用4. 标准正态分布5. 正态分布的概率计算三、教学重点与难点1. 教学重点:正态分布的概念、正态分布曲线的特点及应用。
2. 教学难点:正态分布的概率计算,标准正态分布表的使用。
四、教学方法1. 采用讲授法、案例分析法、讨论法、数形结合法等。
2. 利用多媒体课件辅助教学,增强直观性。
五、教学过程1. 导入:通过实际例子(如考试成绩分布)引出正态分布的概念。
2. 讲解:详细讲解正态分布的定义、特点及应用,引导学生掌握正态分布的基本知识。
3. 案例分析:分析实际问题,让学生运用正态分布解决具体问题。
4. 数形结合:利用图形(如正态分布曲线)帮助学生理解正态分布的概率性质。
5. 巩固练习:布置练习题,让学生巩固所学知识。
7. 布置作业:布置课后作业,巩固所学知识。
六、教学评价1. 评价方式:过程性评价与终结性评价相结合。
2. 评价内容:(1) 正态分布的概念、特点及应用的理解程度。
(2) 正态分布的概率计算能力。
(3) 数形结合思想的运用。
3. 评价方法:(1) 课堂问答、讨论。
(2) 课后练习及作业。
(3) 实际问题解决能力的展示。
七、教学资源1. 教材:《概率论与数理统计》。
2. 多媒体课件:正态分布的图形、案例分析等。
3. 标准正态分布表:供学生查询使用。
4. 实际案例资料:用于分析讨论。
八、教学进度安排1. 课时:2课时。
2. 教学计划:(1) 第一课时:正态分布的概念、特点及应用。
(2) 第二课时:正态分布的概率计算,案例分析。
九、教学反思1. 反思内容:(1) 学生对正态分布的理解程度。
(2) 教学方法的有效性。
(3) 学生实际问题解决能力的提升。
正态分布示范教案【教案】一、教学目标1.知识目标:学生掌握正态分布的基本概念、标准正态分布的性质和正态分布的标准化方法。
2.能力目标:学生能够根据给定的正态分布的参数,计算相应的概率和区间。
3.情感目标:培养学生对数理统计的兴趣,增强数学思维和计算能力。
二、教学内容1.正态分布的基本概念及性质2.标准正态分布3.正态分布的标准化方法三、教学过程1.导入(10分钟)通过一个问题引入正态分布的概念,例子:“班级100名同学的数学考试成绩呈正态分布,平均成绩为70分,标准差为8分,问有多少学生的成绩在60分到80分之间?”引导学生思考并预测。
2.普及正态分布的概念(20分钟)简述正态分布的定义和性质,并引导学生理解正态分布的特点和应用,如图形呈钟形对称,均值、中位数和众数相等,标准差决定了曲线的陡缓程度等。
3.标准正态分布的引入(15分钟)引导学生了解标准正态分布的概念及特性,如均值为0,标准差为1,曲线在x轴两边分别为无穷远。
引导学生思考标准正态分布与一般正态分布的关系。
4.标准化方法的介绍(20分钟)通过具体的例子,教师示范如何将一般正态分布标准化为标准正态分布。
引导学生理解标准化的意义和方法,并进行实际操作练习。
5.应用计算(25分钟)通过多个实际问题,让学生应用所学的知识计算正态分布概率和区间。
如计算一些数值对应的标准分数,计算一段区间内的概率等。
6.总结与拓展(10分钟)总结正态分布的基本概念、标准正态分布的性质和正态分布的标准化方法,引导学生思考正态分布的实际应用领域,拓展学生的思维。
四、教学资源与评价教学资源:教材、白板、标准化表格等。
评价方式:课堂练习、小组讨论、个人作业等。
五、教学反思。
正态分布教学设计教学设计:正态分布1.教学目标:-了解正态分布的定义和特性;-掌握正态分布的概率计算方法;-掌握正态分布的应用领域。
2.教学内容:-正态分布的定义和特性;-正态分布的参数;-正态分布的概率计算;-正态分布的应用。
3.教学重点:-正态分布的定义和特性;-正态分布的概率计算。
4.教学难点:-正态分布的应用。
5.教学方法:-讲授法:通过讲解正态分布的定义、特性和参数等知识,引导学生对正态分布的认识;-实例演算法:通过实例演算,让学生掌握正态分布的概率计算方法;-讨论法:通过讨论正态分布在实际问题中的应用,培养学生的问题解决能力。
6.教学过程:(1)导入:通过引导学生回忆一下之前学过的概率分布,如二项分布、均匀分布等,然后引出正态分布的概念。
(2)正态分布的定义和特性:-定义:正态分布是一种连续型的概率分布,其密度函数呈钟形曲线,两侧尾部逐渐趋近于0,中心对称。
-特性:一般情况下,正态分布的均值、中位数和众数都指向同一位置,且均值等于中位数等于众数。
(3)正态分布的参数:-均值μ:描述分布的总体中心位置;-标准差σ:描述分布的离散程度。
(4)正态分布的概率计算:-标准正态分布:均值为0,标准差为1的正态分布;-标准正态分布表的使用:通过查表可以得到标准正态分布的累积概率值;-根据标准正态分布的特性,可以使用标准分数转换来计算不同分布情况下的概率。
(5)正态分布的应用:-自然科学领域中的测量误差;-社会科学领域中的人口分布、智力分布等;-工程领域中的质量控制、设计标准等。
(6)例题演算:通过一些实例演算,让学生熟悉正态分布的概率计算方法,并进行课堂讲解和讨论。
(7)总结:对本节课的重点内容进行总结,并强调正态分布的重要性和应用领域。
7.教学评价与反思:-在课堂上通过讲解和演算案例,让学生掌握了正态分布的定义、特性和概率计算方法;-通过讨论正态分布的应用领域,培养学生的问题解决能力;-教学内容难度适中,但需要引导学生进行积极思考和讨论,加深对正态分布的理解。
普通高中课程标准实验教科书数学(人教A 版)选修 2-32.4 正态分布设计教师:高二数学组一、教学目标及其解析(一)教学目标:1.通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.2.了解正态曲线的基本特点.3.了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.(二)解析:正态分布在统计中是很常见的分布,它能刻画很多随机现象。
从生活实践入手,描绘频率直方图,进而理解正态曲线,结合定积分的有关知识理解其概率分布列,结合图象认识参数μ,σ的几何意义.提高学生用数学知识分析现实问题的能力.善于从复杂多变的现象中发现问题的实质,提高识别能力.二、教学重难点解析(一)重点、难点:重点:了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则. 难点:通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.(二)解析:正态分布密度函数的推导是十分困难的,一般教科书采用直接给出正态分布密度函数表达式的方法,这使学生在很长一段时间是不理解正态分布的实际含义。
可以通过直观方法引入正态分布密度曲线,也可以用样本平均值和样本标准差来估计,正态曲线的特点包括图像与坐标轴之间的关系,单峰性,对称性,峰值的位置环境等。
三、教学过程设计问题1.什么是正态曲线?问题2.什么是正态分布?正态分布又有哪些特点?例1.如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机总量的均值和方差.[解] 从正态曲线可知,该正态曲线关于直线x =20对称,最大值为12π,所以μ=20, 12πσ=12π, ∴σ= 2.于是φμ,σ(x )=12π·e -(x -20)24,x ∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.方法归纳本题主要考查正态曲线的图象及性质特点,其具有两大明显特征:1.对称轴方程x =μ;2.最值1σ2π.这两点把握好了,参数μ,σ便确定了,代入φμ,σ(x )中便可求出相应的解析式.变式训练1.如图,曲线C1:f(x)=12πσ21e-(x-μ)22σ2(x∈R),曲线C2:φ(x)=12πσ2e-(x-μ)22σ2(x∈R),则()A.μ1<μ2B.曲线C1与x轴相交C.σ1>σ2D.曲线C1,C2分别与x轴所夹的面积相等解析:选D.由正态曲线的特点易知μ1>μ2,σ1<σ2,曲线C1,C2分别与x轴所夹面积相等,故选D.例2.设X~N(1,22),试求:(1)P(-1<X≤3);(2)P(3<X≤5).[解]因为X~N(1,22),所以μ=1,σ=2.(1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ)=0.682 6.(2)因为P(3<X≤5)=P(-3≤X<-1),所以P(3<X≤5)=12[P(-3<X≤5)-P(-1<X≤3)]=12[P(1-4<X≤1+4)-P(1-2<X≤1+2)]=12[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12(0.954 4-0.682 6)=0.135 9.方法归纳对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:(1)对任意的a,有P(X<μ-a)=P(X>μ+a);(2)P(X<x0)=1-P(X≥x0);(3)P(a<X<b)=P(X<b)-P(X≤a).变式训练2.在某项测量中,测量结果服从正态分布N(1,4),求正态总体X在区间(-1,1)内取值的概率.解:∵由题意知μ=1,σ=2,∴P(-1<X≤3)=P(1-2<X≤1+2)=0.682 6.又∵密度函数关于直线x=1对称,∴P(-1<X<1)=P(1<X<3)=12P(-1<X<3)=0.341 3.例3.某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少?(2)成绩在80~90之间的学生占多少?[解](1)设学生的得分情况为随机变量X,则X~N(70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P(70-10<X≤70+10)=0.682 6=68.26%,∴不及格的学生所占的比为12×(1-0.682 6)=0.158 7=15.87%.(2)成绩在80到90之间的学生所占的比为 12×[P (70-2×10<X ≤70+2×10)-P (70-10<X ≤70+10)]=12×(0.954 4-0.682 6)=13.59%.方法归纳运用3σ原则时,关键是将给定的区间转化为用μ再加上或减去几个σ来表示;当要求服从正态分布的随机变量的概率其所在的区间不对称时,不妨先通过分解或合成,再求其对称区间概率的一半解决问题.变式训练3.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X (单位:分)近似服从正态分布X ~N (50,102),求他在(30,60]分内赶到火车站的概率.解:∵X ~N (50,102),∴μ=50,σ=10.∴P (30<X ≤60)=P (30<X ≤50)+P (50<X ≤60)=12P (μ-2σ<X ≤μ+2σ)+12P (μ-σ<X ≤μ+σ) =12×0.954 4+12×0.682 6=0.818 5. 即他在(30,60]分内赶到火车站的概率是0.818 5.例4.(1)如图为σ取三个不同值σ1,σ2,σ3时的三种正态曲线N (0,σ2)的图象,那么σ1,σ2,σ3的大小关系是( )A .σ1>1>σ2>σ3>0B .0<σ1<σ2<1<σ3C .σ1>σ2>1>σ3>0D .0<σ1<σ2=1<σ3[解析] 当μ=0,σ=1时,正态分布密度函数f (x )=12πe -x 22,x ∈(-∞,+∞),当x =0时,取得最大值12π,所以σ2=1.由正态曲线的特点知:当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”;σ越大,曲线越“矮胖”,于是有0<σ1<σ2=1<σ3.[答案] D(2)把一条正态曲线C 沿着x 轴正方向移动2个单位,得到一条新的曲线C ′,下列说法不正确的是( )A .曲线C ′仍然是正态曲线B .曲线C 和曲线C ′的最高点的纵坐标相等C .以曲线C ′为概率密度曲线的总体的方差比以曲线C 为概率密度曲线的总体的方差大2D .以曲线C ′为概率密度曲线的总体的均值比以曲线C 为概率密度曲线的总体的均值大2[解析] 在正态曲线沿着x 轴方向水平移动的过程中σ始终保持不变,所以曲线的最高点的纵坐标⎝⎛⎭⎫即正态分布密度函数的最大值1σ2π和方差σ2没有变化.设曲线C 的对称轴为x =m ,那么曲线C ′的对称轴为x =m +2,说明均值从m 变到了m +2,增大了2.[答案] C(3)已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个曲线中的μ值为________.[解析] 正态总体的数据落在这两个区间内的概率相等,说明在这两个区间上位于正态曲线下方的面积相等;又两个区间的长度相等,所以正态曲线在这两个区间上是对称的.易知区间(-3,-1)和区间(3,5)关于直线x =1对称,因此μ=1.[答案] 1[名师点评] (1)正态曲线在x =μ处达到峰值1σ2π及当μ一定时,曲线的形状由σ确定这两条性质.根据题设中的图象,数形结合易得到结论.(2)理解正态分布的实质,由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线及x 轴所围成的平面图形的面积,就是随机变量X 落在区间(a ,b )的概率的近似值,以及正态曲线的对称性.应注意的是,如果两个区间的长度不相等,就不能根据这两个区间上位于正态曲线下方的面积相等得出正态曲线在这两个区间上是对称的.例5.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)=( )A .0.158 8B .0.158 7C .0.158 6D .0.158 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3.所以P (X >4)=P (X <2),故P (X >4)=1-P (2≤X ≤4)2=0.158 7. [答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.四.目标检测1.判断下列各题.(对的打“√”,错的打“×”)(1)函数φμ,σ(x )中参数μ,σ的意义分别是样本的均值与方差.( )(2)正态曲线是单峰的,其与x 轴围成的面积是随参数μ,σ的变化而变化的.( )(3)正态曲线可以关于y 轴对称.( )答案:(1)× (2)× (3)√2.下列函数是正态分布密度函数的是( )A .f (x )=12πσe (x -μ)22σ2,μ,σ(σ>0)都是实数B .f (x )=2π2π·e -x 22C .f (x )=122πe (x -1)2 σ D .f (x )=12πe x 22 解析:选B.f (x )=2π2π·e -x 22=12πe -x 22. 3.设X ~N (μ,σ2),当X 在(1,3]内取值的概率与在(5,7]内取值的概率相等时,μ=________. 解析:根据正态曲线的对称性知μ=4.答案:44.如何求服从正态分布的随机变量X 在某区间内取值的概率?解:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在x =μ对称的区间上概率相等求得结果.五.课堂小结六.课后作业:[学业水平训练]1.(2014·东营检测)设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c =( )A .1B .2C .3D .4解析:选B.∵μ=2,由正态分布的定义知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2.故选B.2.设随机变量X ~N (1,32),则D (13X )等于( ) A .9 B .3C .1 D.13解析:选C.∵X ~N (1,32),∴D (X )=9.∴D (13X )=19D (X )=1. 3.(2014·沈阳高二检测)设随机变量ξ~N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( ) A.12+p B .1-p C .1-2p D.12-p 解析:选D.如图,P (ξ>1)表示x 轴、x >1与正态密度曲线围成区域的面积,由正态密度曲线的对称性知:x 轴、x <-1与正态密度曲线围成区域的面积也为p ,所以P (-1<ξ<0)=1-2p 2=12-p . 4.关于正态分布N (μ,σ2),下列说法正确的是( )A .随机变量落在区间长度为3σ的区间之外是一个小概率事件B .随机变量落在区间长度为6σ的区间之外是一个小概率事件C .随机变量落在(-3σ,3σ)之外是一个小概率事件D .随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件解析:选D.∵P (μ-3σ<X <μ+3σ)=0.997 4.∴P (X >μ+3σ或X <μ-3σ)=1-P (μ-3σ<X <μ+3σ)=1-0.997 4=0.002 6.∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.5.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为99.7%,则该正态总体对应的正态曲线的最高点的坐标为( )A .(1,12π) B .(1,2) C .(12π,1) D .(1,1) 解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x =1对称,所以μ=1.又在区间(-2,4)内的概率为99.7%,∴1-3σ=-2,1+3σ=4,∴σ=1.∴f (x )=12πe -(x -1)22,x ∈R ,∴最高点的坐标为⎝⎛⎭⎫1,12π. 6.(2014·临沂一中检测)如图是三个正态分布X ~N (0,0.25),Y ~N (0,1),Z ~N (0,4)的密度曲线,则三个随机变量X ,Y ,Z 对应曲线分别是图中的________、________、________.解析:在密度曲线中,σ越大,曲线越“矮胖”;σ越小,曲线越“瘦高”.答案:① ② ③7.若随机变量X ~N (μ,σ2),则P (X ≤μ)=________.解析:由于随机变量X ~N (μ,σ2),其中概率密度函数关于x =μ对称,故P (X ≤μ)=12. 答案:128.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P (ξ>2)=12×[1-2P (0<ξ<1)]=12×(1-0.8)=0.1. 答案:0.19.设X ~N (5,1),求P (6<X ≤7).解:由已知得P (4<X ≤6)=0.682 6P (3<X ≤7)=0.954 4.又∵正态曲线关于直线x =5对称,∴P (3<X ≤4)+P (6<X ≤7)=0.954 4-0.682 6=0.271 8.由对称性知P (3<X ≤4)=P (6<X ≤7),所以P (6<X ≤7)=0.271 82=0.135 9. 10.商场经营的某种包装的大米质量X 服从正态分布N (10,0.12)(单位:kg),任取一袋大米,质量在10 kg ~10.2 kg 的概率是多少?解:∵X ~N (10,0.12),∴μ=10,σ=0.1.∴P (9.8<X ≤10.2)=P (10-2×0.1<X ≤10+2×0.1)=0.954 4.又∵正态曲线关于直线x =10对称,∴P (10<X ≤10.2)=12P (9.8<X ≤10.2)=0.477 2, ∴质量在10 kg ~10.2 kg 的概率为0.477 2.。
普通高中课程标准实验教科书数学(人教 A 版)选修2-32.4正态分布设计教师:高二数学组一、教学目标及其解析(一)教学目标:1.通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.2.了解正态曲线的基本特点.3.了解正态曲线随着参数μ 和σ 变化而变化的特点.了解正态分布的3σ原则.(二)解析:正态分布在统计中是很常见的分布,它能刻画很多随机现象。
从生活实践入手,描绘频率直方图,进而理解正态曲线,结合定积分的有关知识理解其概率分布列,结合图象认识参数μ,σ 的几何意义.提高学生用数学知识分析现实问题的能力.善于从复杂多变的现象中发现问题的实质,提高识别能力 .二、教学重难点解析(一)重点、难点:重点:了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.难点:通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.(二)解析:正态分布密度函数的推导是十分困难的,一般教科书采用直接给出正态分布密度函数表达式的方法,这使学生在很长一段时间是不理解正态分布的实际含义。
可以通过直观方法引入正态分布密度曲线,也可以用样本平均值和样本标准差来估计,正态曲线的特点包括图像与坐标轴之间的关系,单峰性,对称性,峰值的位置环境等。
三、教学过程设计问题 1.什么是正态曲线?问题 2.什么是正态分布?正态分布又有哪些特点?例1.如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机总量的均值和方差.[解 ]从正态曲线可知,该正态曲线关于直线x= 20 对称,最大值为1,所以μ= 20, 2π1= 1 ,2πσ 2 π∴σ= 2.x-20 21-24,x∈( -∞,+∞ ),总体随机变量的期望是于是φμ,σ·eμ= 20,方差是σ(x)=2π=(2)2= 2.方法归纳本题主要考查正态曲线的图象及性质特点,其具有两大明显特征: 1.对称轴方程x=μ;12.最值σ2π .这两点把握好了,参数μ,σ便确定了,代入φμ,σ(x) 中便可求出相应的解析式.变式训练 1.- x - μ2如图,曲线 C 1: f(x) =12(x ∈ R ),曲线 C 2: φ(x)= 1 2e2σe2πσ12πσ2 x -μ2-2σ (x ∈ R ),则 ()2A . μ1<μ2B .曲线C 1 与 x 轴相交 C .σ1>σ2D .曲线 C 1,C 2 分别与 x 轴所夹的面积相等 解析: 选 D.由正态曲线的特点易知 μ , σ ,曲线 C ,C 分别与 x 轴所夹面积相1>μ21<σ21 2等,故选 D.例 2.设 X ~ N(1,22) ,试求:(1)P(- 1< X ≤ 3); (2)P(3< X ≤5).[解 ] 因为 X ~ N(1,22),所以 μ= 1, σ= 2. (1)P(- 1< X ≤ 3)= P(1-2< X ≤1+ 2) = P(μ- σ< X ≤μ+ σ)= 0.682 6. (2)因为 P(3<X ≤ 5)= P(-3≤ X <- 1),所以 P(3< X ≤5)1= 2[P(- 3<X ≤ 5)- P(- 1< X ≤ 3)] 1= 2[P(1- 4< X ≤1+ 4)- P(1- 2<X ≤ 1+ 2)] 1= 2[P(μ- 2σ< X ≤μ+ 2σ)- P(μ- σ< X ≤ μ+ σ)] 1= 2(0.954 4- 0.682 6) =0.135 9.方法归纳2对于正态分布 N(μ, σ),由 x = μ是正态曲线的对称轴知: (1)对任意的 a ,有 P(X < μ- a)=P(X > μ+ a); (2)P(X < x 0)= 1- P(X ≥ x 0);(3)P(a < X < b)= P(X < b)-P(X ≤ a) . 变式训练 2.在某项测量中, 测量结果服从正态分布 N(1,4),求正态总体 X 在区间 (- 1,1)内取值的概率.解: ∵由题意知μ= 1, σ= 2,∴ P(-1<X ≤ 3)= P(1- 2<X ≤ 1+ 2)= 0.682 6. 又∵密度函数关于直线 x =1 对称,∴ P(-1<X<1) = P(1< X<3)= 12P(- 1<X<3) =0.341 3.例 3.某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60 分的学生为不及格学生.(1)成绩不及格的人数占多少?(2)成绩在 80~ 90 之间的学生占多少? [解 ] (1) 设学生的得分情况为随机变量 X ,则 X ~ N(70,102),其中 μ= 70,σ= 10.在 60 到 80 之间的学生占的比为 P(70- 10<X ≤ 70+ 10)=0.682 6=68.26% , ∴不及格的学生所占的比为1× (1- 0.682 6)= 0.158 7= 15.87%.2(2)成绩在 80 到 90 之间的学生所占的比为12× [P(70 - 2× 10<X ≤ 70+ 2× 10)- P(70 - 10<X ≤ 70+ 10)] = 12× (0.954 4 - 0.682 6) =13.59%.方法归纳 运用 3σ原则时,关键是将给定的区间转化为用 μ再加上或减去几个 σ来表示;当要求服从正态分布的随机变量的概率其所在的区间不对称时, 不妨先通过分解或合成, 再求其对 称区间概率的一半解决问题. 变式训练 3.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X(单位:分 )近似服从正态分布 X ~ N(50,102),求他在 (30,60] 分内赶到火车站的概率.解: ∵X ~ N(50,102),∴ μ= 50, σ= 10.∴ P(30< X ≤ 60)=P(30< X ≤ 50)+ P(50< X ≤ 60)1 1= 2P(μ-2σ< X ≤ μ+ 2σ)+ 2P(μ- σ<X ≤ μ+ σ)= 1× 0.954 4+1× 0.682 6=0.818 5. 22即他在 (30,60]分内赶到火车站的概率是0.818 5.例 4.(1)如图为 σ取三个不同值 σ,σ,σ时的三种正态曲线2N(0,σ12 3)的图象,那么 σ, σ, σ的大小关系是 ()123A . σ1>1> σ2>σ3>0B .0< σ1<σ2<1< σ3C .σ1>σ2>1> σ3>0= 1<σD . 0<σ1<σ2 3- x21当 μ= 0, σ= 1 时,正态分布密度函数 f(x)= e 2, x ∈ (- ∞ ,+ ∞ ),当 x 2π= 0 时,取得最大值确定. σ越小,曲线越1,所以 σ= 1.由正态曲线的特点知:当μ一定时,曲线的形状由σ22π“ 瘦高 ” ; σ越大,曲线越 “ 矮胖 ” ,于是有 0< σ<σ= 1<σ.123[答案 ] D(2)把一条正态曲线 C 沿着 x 轴正方向移动 2 个单位,得到一条新的曲线C ′,下列说法不正确的是 ( )A .曲线 C ′仍然是正态曲线B .曲线C 和曲线 C ′的最高点的纵坐标相等C .以曲线 C ′为概率密度曲线的总体的方差比以曲线C 为概率密度曲线的总体的方差大 2D .以曲线 C ′为概率密度曲线的总体的均值比以曲线C 为概率密度曲线的总体的均值大 2[解析 ]在正态曲线沿着 x 轴方向水平移动的过程中 σ始终保持不变,所以曲线的最高即正态分布密度函数的最大值1 2C 的对称轴为 点的纵坐标 σ 2π和方差σ没有变化.设曲线x =m ,那么曲线 C ′ 的对称轴为 x = m + 2,说明均值从 m 变到了 m +2,增大了 2.[答案 ] C (3)已知正态总体的数据落在区间 (- 3,- 1)内的概率和落在区间 (3,5) 内的概率相等,那么这个曲线中的 μ值为 ________.[解析 ] 正态总体的数据落在这两个区间内的概率相等,说明在这两个区间上位于正态曲线下方的面积相等; 又两个区间的长度相等, 所以正态曲线在这两个区间上是对称的. 易知区间 (- 3,- 1)和区间 (3,5)关于直线 x = 1 对称,因此 μ= 1.[答案]11 及当 μ一定时,曲线的形状由 σ确定[名师点评 ] (1) 正态曲线在 x =μ处达到峰值 σ 2π这两条性质.根据题设中的图象,数形结合易得到结论.(2)理解正态分布的实质, 由正态曲线, 过点 (a,0) 和点 (b,0)的两条 x 轴的垂线及 x 轴所围成的平面图形的面积,就是随机变量X 落在区间 (a ,b)的概率的近似值,以及正态曲线的对 称性. 应注意的是, 如果两个区间的长度不相等, 就不能根据这两个区间上位于正态曲线下 方的面积相等得出正态曲线在这两个区间上是对称的 .例 5.已知随机变量 X 服从正态分布 N(3,1),且 P(2≤X ≤ 4)= 0.682 6,则 P(X>4)= ( ) A . 0.158 8 B . 0.158 7 C .0.158 6 D . 0.158 5[解析 ] 由于 X 服从正态分布 N(3,1),故正态分布曲线的对称轴为 x = 3.所以 P(X>4) = P( X<2) ,故 P(X>4)= 1- P 2≤ X ≤ 4=0.158 7.2[答案] B[感悟提高 ] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识, 求解时应根据 P(X>4)+P(X<2) + P(2≤ X ≤ 4)=1 将问题转化.四.目标检测1.判断下列各题. (对的打“√”,错的打“×” )(1) 函数 φ , ( x)中参数 μ, σ的意义分别是样本的均值与方差.()μ σ(2) 正态曲线是单峰的,其与x 轴围成的面积是随参数 μ, σ的变化而变化的. () (3) 正态曲线可以关于 y 轴对称. () 答案: (1)× (2) × (3) √2.下列函数是正态分布密度函数的是 ( )x - μ21A . f(x)=e2,μ, σ(σ>0) 都是实数2σ2πσx2 2π-B .f(x)= 2π·e 2x -1 2C .f(x)=1σe2 2πx2D . f(x)=1e 22πx21x2解析: 选 B. f(x)=2π--·e 2 =e 2 .22π 2π(5,7] 内取值的概率相等时, μ= ________. 3.设 X ~ N(μ,σ),当 X 在 (1,3] 内取值的概率与在 解析: 根据正态曲线的对称性知 μ=4. 答案: 44.如何求服从正态分布的随机变量 X 在某区间内取值的概率?解:首先找出服从正态分布时μ,σ的值, 再利用 3σ原则求某一个区间上的概率, 最后利用在 x = μ对称的区间上概率相等求得结果.六.课后作业:[ 学业水平训练 ]1.(2014 东·营检测 )设随机变量 ξ服从正态分布 N(2,9),若 P(ξ>c +1) =P(ξ<c - 1),则 c=()A . 1B . 2C .3D . 4解析:选 B. ∵μ= 2,由正态分布的定义知其函数图象关于x = 2 对称,于是c +1+ c -1=22,∴ c = 2.故选 B.212.设随机变量 X ~ N(1,3 ),则 D (3X)等于 ( )A . 9B . 31 C .1 D.3 解析: 选 C. ∵X ~ N(1,32 ),∴ D (X)= 9.1 1∴ D(3X)= 9D( X)= 1.3. (2014 沈·阳高二检测 )设随机变量 ξ~ N(0,1),若 P(ξ>1) = p ,则 P(- 1<ξ<0) =() A. 1+ p B . 1- p2D.1- pC .1- 2p2 解析: 选 D. 如图, P(ξ>1)表示 x 轴、 x>1 与正态密度曲线围成区域的面积,由正态密度曲线的对称性知: x 轴、 x<- 1 与正态密度曲线围成区域的 面积也为 p ,所以 P(- 1<ξ<0) =1-2p= 1-p.2 224.关于正态分布 N(μ, σ),下列说法正确的是 ( )A .随机变量落在区间长度为 3σ的区间之外是一个小概率事件B .随机变量落在区间长度为 6σ的区间之外是一个小概率事件C .随机变量落在 (- 3σ,3σ)之外是一个小概率事件D .随机变量落在 (μ- 3σ, μ+ 3σ)之外是一个小概率事件 解析: 选 D. ∵ P(μ- 3σ<X<μ+3σ)= 0.997 4.∴ P(X>μ+ 3σ或 X<μ-3σ)= 1- P(μ- 3σ<X<μ+ 3σ)= 1- 0.997 4= 0.002 6.∴随机变量落在 (μ-3σ, μ+ 3σ)之外是一个小概率事件.5.设正态总体落在区间 (-∞,- 1)和区间 (3,+∞ )的概率相等,落在区间 (- 2,4)内的概率为 99.7%,则该正态总体对应的正态曲线的最高点的坐标为()A .(1, 1B . (1, 2))1 2πC .( , 1)D . (1,1)2π解析: 选 A. 正态总体落在区间 (-∞ ,- 1)和 (3,+ ∞ )的概率相等,说明正态曲线关于x =1 对称,所以 μ= 1.又在区间 (- 2,4)内的概率为 99.7%, ∴ 1- 3σ=- 2,1+ 3σ= 4,∴ σ=1.x - 1 2∴ f(x)= 1e -2π6. (2014 临·沂一中检测密度曲线, 则三个随机变量11,2π.)如图是三个正态分布 X ~N(0, 0.25) ,Y ~ N(0,1) , Z ~ N(0,4) 的X ,Y ,Z 对应曲线分别是图中的 ________、________、________.2, x ∈R ,∴最高点的坐标为解析:在密度曲线中,σ越大,曲线越“ 矮胖” ;σ越小,曲线越“ 瘦高”.答案:① ②③7.若随机变量2X~ N(μ,σ),则 P(X≤μ)= ________.1 2x=μ对称,故解析:由于随机变量 X~ N(μ,σ),其中概率密度函数关于P( X≤ μ)= .答案:12228.在某项测量中,测量结果ξ服从正态分布N(1,σ)(σ> 0).若ξ在 (0,1)内取值的概率为 0.4,则ξ在 (2,+∞ )上取值的概率为 ________.11解析:由正态分布的特征易得P(ξ>2) =2× [1- 2P(0<ξ<1)]=2× (1- 0.8)=0.1.答案: 0.19.设 X~ N(5,1) ,求 P(6<X≤ 7).解:由已知得 P(4< X≤ 6)=0.682 6P(3< X≤ 7)= 0.954 4.又∵正态曲线关于直线x=5 对称,∴P(3< X≤ 4)+ P(6<X≤ 7)= 0.954 4- 0.682 6=0.271 8.由对称性知P(3< X≤ 4)= P(6<X≤ 7),0.271 8所以 P(6<X≤ 7)==0.135 9.210.商场经营的某种包装的大米质量 X 服从正态分布 N(10,0.1 )( 单位: kg) ,任取一袋大米,质量在 10 kg~ 10.2 kg 的概率是多少?2解:∵X~ N(10,0.1 ),∴ μ= 10,σ= 0.1.∴ P(9.8<X≤ 10.2)=P(10- 2× 0.1<X≤ 10+ 2×0.1)= 0.954 4.又∵正态曲线关于直线x=10 对称,1∴ P(10<X≤ 10.2) = P(9.8< X≤ 10.2)= 0.477 2,∴质量在 10 kg~ 10.2 kg 的概率为0.477 2.。
普通高中课程标准实验教科书g 数学(人教A 版)选修 2-32.4 正态分布设计教师:高二数学组一、教学目标及其解析 (一)教学目标:1.通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布. 2.了解正态曲线的基本特点.3.了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则. (二)解析:正态分布在统计中是很常见的分布,它能刻画很多随机现象。
从生活实践入手,描绘频率直方图,进而理解正态曲线,结合定积分的有关知识理解其概率分布列,结合图象认识参数μ,σ的几何意义.提高学生用数学知识分析现实问题的能力.善于从复杂多变的现象中发现问题的实质,提高识别能力.二、教学重难点解析 (一)重点、难点:重点:了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则. 难点:通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.(二)解析:正态分布密度函数的推导是十分困难的,一般教科书采用直接给出正态分布密度函数表达式的方法,这使学生在很长一段时间是不理解正态分布的实际含义。
可以通过直观方法引入正态分布密度曲线,也可以用样本平均值和样本标准差来估计,正态曲线的特点包括图像与坐标轴之间的关系,单峰性,对称性,峰值的位置环境等。
三、教学过程设计问题1.什么是正态曲线?问题2.什么是正态分布?正态分布又有哪些特点?例1.如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机总量的均值和方差.[解] 从正态曲线可知,该正态曲线关于直线x =20对称,最大值为12π,所以μ=20, 12πσ=12π, ∴σ= 2.于是φμ,σ(x )=12π·e-(x -20)24,x ∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.方法归纳本题主要考查正态曲线的图象及性质特点,其具有两大明显特征:1.对称轴方程x =μ;2.最值1σ2π.这两点把握好了,参数μ,σ便确定了,代入φμ,σ(x )中便可求出相应的解析式.变式训练1.如图,曲线C 1:f (x )=12πσ21e -(x -μ)22σ2(x ∈R ),曲线C 2:φ(x )=12πσ2e -(x -μ)2 2σ2(x ∈R ),则( )A .μ1<μ2B .曲线C 1与x 轴相交 C .σ1>σ2D .曲线C 1,C 2分别与x 轴所夹的面积相等解析:选D.由正态曲线的特点易知μ1>μ2,σ1<σ2,曲线C 1,C 2分别与x 轴所夹面积相等,故选D.例2.设X ~N (1,22),试求:(1)P (-1<X ≤3);(2)P (3<X ≤5).[解] 因为X ~N (1,22),所以μ=1,σ=2. (1)P (-1<X ≤3)=P (1-2<X ≤1+2) =P (μ-σ<X ≤μ+σ)=0.682 6.(2)因为P (3<X ≤5)=P (-3≤X <-1), 所以P (3<X ≤5) =12[P (-3<X ≤5)-P (-1<X ≤3)] =12[P (1-4<X ≤1+4)-P (1-2<X ≤1+2)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)] =12(0.954 4-0.682 6)=0.135 9. 方法归纳对于正态分布N (μ,σ2),由x =μ是正态曲线的对称轴知: (1)对任意的a ,有P (X <μ-a )=P (X >μ+a ); (2)P (X <x 0)=1-P (X ≥x 0);(3)P (a <X <b )=P (X <b )-P (X ≤a ). 变式训练2.在某项测量中,测量结果服从正态分布N (1,4),求正态总体X 在区间(-1,1)内取值的概率.解:∵由题意知μ=1,σ=2,∴P (-1<X ≤3)=P (1-2<X ≤1+2)=0.682 6.又∵密度函数关于直线x =1对称,∴P (-1<X <1)=P (1<X <3)=12P (-1<X <3)=0.341 3.例3.某年级的一次信息技术测验成绩近似服从正态分布N (70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少?(2)成绩在80~90之间的学生占多少?[解] (1)设学生的得分情况为随机变量X , 则X ~N (70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P (70-10<X ≤70+10)=0.682 6=68.26%,∴不及格的学生所占的比为12×(1-0.682 6)=0.158 7=15.87%.(2)成绩在80到90之间的学生所占的比为 12×[P (70-2×10<X ≤70+2×10)-P (70-10<X ≤70+10)]=12×(0.954 4-0.682 6)=13.59%.方法归纳运用3σ原则时,关键是将给定的区间转化为用μ再加上或减去几个σ来表示;当要求服从正态分布的随机变量的概率其所在的区间不对称时,不妨先通过分解或合成,再求其对称区间概率的一半解决问题.变式训练3.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X (单位:分)近似服从正态分布X ~N (50,102),求他在(30,60]分内赶到火车站的概率.解:∵X ~N (50,102), ∴μ=50,σ=10.∴P (30<X ≤60)=P (30<X ≤50)+P (50<X ≤60) =12P (μ-2σ<X ≤μ+2σ)+12P (μ-σ<X ≤μ+σ) =12×0.954 4+12×0.682 6=0.818 5. 即他在(30,60]分内赶到火车站的概率是0.818 5.例4.(1)如图为σ取三个不同值σ1,σ2,σ3时的三种正态曲线N (0,σ2)的图象,那么σ1,σ2,σ3的大小关系是( )A .σ1>1>σ2>σ3>0B .0<σ1<σ2<1<σ3C .σ1>σ2>1>σ3>0D .0<σ1<σ2=1<σ3[解析] 当μ=0,σ=1时,正态分布密度函数f (x )=12πe -x22,x ∈(-∞,+∞),当x =0时,取得最大值12π,所以σ2=1.由正态曲线的特点知:当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”;σ越大,曲线越“矮胖”,于是有0<σ1<σ2=1<σ3.[答案] D(2)把一条正态曲线C 沿着x 轴正方向移动2个单位,得到一条新的曲线C ′,下列说法不正确的是( )A .曲线C ′仍然是正态曲线B .曲线C 和曲线C ′的最高点的纵坐标相等C .以曲线C ′为概率密度曲线的总体的方差比以曲线C 为概率密度曲线的总体的方差大2D .以曲线C ′为概率密度曲线的总体的均值比以曲线C 为概率密度曲线的总体的均值大2[解析] 在正态曲线沿着x 轴方向水平移动的过程中σ始终保持不变,所以曲线的最高点的纵坐标⎝⎛⎭⎫即正态分布密度函数的最大值1σ2π和方差σ2没有变化.设曲线C 的对称轴为x =m ,那么曲线C ′的对称轴为x =m +2,说明均值从m 变到了m +2,增大了2.[答案] C(3)已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个曲线中的μ值为________.[解析] 正态总体的数据落在这两个区间内的概率相等,说明在这两个区间上位于正态曲线下方的面积相等;又两个区间的长度相等,所以正态曲线在这两个区间上是对称的.易知区间(-3,-1)和区间(3,5)关于直线x =1对称,因此μ=1.[答案] 1[名师点评] (1)正态曲线在x =μ处达到峰值1σ2π及当μ一定时,曲线的形状由σ确定这两条性质.根据题设中的图象,数形结合易得到结论.(2)理解正态分布的实质,由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线及x 轴所围成的平面图形的面积,就是随机变量X 落在区间(a ,b )的概率的近似值,以及正态曲线的对称性.应注意的是,如果两个区间的长度不相等,就不能根据这两个区间上位于正态曲线下方的面积相等得出正态曲线在这两个区间上是对称的.例5.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)=( ) A .0.158 8 B .0.158 7 C .0.158 6 D .0.158 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3. 所以P (X >4)=P (X <2),故P (X >4)=1-P (2≤X ≤4)2=0.158 7.[答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.四.目标检测1.判断下列各题.(对的打“√”,错的打“×”)(1)函数φμ,σ(x )中参数μ,σ的意义分别是样本的均值与方差.( )(2)正态曲线是单峰的,其与x 轴围成的面积是随参数μ,σ的变化而变化的.( ) (3)正态曲线可以关于y 轴对称.( ) 答案:(1)× (2)× (3)√2.下列函数是正态分布密度函数的是( )A .f (x )=12πσe (x -μ)22σ2,μ,σ(σ>0)都是实数B .f (x )=2π2π·e -x22C .f (x )=122πe(x -1)2σD .f (x )=12πe x22 解析:选B.f (x )=2π2π·e -x22=12πe -x22.3.设X ~N (μ,σ2),当X 在(1,3]内取值的概率与在(5,7]内取值的概率相等时,μ=________. 解析:根据正态曲线的对称性知μ=4. 答案:44.如何求服从正态分布的随机变量X 在某区间内取值的概率?解:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在x =μ对称的区间上概率相等求得结果.五.课堂小结 六.课后作业:[学业水平训练]1.(2014·东营检测)设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c =( )A .1B .2C .3D .4解析:选B.∵μ=2,由正态分布的定义知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2.故选B.2.设随机变量X ~N (1,32),则D (13X )等于( )A .9B .3C .1 D.13解析:选C.∵X ~N (1,32),∴D (X )=9.∴D (13X )=19D (X )=1.3.(2014·沈阳高二检测)设随机变量ξ~N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( ) A.12+p B .1-p C .1-2p D.12-p解析:选D.如图,P (ξ>1)表示x 轴、x >1与正态密度曲线围成区域的面积,由正态密度曲线的对称性知:x 轴、x <-1与正态密度曲线围成区域的面积也为p ,所以P (-1<ξ<0)=1-2p 2=12-p .4.关于正态分布N (μ,σ2),下列说法正确的是( )A .随机变量落在区间长度为3σ的区间之外是一个小概率事件B .随机变量落在区间长度为6σ的区间之外是一个小概率事件C .随机变量落在(-3σ,3σ)之外是一个小概率事件D .随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件解析:选D.∵P (μ-3σ<X <μ+3σ)=0.997 4.∴P (X >μ+3σ或X <μ-3σ)=1-P (μ-3σ<X <μ+3σ)=1-0.997 4=0.002 6.∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.5.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为99.7%,则该正态总体对应的正态曲线的最高点的坐标为( )A .(1,12π) B .(1,2)C .(12π,1) D .(1,1)解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x =1对称,所以μ=1.又在区间(-2,4)内的概率为99.7%, ∴1-3σ=-2,1+3σ=4,∴σ=1.∴f (x )=12πe -(x -1)22,x ∈R ,∴最高点的坐标为⎝⎛⎭⎫1,12π.6.(2014·临沂一中检测)如图是三个正态分布X ~N (0,0.25),Y ~N (0,1),Z ~N (0,4)的密度曲线,则三个随机变量X ,Y ,Z 对应曲线分别是图中的________、________、________.解析:在密度曲线中,σ越大,曲线越“矮胖”;σ越小,曲线越“瘦高”. 答案:① ② ③7.若随机变量X ~N (μ,σ2),则P (X ≤μ)=________.解析:由于随机变量X ~N (μ,σ2),其中概率密度函数关于x =μ对称,故P (X ≤μ)=12.答案:128.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P (ξ>2)=12×[1-2P (0<ξ<1)]=12×(1-0.8)=0.1.答案:0.19.设X ~N (5,1),求P (6<X ≤7).解:由已知得P (4<X ≤6)=0.682 6P (3<X ≤7)=0.954 4.又∵正态曲线关于直线x =5对称, ∴P (3<X ≤4)+P (6<X ≤7)=0.954 4-0.682 6 =0.271 8.由对称性知P (3<X ≤4)=P (6<X ≤7),所以P (6<X ≤7)=0.271 82=0.135 9.10.商场经营的某种包装的大米质量X 服从正态分布N (10,0.12)(单位:kg),任取一袋大米,质量在10 kg ~10.2 kg 的概率是多少?解:∵X ~N (10,0.12), ∴μ=10,σ=0.1.∴P (9.8<X ≤10.2)=P (10-2×0.1<X ≤10+2×0.1)=0.954 4. 又∵正态曲线关于直线x =10对称,∴P (10<X ≤10.2)=12P (9.8<X ≤10.2)=0.477 2,∴质量在10 kg ~10.2 kg 的概率为0.477 2.。