正态分布教学设计
- 格式:docx
- 大小:54.53 KB
- 文档页数:5
§7.5正态分布教学目标1.利用实际问题的频率分布直方图,了解正态分布曲线的特点及曲线所表示的意义.2.了解变量落在区间[μ-σ,μ+σ],[μ-2σ,μ+2σ],[μ-3σ,μ+3σ]内的概率大小.3.会用正态分布去解决实际问题.教学知识梳理知识点一正态曲线与正态分布1.我们称f(x)=1σ2π22()2exμσ--,x∈R,其中μ∈R,σ>0为参数,为正态密度函数,称其图象为正态分布密度曲线,简称正态曲线.2.若随机变量X的概率密度函数为f(x),则称随机变量X服从正态分布,记为X~N(μ,σ2).特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.3.若X~N(μ,σ2),如图所示,X取值不超过x的概率P(X≤x)为图中区域A的面积,而P(a≤X≤b)为区域B的面积.教学思考1正态曲线f(x)=12πσ22()2exμσ--,x∈R中的参数μ,σ有何意义?答案μ可取任意实数,表示平均水平的特征数,E(X)=μ;σ>0表示标准差,D(X)=σ2.一个正态密度函数由μ,σ唯一确定,π和e为常数,x为自变量,x∈R.教学思考2若随机变量X~N(μ,σ2),则X是离散型随机变量吗?答案若X~N(μ,σ2),则X不是离散型随机变量,由正态分布的定义:P(a<X≤b)为区域B 的面积,X可取(a,b]内的任何值,故X不是离散型随机变量,它是连续型随机变量.知识点二正态曲线的特点1.对∀x∈R,f(x)>0,它的图象在x轴的上方.2.曲线与x轴之间的面积为1.3.曲线是单峰的,它关于直线x=μ对称.4.曲线在x=μ处达到峰值1σ2π.5.当|x|无限增大时,曲线无限接近x轴.6.当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①.7.当μ一定时,曲线的形状由σ确定,σ较小时曲线“瘦高”,表示随机变量X的分布比较集中;σ较大时,曲线“矮胖”,表示随机变量X的分布比较分散,如图②.知识点三正态总体在三个特殊区间内取值的概率值及3σ原则P(μ-σ≤X≤μ+σ)≈0.682 7;P(μ-2σ≤X≤μ+2σ)≈0.954 5;P(μ-3σ≤X≤μ+3σ)≈0.997 3.尽管正态变量的取值范围是(-∞,+∞),但在一次试验中,X的取值几乎总是落在区间[μ-3σ,μ+3σ]内,而在此区间以外取值的概率大约只有0.002 7,通常认为这种情况在一次试验中几乎不可能发生.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取[μ-3σ,μ+3σ]中的值,这在统计学中称为3σ原则.教学小测1.设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图像如图所示,则有()A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2【答案】A【解析】由概率密度曲线的性质可知,N(μ1,σ21),N(μ2,σ22)的密度曲线分别关于直线x=μ1,x=μ2对称,因此结合所给图像知μ1<μ2,且N(μ1,σ21)的密度曲线较N(μ2,σ22)的密度曲线“高瘦”,因此σ1<σ2.2.正态分布的概率密度函数为f(x)=18π28ex-(x∈R),则这个正态变量的数学期望是________,标准差是________.【答案】02【解析】因为f(x)=18π28ex-=122π22(0)22ex--⨯所以X~N(0,22),所以μ=0,标准差为2.3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为__________.【答案】34.15%【解析】因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520,所以月平均收入在(480,520)范围内的概率为0.683.由图像的对称性可知,月收入在(480,500)和(500,520)的概率相等,因此,此县农民月均收入在500到520元间人数的百分比约为34.15%.教学探究探究一正态曲线例1. 某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()A.甲科总体的标准差最小B.丙科总体的平均数最小C.乙科总体的标准差及平均数都居中D.甲、乙、丙的总体的平均数不相同【答案】A【解析】由题中图象可知三科总体的平均数(均值)相等,由正态密度曲线的性质,可知σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡,故三科总体的标准差从小到大依次为甲、乙、丙.故选A.反思感悟利用正态曲线的特点求参数μ,σ(1)正态曲线是单峰的,它关于直线x=μ对称,由此特点结合图象求出μ.(2)正态曲线在x=μ处达到峰值1σ2π,由此特点结合图象可求出σ.跟踪训练1.(1)设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图象如图所示,则有()A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2(2)如图所示是正态分布N(μ,σ21),N(μ,σ22),N(μ,σ23)(σ1,σ2,σ3>0)相应的曲线,那么σ1,σ2,σ3的大小关系是()A.σ1>σ2>σ3B.σ3>σ2>σ1C.σ1>σ3>σ2D.σ2>σ1>σ3(1)【答案】A【解析】根据正态分布的性质:对称轴方程x=μ,σ表示正态曲线的形状.由题图可得,选A.(2)【答案】A【解析】由σ的意义可知,图象越瘦高,数据越集中,σ2越小,故有σ1>σ2>σ3.探究二利用正态分布求概率例2.设随机变量X~N(2,9),若P(X>c+1)=P(X<c-1).(1)求c的值;(2)求P(-4<x<8).解:(1)由X~N(2,9)可知,密度函数关于直线x=2对称(如图所示),又P(X>c+1)=P(X<c-1),故有2-(c-1)=(c+1)-2,所以c=2.(2)P(-4<x<8)=P(2-2×3<x<2+2×3)=0.954 4.反思感悟利用正态分布的对称性求概率由于正态曲线是关于直线x=μ对称的,且概率的和为1,故关于直线x=μ对称的区间上概率相等.跟踪训练2.(1)已知随机变量X服从正态分布N(2,σ2),P(X<4)=0.84,则P(X≤0)=() A.0.16B.0.32C .0.68D .0.84(2)已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)=( ) A .0.158 5 B .0.158 8 C .0.158 7 D .0.158 6(1)【答案】A【解析】由X ~N (2,σ2),可知其正态密度曲线如图,对称轴为直线x =2,则P (X ≤0)=P (X ≥4)=1-P (X <4)=1-0.84=0.16.(2)【答案】C【解析】因为随机变量X ~N (3,1),所以正态密度曲线关于直线x =3对称,所以P (X >4)=12[1-P (2≤X ≤4)]=12(1-0.682 6)=0.158 7. 探究三 正态分布的应用例3. 在某次考试中,某班同学的成绩服从正态分布N (80,52),现已知该班同学成绩在80~85分的有17人,该班同学成绩在90分以上的有多少人? 解:∵成绩服从正态分布N (80,52), ∴μ=80,σ=5,则μ-σ=75,μ+σ=85, ∴成绩在(75,85]内的同学占全班同学的68.26%, 成绩在(80,85]内的同学占全班同学的34.13%, 设该班有x 人,则x ·34.13%=17,解得x ≈50. ∵μ-2σ=80-10=70,μ+2σ=80+10=90,∴成绩在(70,90]内的同学占全班同学的95.44%,成绩在90分以上的同学占全班同学的2.28%,即有50×2.28%≈1(人),即成绩在90分以上的仅有1人. 反思感悟 求正态变量X 在某区间内取值的概率的基本方法 (1)根据题目中给出的条件确定μ与σ的值.(2)将待求问题向[μ-σ,μ+σ],[μ-2σ,μ+2σ],[μ-3σ,μ+3σ]这三个区间进行转化. (3)利用X 在上述区间的概率、正态曲线的对称性和曲线与x 轴之间的面积为1求出最后结果.跟踪训练3.(1)据调查统计,某市高二学生中男生的身高X (单位:cm)服从正态分布N (174, 9),若该市共有高二男生3 000人,试计算该市高二男生身高在(174,180)范围内的人数.(2)若某厂生产的圆柱形零件的外直径X服从正态分布N(4,0.52),质检人员从该厂生产的1 000件零件中随机抽查一件,测得它的外直径为5.7 cm,判断该厂生产的这批零件是否合格.解:(1)因为身高X~N(174,9),所以μ=174,σ=3,所以μ-2σ=174-2×3=168,μ+2σ=174+2×3=180,所以身高在(168,180)范围内的概率为0.954.又因为μ=174.所以身高在(168,174)和(174,180)范围内的概率相等均为0.477,故该市高二男生身高在(174,180)范围内的人数约是3 000×0.477=1 431(人).(2)X服从正态分布N(4,0.52),由正态分布性质可知,正态分布N(4,0.52)在(4-3×0.5,4+3×0.5)之外取值的概率只有0.003,而5.7∉(2.5,5.5).这说明在一次试验中,出现了几乎不可能发生的小概率事件,据此认为这批零件不合格.课堂小结1.知识清单:(1)正态曲线及其特点.(2)正态分布.(3)正态分布的应用,3σ原则.2.方法归纳:转化化归、数形结合.3.常见误区:概率区间转化不等价.当堂达标1.正态分布密度函数为f(x)=18π28ex,x∈(-∞,+∞),则总体的均值和标准差分别是()A.0和8B.0和4C.0和2 D.0和2【答案】C【解析】由条件可知μ=0,σ=2.2.如图是当ξ取三个不同值ξ1,ξ2,ξ3的三种正态曲线N(0,σ2)的图象,那么σ1,σ2,σ3的大小关系是()A.σ1>1>σ2>σ3>0 B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0 D.0<σ1<σ2=1<σ3【答案】D【解析】当μ=0,σ=1时,正态曲线f (x )=12πe -x 22.在x =0时,取最大值12π,故σ2=1.由正态曲线的性质,当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”;σ越大,曲线越“矮胖”,于是有0<σ1<σ2=1<σ3.3.若随机变量X ~N (μ,σ2),则P (X ≤μ)=________. 【答案】12【解析】由于随机变量X ~N (μ,σ2),其正态密度曲线关于直线X =μ对称,故P (X ≤μ)=12.4.已知随机变量X 服从正态分布N (2,σ2),且P (X <4)=0.84,则P (X ≤0)=________. 【答案】0.16【解析】由X ~N (2,σ2),可知其正态曲线如图所示,对称轴为x =2,则P (X ≤0)=P (X ≥4)=1-P (X <4)=1-0.84=0.16.5.随机变量ξ服从正态分布N (0,1),如果P (ξ≤1)=0.841 3,求P (-1<ξ≤0). 解:如图所示,因为P (ξ≤1)=0.841 3,所以P (ξ>1)=1-0.841 3=0.158 7, 所以P (ξ≤-1)=0.158 7,所以P (-1<ξ≤0)=0.5-0.158 7=0.341 3.。
正态分布示范教案第一章:正态分布的定义与特征1.1 引入:通过现实生活中的例子(如考试分数、人的身高等)引导学生了解正态分布的概念。
1.2 讲解正态分布的定义:一个连续型随机变量X服从正态分布,如果其概率密度函数为f(x) = (1/σ√(2π)) e^(-(x-μ)^2/(2σ^2)),其中μ是分布的均值,σ是分布的标准差。
1.3 分析正态分布的特征:均值、标准差、对称性、拖尾现象等。
1.4 练习:让学生通过图表或计算器观察正态分布的特性。
第二章:正态分布的参数估计2.1 引入:讲解参数估计的概念,以及正态分布参数估计的重要性。
2.2 讲解均值和标准差的点估计:利用样本均值和样本标准差来估计总体均值和总体标准差。
2.3 讲解置信区间:以样本均值为例,讲解如何计算置信区间,并解释其含义。
2.4 练习:让学生运用给出的数据,计算正态分布的均值和标准差的点估计,以及置信区间。
第三章:正态分布的假设检验3.1 引入:讲解假设检验的概念,以及正态分布假设检验的应用。
3.2 讲解单样本Z检验:通过给出样本数据,引导学生了解如何进行正态分布的单样本Z检验。
3.3 讲解两样本Z检验:通过给出两个样本数据,引导学生了解如何进行正态分布的两样本Z检验。
3.4 练习:让学生运用给出的数据,进行正态分布的假设检验。
第四章:正态分布的应用4.1 引入:讲解正态分布在日常生活中的应用,如质量控制、医学等领域。
4.2 讲解正态分布的应用案例:如某产品的质量控制,如何利用正态分布进行控制限的确定。
4.3 讲解正态分布在其他领域的应用:如医学中正常值的判断、心理测量等。
4.4 练习:让学生通过实例,运用正态分布解决实际问题。
第五章:总结与拓展5.1 总结:回顾本章所讲内容,让学生掌握正态分布的定义、特征、参数估计和假设检验。
5.2 拓展:讲解其他连续型分布,如t分布、卡方分布等,以及它们与正态分布的关系。
5.3 练习:让学生运用所学的知识,解决更复杂的实际问题。
正态分布教案导学案第一章:正态分布的概念与性质一、教学目标1. 了解正态分布的定义及特点;2. 掌握正态分布曲线的形状、对称轴、均值、标准差等基本性质;3. 能够识别常见的正态分布现象。
二、教学内容1. 正态分布的定义;2. 正态分布曲线的特点;3. 正态分布的性质与应用。
三、教学步骤1. 引入正态分布的概念,通过实例让学生感受正态分布现象;2. 讲解正态分布曲线的特点,如对称性、单调性等;3. 引导学生探究正态分布的性质,如均值、标准差等;4. 结合实际例子,让学生了解正态分布的应用。
四、课后作业1. 复习正态分布的概念与性质;2. 完成相关练习题,如判断题、选择题等。
第二章:正态分布的图像与特征一、教学目标1. 学会绘制正态分布曲线;2. 掌握正态分布曲线的特征,如百分位数、累积概率等;3. 能够利用正态分布解决实际问题。
二、教学内容1. 正态分布曲线的绘制方法;2. 正态分布曲线的特征;3. 正态分布的应用。
三、教学步骤1. 讲解正态分布曲线的绘制方法,如标准正态分布曲线;2. 引导学生探究正态分布曲线的特征,如百分位数、累积概率等;3. 结合实际例子,让学生了解如何利用正态分布解决实际问题。
四、课后作业1. 复习正态分布的图像与特征;2. 完成相关练习题,如判断题、选择题等。
第三章:正态分布的标准化与转换一、教学目标1. 掌握正态分布的标准化方法;2. 学会将非正态分布数据转换为正态分布数据;3. 能够运用正态分布进行数据分析。
二、教学内容1. 正态分布的标准化方法;2. 非正态分布数据的转换方法;3. 正态分布在数据分析中的应用。
三、教学步骤1. 讲解正态分布的标准化方法,如Z分数、标准分数等;2. 引导学生探究如何将非正态分布数据转换为正态分布数据,如常用的转换方法;3. 结合实际例子,让学生了解如何运用正态分布进行数据分析。
四、课后作业1. 复习正态分布的标准化与转换方法;2. 完成相关练习题,如判断题、选择题等。
高中数学教案-正态分布一、教学目标1. 了解正态分布的概念,理解正态分布曲线的特点及应用。
2. 学会计算正态分布的概率密度函数,掌握正态分布的性质。
3. 能够运用正态分布解决实际问题,提高解决问题的能力。
二、教学重点与难点1. 重点:正态分布的概念、性质及应用。
2. 难点:正态分布的概率密度函数的计算及应用。
三、教学准备1. 教学工具:黑板、粉笔、多媒体课件。
2. 教学素材:正态分布的相关案例、练习题。
四、教学过程1. 导入:通过一个具体案例,引发学生对正态分布的兴趣,例如“考试分数的分布”。
2. 新课讲解:a) 介绍正态分布的定义及特点b) 讲解正态分布的概率密度函数c) 阐述正态分布的性质3. 案例分析:分析一些实际问题,运用正态分布解决问题,如“药物疗效的评估”。
4. 练习巩固:让学生独立完成一些关于正态分布的练习题,加深对知识点的理解。
5. 总结拓展:引导学生思考正态分布在其他领域的应用,如“经济学、生物学”。
五、课后作业1. 复习正态分布的概念、性质及概率密度函数。
2. 完成课后练习题,巩固所学知识。
3. 选择一个感兴趣的领域,查找正态分布在该领域的应用案例,下节课分享。
六、教学评估1. 课堂提问:通过提问了解学生对正态分布概念的理解程度,以及对正态分布性质和概率密度函数的掌握情况。
2. 课后作业:检查学生完成课后练习题的情况,评估学生对正态分布知识的掌握程度。
3. 案例分析报告:评估学生在案例分析中的表现,考察学生运用正态分布解决实际问题的能力。
七、教学策略1. 采用直观演示法,通过多媒体课件展示正态分布曲线,帮助学生形象地理解正态分布的特点。
2. 采用案例分析法,让学生在实际问题中体验正态分布的应用,提高解决问题的能力。
3. 采用分组讨论法,鼓励学生互相交流、合作解决问题,提高学生的团队协作能力。
八、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的认知水平。
2. 反思教学方法:评估所采用的教学方法是否有效,是否能够激发学生的兴趣和参与度。
正态分布高中数学教案
教学目标:
1. 了解正态分布的基本概念和性质;
2. 能够利用正态分布解决实际问题;
3. 训练学生的数理逻辑思维和解决问题的能力。
教学内容:
1. 正态分布的定义和特征;
2. 正态分布的标准化;
3. 正态分布在概率计算中的应用。
教学步骤:
1. 导入:通过一个例子引导学生了解正态分布的概念和特点;
2. 探究:讲解正态分布的定义和性质,帮助学生理解正态分布的特点;
3. 练习:让学生进行练习,例如计算正态分布的概率值;
4. 拓展:引导学生思考正态分布在实际问题中的应用;
5. 总结:对本节课的内容进行总结,并布置作业。
教学资源:
1. 教科书相关章节;
2. 教学投影仪;
3. 练习题和作业题。
教学评估:
1. 学生课堂表现;
2. 课后作业完成情况;
3. 学生对正态分布应用的理解和运用能力。
教学反思:
1. 是否能够引导学生正确理解和运用正态分布概念;
2. 是否能够激发学生探索正态分布在实际问题中的应用;
3. 是否能够提高学生数理逻辑思维和解决问题的能力。
2.4正态分布教案篇一:2.4正态分布教学设计教案教学准备1.教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3σ原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。
2.教学重点/难点1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3σ原则简单应用3.教学用具课件4.标签正态分布,正态曲线性质教学过程山东省信息技术与课堂整合优质课评选《正态分布》教学设计五莲县第三中学李治国《正态分布》教学设计一、教学分析(一)教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3σ原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。
(二)重难点:1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3σ原则简单应用二、教学过程及多媒体的应用本课主要利用powerpoint,数学专用scilab随机数表生成程序,几何画板,mathtype编辑程序制作了教学课件,因为本节内容所用数据以及公式较多,又需要使用数据构造作图并估计,是本节教学中的一个难点,传统教学很难解决课堂上大量的数据分组和作图问题,而利用以上媒体设计使数据分组快速直接,并能让图像动起来,能够节省课堂上的教学时间,提高教学效率,加大课堂容量,利用动画设计突破了研究正态曲线性质的教学难点,更有利于学生直观感知,总之,使用多媒体技术能够化抽象为具体,化分散为紧凑。
给学生以动感的认识,高度浓缩时空,有效突破重难点,激活课堂,起到事半功倍的效果。
(-)(复习导入)1、(1)运用多媒体画出频率分布直方图和总体密度曲线.(2)当样本容量n无限增大时,频率分布直方图变化的情况?(3)重新感知“样本容量越大,总体估计就越精确”.2.通过实例,说明正态分布(密度)是最基本、最重要的一种分布.如学生的学习成绩、气象中的平均气温、平均湿度等等,都服从或近似地服从正态分布.多媒体的作用:展示以前学习知识,回顾总结,引出课题(二)具体学习阶段自主学习探究一:概率密度函数的概念和函数形式其中:π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差,正态分布一般记为n(μ,σ2).注意:①函数表达式的形式②当μ=0、σ=1时,正态总体称为标准正态总体,其相应的函数表示式是其相应的曲线称为标准正态曲线.多媒体作用:用图形展示数据的总体趋势,引出概念,展示函数形式,给学生以函数的认识。
正态分布示范教案第一章:正态分布的基本概念1.1 引入:通过引入日常生活中的例子,如考试成绩、身高、体重等,引导学生理解数据的分布规律。
1.2 定义:介绍正态分布的定义,解释均值、标准差等基本术语。
1.3 图形表示:教授如何绘制正态分布曲线,并解释曲线特点。
1.4 实例分析:分析一些实际数据集,让学生通过计算和绘图验证它们是否符合正态分布。
第二章:正态分布的性质2.1 引入:通过讲解正态分布的性质,使学生理解正态分布的重要性和广泛应用。
2.2 均值、中位数和众数:解释正态分布中均值、中位数和众数的关系,并通过实例进行说明。
2.3 概率密度函数:教授正态分布的概率密度函数公式,并解释其意义。
2.4 标准正态分布:介绍标准正态分布的概念,并解释其与普通正态分布的关系。
第三章:正态分布的应用3.1 引入:通过实际案例,让学生了解正态分布在实际问题中的应用。
3.2 假设检验:讲解如何使用正态分布进行假设检验,包括Z检验和t检验。
3.3 置信区间:教授如何计算正态分布数据的置信区间,并解释其含义。
3.4 数据分析:通过实际数据集,让学生运用正态分布进行数据分析,解决实际问题。
第四章:正态分布在实际领域的应用4.1 引入:通过讲解正态分布在不同领域的应用,让学生了解其广泛性。
4.2 医学领域:介绍正态分布在医学领域的应用,如疾病风险评估、药物剂量确定等。
4.3 工程领域:解释正态分布在工程领域的应用,如产品质量控制、可靠性分析等。
4.4 金融领域:讲解正态分布在金融领域的应用,如投资组合优化、风险管理等。
第五章:正态分布的扩展5.1 引入:引导学生思考正态分布的局限性,引出正态分布的扩展。
5.2 非正态分布:介绍一些常见的非正态分布,如泊松分布、二项分布等,并解释其特点。
5.3 转换方法:教授如何将非正态分布数据转换为正态分布,以及如何将正态分布数据转换为其他分布。
5.4 应用案例:通过实际案例,让学生了解在实际问题中如何灵活运用正态分布及其扩展。
正态分布教学设计教学设计:正态分布一、教学目标:1.了解正态分布的定义和性质。
2.掌握正态分布的计算方法。
3.能够应用正态分布解决实际问题。
二、教学内容和教学步骤:1. 引入(10分钟):- 通过实例引导学生思考:如果我们测量了一组数据,如身高、体重等,发现大部分数据集中在中间,而边缘的数据很少,这种分布是不是有什么特别的性质?- 引导学生回忆概率密度函数的概念和性质。
2. 正态分布的定义和性质(15分钟):- 定义:正态分布又称高斯分布,是一种连续型的概率分布,可以用概率密度函数表示。
其形状为钟形曲线,以均值μ和标准差σ为参数。
- 性质:均值μ决定了钟形曲线的位置,标准差σ决定了钟形曲线的宽度。
曲线关于均值对称,75%的数据落在均值附近的一个标准差范围内,95%的数据落在均值附近的两个标准差范围内。
- 展示正态分布的图像,解释均值和标准差对分布的影响。
3. 正态分布的计算方法(25分钟):- 计算标准正态分布的累积概率:介绍标准正态分布表的使用方法,通过确定给定值所在的区间,查表找到对应的累积概率。
- 实例演练:给定一个标准正态分布的随机变量值,计算其累积概率。
4. 正态分布的应用(30分钟):- 实例1:以身高为例,给定平均身高和标准差,计算落在一定范围的概率。
提示学生思考,如何计算在一定范围内的概率,如何确定一个范围在给定分布中的百分位数。
- 实例2:以考试成绩为例,给定平均分数和标准差,计算高于某个成绩的概率。
提示学生思考,如何计算高于某个值的概率,如何确定一个给定分数在给定分布中的百分位数。
5. 拓展(20分钟):- 引入多元正态分布概念,讨论多个随机变量的联合正态分布。
- 引入中心极限定理,讨论样本均值的分布近似为正态分布的情况。
6. 总结和反馈(10分钟):- 总结正态分布的定义、性质和计算方法。
- 提问学生,正态分布在实际生活和工作中有哪些应用,让学生回顾所学并总结应用经验。
三、教学资源- PowerPoint课件- 实例练习题集- 标准正态分布表四、教学评估方式1. 提供多个实例,让学生计算正态分布的概率。
高中数学正态分布教案及反思
一、教学目标
1. 理解正态分布的定义和性质。
2. 掌握使用正态分布表求解实际问题。
3. 能够在实际问题中应用正态分布理论解决问题。
二、教学重点和难点
重点:正态分布的定义和性质。
难点:应用正态分布理论解决实际问题。
三、教学流程
1. 导入:通过引入一个实际问题,引发学生对正态分布的思考。
2. 讲解:介绍正态分布的定义、性质以及正态分布表的使用方法。
3. 练习:让学生通过练习掌握正态分布的应用,并解决一些实际问题。
4. 拓展:让学生通过拓展性问题,进一步巩固对正态分布的理解。
5. 总结:对本节课的内容进行简单总结,澄清学生的疑惑。
四、课后作业
1. 完成练习题,巩固对正态分布的掌握。
2. 思考如何在日常生活中应用正态分布理论。
反思范本:
在本节课中,我认为我的教学方法比较灵活,能够引发学生的兴趣,让他们更加主动地参
与学习。
但是在讲解部分,我发现有些学生对正态分布的概念理解不够清晰,可能是因为
我在讲解时没有用简单明了的语言表达,导致学生理解困难。
在以后的教学中,我会更加
注重引导学生思考,让他们通过实际问题解决的方式来学习,以加深对知识的理解。
同时,我也会在备课时更加充分地考虑学生的接受能力,选择合适的教学方法和语言表达,让教
学效果更加明显。
正态分布教学设计
《正态分布第一课时》教学设计
一、教学内容与内容解析
1.内容:
正态分布第一课时
2.内容解析:
本节课是《普通高中课程标准实验教科书·数学 2 -3(选修)》(人教A版)中的2.4“正态分布 (第一课时)”,属于新授概念课.正态分布是选修2—3第二章“随机变量及其分布”的最后一节,本节课内容是在学生学习了离散型随机变量及其分布的基础上进行研究的,正态分布的随机变量是一种连续型随机变量,这让学生对随机变量由离散到连续有一个深入的认识.正态分布是高中学习内容中唯一一种连续型分布,它反映了连续型随机变量的分布规律,连续型随机变量可能取某个区间上的任何值,它等于任何一个实数的概率都为0,所以我们感兴趣的是它落在某个区间的概率.离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用分布密度函数(曲线)描述,本节课是对本章知识体系的一个完善,也是必修3统计和概率知识的一种拓展.同时本节课内容反映了数形结合的思想方法,以及统计思维与确定性思维的差异.生活中除了离散型随机变量更多的是连续型随机变量的例子,因此正态分布在统计中是很常用的分布,它能刻画很多随机现象,广泛存在于自然现象、生产和生活实际之中.从形式上看,它属于概率论的范畴,但同时又是统计学的基石,它在概率和统计中占有重要的地位.一方面,本节课内容为学生初步应用正态分布知识解决实际问题提供了理论依据;另一方面,正态分布具有许多良好的性质,许多分布都可以用正态分布来近似描述,因此在理论研究中,正态分布占有很重要的地位.教学重点:1.正态分布曲线的特点;2.正态分布密度曲线所表示的意义.
二、教学目标与目标解析
1.目标:
(1)通过数学实验,从直观和形式认识正态曲线的特点及其所表示的意义;
(2)经历从具体到抽象研究正态分布问题的过程,体会数形结合、有限与无限的思想方法;
(3)认识客观世界中的随机现象和正态分布发生发展的历史,感受数学的文化价值.2.目标解析:
由于正态分布密度函数的推导超出中学生的理解,所以采用高尔顿板试验的方法引入
正态分布密度曲线是有利于学生直观的了解正态分布曲线的来源。
同时,正态分布曲线的
特点可以从解析式和图形两个方面入手,能让学生很好的体会的了数形结合的思想方法。
无论是高尔顿还是高斯都对正态分布的研究做出了不可磨灭的贡献,同学们可以从中感受
到数学的文化价值。
三、教学问题诊断分析
正态分布是研究连续型随机变量概率,学生第一次接触连续型随机变量的分布问题,
在接受上有困难.在高中阶段,严格推导正态分布密度函数是十分困难的,教材直接给出
了正态分布曲线的函数解析式,学生理解起来有困难.由于教材的编写是基于学生没有信
息技术辅助,因此会对例题的选择和问题的解决造成障碍.虽然正态分布在实际生活中有
着广泛的应用,但学习过程中缺少典型的案例和解决问题的方法.
教学难点:在现实生活中什么样的随机变量服从正态分布,正确理解正态分布的意义.
四、教学支持条件
为了有效实现教学目标,考虑到学生的知识水平、理解能力,通过教师设计的层层推
进式的问题,充分调动学生思维的积极性。
同时,通过几何画板课件和计算机模拟程序辅
助学生逐步领会正态分布的意义和正态分布密度函数曲线的性质。
五、教学过程设计
(1)知识回顾,铺平道路
提出问题1:什么是离散型随机变量?它的概率分布规律用什么来描述?
提出问题2:由函数)
b
x
(x
x围成的曲边梯形的面积S是什么?
=y
a
f
y=及直线0
,
=
,=
活动预设:教师引导学生复习离散型随机变量的定义和定积分的几何意义。
【设计意图】我们是从离散型分布过渡到正态分布这种连续型分布,而相关的知识是必修三中的内容,同时正态分布的定义要用到定积分是选修2-2的内容,对于面上中学普通班的同学来说,帮助学生复习相关知识是必要的。
(2)新课引入,触发兴趣
提出问题3:除了离散型随机变量还有其他类型的随机变量吗?如果有,那么它的概率分布规律用什么来描述呢?
活动预设:从课前设置的猜数游戏引入连续性随机变量的概念。
【设计意图】课本并没有指出正态分布是连续性随机变量,也没给出连续性随机变量的定义,这对于学生正确的理解正太分布是有障碍的,通过课前的猜数游戏引入这个概念有利于扫平学生认知上的障碍。
教学活动:简要介绍高尔顿的生平和高尔顿试验。
提出问题4:在投放小球之前,你能知道这个小球落在哪个球槽中吗?
提出问题5:能用一个离散型随机变量来描述高尔顿板这个随机试验吗?
【设计意图】介绍高尔顿生平能让学生真切的感受的数学文化的价值,也能很好的调动学生学习的积极性,本节课从高尔顿试验引入正态分布.由于缺乏必要的动手试验的感受,通过介绍高尔顿试验的器材和两个问题帮助学生加深对后面模拟试验的理解.
引导性语言:我们用计算机来模拟高尔顿板试验,请同学们注意随着投放球数的变化球槽内小球分布的变化。
教学活动:利用计算机模拟高尔顿板试验(分别投放10、50、200、500、1000、5000个)。
【设计意图】当投放10个和50个小球时,球槽内小球的分布呈现正态分布曲线的形状不明显,只有当投放球数足够多时才基本符合正态分布曲线的形状,虽然缺乏必要的动手试验的感受,通过多做几次试验以增加学生的认知,
(3)新课讲解,突破难点
1.正态曲线的定义
引导性语言:这条钟形曲线的解析式为:),(,21)(222)(+∞-∞∈=--x e x x
σμσμσπϕ,,其中的实数μ、σ(σ>0)是参数,,称它的图象为正态分布密度曲线,简称正态曲线。
提出问题6:正态曲线的解析式有什么特点?如何从中找到μ和σ?
活动预设:教师引导学生一起观察和总结正态分布密度曲线解析式的特点:类指数函数、其中系数和指数的分母中均有σ,而μ仅出现在指数的分子里。
教师讲解例题1和
学生做练习1。
【设计意图】通过对正态曲线的解析式特点的分析,即加深了对正态曲线的解析式的
认识,也为例题和练习铺平道路。
2.正态分布的定义
提出问题7:球槽换成水平坐标轴,用X 表示小球与坐标轴接触时的坐标,那么X 还
是一个离散型随机变量吗?它落在区间],(b a 上的概率是多少?
【设计意图】帮助学生理解正太分布是连续性分布,以及借助定积分的几何意义理解
在区间上的概率公式。
活动预设:通过问题7的过渡,教师带领学生理解正态分布的定义。
提出问题8:在实际生活中还有哪些随机现象服从或近似服从正态分布?
活动预设:通过列举大量的例子和身边的例子说明正态分布的重要性。
【设计意图】利用身边的例子,更容易体会到正态分布广泛存在于自然界、生产和生
活实际之中,正态分布在概率统计中占有重要的地位.
3.正态曲线的特点
提出问题9:结合正态曲线解析式,思考如下问题:(1)曲线的图像会在x 轴下方吗?
(2)正太曲线是对称图形吗?(3)正太曲线有最值吗?(4)正太曲线与x 轴之间
的面积是多少?
提出问题10:μ与σ对正态曲线有什么影响?
活动预设:通过解析式研究图像的前四个特点,再通过控制参数观察图像的变化来研
究图像的后两个特点。
【设计意图】通过对正太曲线的特点的研究和探究,让学生享受了一场从数到形再从
形到数的思想大餐。
(4)典型题型,精讲精练
例题2:设随机变量),2(2σN X ~,且3.0)42(=<
练习2:在某项测量中,测量结果 X 服从正态分布),1(2σN X ~.若 X 在(0,1)内取值的概率为0.4,则 X 在 ( O ,2)内取值的概率为 .
活动预设:教师讲解例题,学生做练习。
【设计意图】让学生巩固正太曲线特点中的对称性,为下节课讲σ3原理做准备。
(5)课堂小结,再次提炼
提出问题11:我们今天学习了正态分布的哪些知识?
活动预设:让学生先总结,然后老师提炼。
(6)拓展阅读,体会文化
给出德国10马克的纸币,让学生回去搜索相关信息。
【设计意图】一方面可以进行数学文化价值的拓展,另一方面可以调控进度。