鱼类的性别决定和性别分化
- 格式:ppt
- 大小:291.00 KB
- 文档页数:19
水产养殖中的鱼类性别控制技术水产养殖一直是人类对海洋资源的有效利用方式之一,而鱼类性别控制技术在水产养殖中起着重要的作用。
通过控制鱼类的性别,可以更好地满足市场需求,提高养殖效益。
本文将探讨水产养殖中的鱼类性别控制技术及其应用。
一、鱼类分性别的意义鱼类的性别决定了其生长速度、体型特征以及繁殖能力等方面的差异。
在养殖业中,雄性鱼往往生长速度较快,体型较大,而雌性鱼则具有优良的繁殖能力。
通过科学地控制鱼类的性别,可以实现性别比例的均衡,提高养殖效益。
二、鱼类性别控制方法1. 温度控制法温度对鱼类的性别发育有着重要影响。
鱼类性别和温度之间存在一定的关联性,通过控制孵化阶段的水温,可以实现鱼类性别的选择。
一般而言,较高的水温有利于雌性发育,而较低的水温则有利于雄性发育。
2. 药物激素法药物激素法是一种常用的鱼类性别控制方法。
通过给鱼类注射或摄入一定剂量的雌激素或雄激素,可以影响其性腺的发育,从而控制其性别分化。
这种方法操作简单,成本低廉,但需要专业技术的支持。
3. 基因编辑法随着基因编辑技术的发展,越来越多的研究表明,通过基因的操控可以实现鱼类性别的控制。
通过修改或引入特定的基因,可以实现鱼类性别的选择。
这种方法具有较高的效率和精确性,但需要更高的技术要求和较大的投入。
三、鱼类性别控制技术的应用1. 提高养殖效益通过鱼类性别控制技术,可以实现性别比例的调控,从而更好地适应市场需求。
例如,在对高价值的雄性鱼进行特定养殖时,可以通过性别控制技术提高雄性比例,提高养殖效益。
2. 保护遗传资源对于濒危鱼类或具有重要遗传资源价值的鱼种,性别控制技术可以帮助实现种群的保护和遗传资源的合理利用。
通过性别控制,可以控制繁殖中的基因流失,保持遗传多样性。
3. 防止环境污染在水产养殖中,饲料的过剩和排泄物的积累是环境污染的主要原因之一。
通过鱼类性别控制技术,可以控制养殖密度和性别比例,减少饲料的浪费和污染物的排放,降低养殖对生态环境的影响。
·综述·TGF-β信号通路在鱼类性别决定与分化中的作用龙娟,郑树清,王晓双,张帅,王德寿* (西南大学生命科学学院,淡水鱼类资源与生殖发育教育部重点实验室,重庆北碚 400715)摘要:脊椎动物性别分化和性腺发育的分子机制保守,但不同类群的最上游的性别决定基因却大不相同,尤其是鱼类,其性别决定基因表现出明显的多样性。
性别决定包括环境性别决定和遗传性别决定,环境性别决定主要受温度、光照、激素和pH等的影响,而遗传性别决定一般由位于性染色体上的性别决定基因决定。
转化生长因子-β(transforming growth factor β, TGF-β)信号通路参与介导了多种生物学过程,近年来很多研究表明,鱼类有多个性别决定基因都是TGF-β信号通路的成员,且该信号通路对于鱼类的性别分化也有重要的作用。
本文总结了鱼类已报道的性别决定基因或候选基因,详细综述了TGF-β信号通路在鱼类性别决定与分化中的各种功能,并探讨了该信号通路参与鱼类性别决定的可能机制,这对认识TGF-β信号通路在鱼类性别决定、分化中的作用和性控育种有重要意义。
关键词: 鱼类;TGF-β信号通路;性别决定基因;性控育种中图分类号: S 917.4文献标志码: A生殖是自然界中普遍存在的现象,是生物繁衍后代的基本手段。
动物的生殖方式有两种,即无性生殖和有性生殖。
虽然有性生殖的代价比无性生殖大很多[1],但脊椎动物普遍采用有性生殖[2],这正是自然选择的结果,因为通过有性生殖可以产生对环境更为适应的个体[3]。
对于有性生殖的生物而言,两性发育都涉及到性别决定与分化等过程。
而性别被称为“进化生物学中问题的皇后”,脊椎动物如何决定性别一直是一个争论的话题[4]。
脊椎动物的性别由遗传因素、环境因素或者二者一起共同决定。
遗传性别决定(genetic sex determination, GSD)一般由位于性染色体上的性别决定基因启动一系列性别相关基因参与级联信号通路,诱导具双向分化潜能的性腺向精巢或卵巢方向发育[5]。
鱼类性腺发育的基因调控研究作为一类生殖较为活跃的动物,鱼类的性腺发育过程中的基因调控机制备受关注。
性腺发育的过程中,包括雄性和雌性生殖器官的形成、细胞增殖和分化、性激素分泌等一系列复杂的生化活动。
研究鱼类性腺发育的基因调控机制对于了解鱼类的繁殖生物学规律以及鱼类资源的可持续利用具有重要的意义。
一、胚胎发育时期的性决定与性分化在鱼类的胚胎发育早期,存在一种特殊的鱼类性腺基质,称为间充质细胞群(interstitial cell group,ICG),这些细胞群分布在靠近体表的位置。
在本期,没有明显的性腺区分,没有显著的性腺功能,也没有孢子母细胞或精原细胞的存在。
在此期间,卵巢和睾丸尚未发育,在显微镜下难以区分。
这时对于性別的决定主要依靠某些性别决定基因的表达调控。
性别决定基因位于性染色体中,对于雄性来说是Y染色体,对于雌性来说则是X染色体。
众所周知,雄性是由母体和父体共同决定的,它的性别由技术的遗传机制决定。
起初,所有鱼类的性别都是与环境因素相关的,交配方式多样,但是不同的鱼种的性别决定机制不同,有的是受温度、光照、营养等外界因素控制。
有的是靠某种特殊的性决定基因调节。
二、性腺发育时期的基因调控和分化性腺的发育过程可以分为两个阶段:第一个阶段是性腺原始细胞的前体细胞分化阶段,第二个阶段是性腺细胞的成熟阶段。
性腺细胞分化发育的关键问题是,性腺细胞初生的分化方向及都有哪些相关基因调控和参与。
性腺细胞早期分化中至关重要的基因包括SOX9,FOXL2,WNT4和DMRT1。
SOX9是一个转录因子,其在胚胎期下调标志着睾丸发育的开始。
WNT4和FOX14是卵巢发育的主要转录因子,其中WNT4被认为是卵巢形成中最重要的转录因子之一。
DMRT1是激素转录因子,其对睾丸的发育也起到了关键作用。
FOX14是一个细胞因子,能够促进性腺细胞生长和分裂。
在性腺分化的过程中,雌性鱼群的FOXL2基因表达普遍高于雄性鱼群。
而在睾丸的发育过程中,SOX9基因的过度表达会导致性反向。
水产动物遗传学罗非鱼性别控制研究及应用水产动物遗传学是研究水产动物遗传与遗传变异的科学,可以为水产养殖提供重要的遗传改良手段。
在水产动物中,罗非鱼是一种重要的养殖鱼类,在全球范围内广泛分布。
了解罗非鱼的性别控制机制对于进行性别控制和性别选择具有重要的意义。
罗非鱼的性别决定机制是XX/XY,即雌性为XX,雄性为XY。
在罗非鱼研究中,存在着两种不同的性别控制模式:传统绝对性别控制和环境敏感性别控制。
传统绝对性别控制是指罗非鱼的性别完全由基因决定,与环境无关。
研究表明,Y染色体上的一个性别决定基因SDY是罗非鱼性别的主要决定因素。
它编码了一种性别决定蛋白,通过调节其他基因的表达来决定鱼的性别。
这种基于基因的性别决定机制具有稳定性高、遗传性强的特点,使得养殖者可以通过基因筛选和基因转导等手段,进行性别选择和性别控制,从而提高养殖效益。
环境敏感性别控制是指罗非鱼的性别决定不仅受基因的影响,还受环境条件的影响。
环境敏感性别控制的主要原因是温度。
研究表明,温度可以通过影响SDY基因的表达来控制罗非鱼的性别分化。
高温条件下,SDY基因表达量降低,导致雌性分化;低温条件下,SDY基因表达量增加,导致雄性分化。
因此,通过调节养殖水体温度,可以实现对罗非鱼性别的控制。
环境敏感性别控制具有灵活性强、操作简单的特点,对于养殖业来说具有重要的应用价值。
首先,利用基因筛选技术,选择具有良好性状的个体作为繁殖材料,加快罗非鱼的遗传改良进程。
通过筛选和配对,可以选择生长快、抗病能力强、食性适应广等优良性状的个体进行繁殖,提高后代的遗传水平。
其次,利用基因转导技术,实现罗非鱼性别控制。
通过将性别决定基因SDY导入罗非鱼胚胎,可以实现性别的选择和控制。
这种基因转导技术具有很大的潜力,在种质改良和繁殖中具有广阔的应用前景。
再次,利用温度调控技术,实现环境敏感性别控制。
通过调节水体温度,可以控制罗非鱼雌性和雄性的比例,在达到一定的温度条件下,实现性别的选择和控制。
鱼类性别决定与分化相关基因的研究进展路畅1,2,苏利娜1,朱邦科 2(1.华中农业大学水产学院,武汉 430070;2.宁波大学海洋学院,宁波315211)摘要:综述了SOX、DMRT、芳香化酶、FTZ-F1、FOXL2、Pod1、GSDF、Fanconi Anemia/BRCA 等一些与鱼类性别决定与分化相关基因的研究动态和进展,旨在为系统研究鱼类性别决定机制提供参考。
关键词:性别决定基因;SOX;DMRT;芳香化酶基因;FOXL2中图分类号:文献标识码:文章编号:Research Progress in the Sex Determination andDifferentiation Genes of FishLU Chang1, 2, SU Li-na1, ZHU Bang-ke2(1.College of Fisheries, Huazhong Agricultural University, Wuhan Hubei 430070;2. Faculty of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211)Abstract:This article reviews the research trends and progress in some sex determination and differentiation genes of fish, such as SOX, DMRT, aromatase, FTZ-F1, FOXL2, Pod1, GSDF and Fanconi Anemia / the BRCA, to provide a reference of fish sex determination mechanism.Key words: sex determination gene;SOX;DMRT;aromatase gene;FOXL2收稿日期:作者简介:路畅,女,硕士研究生,通讯作者:朱邦科,男,博士,副教授,E-mail:zhubangke@1 前言鱼类是脊椎动物中最低等但却是分布最广,种类最多的一类生物。
鱼类性别决定邹海玥 13级生物基地班 201300140153世界上现存鱼类多达24000余种,是脊椎动物中分布最广、种类最多的类群。
鱼类的性别决定和分化机制一直是人们最感兴趣的研究课题之一。
鱼类的性别决定机制具有原始性、多样性和易变性。
鱼类具有所有脊椎动物的性别决定方式,存在从雌雄同体到雌雄异体的各种性别类型,还存在性反转(sexreversal)现象,因此鱼类性别决定机制的研究对于整个脊椎动物类群性别决定机制的形成及进化途径的揭示有非常重要的理论价值。
一、鱼类的性别1、鱼类的性染色体类型据统计,约有1700多种鱼类进行过染色体研究,其中能从细胞学上鉴别出性染色体的仅176种,约占10.4%。
在不同动物种类中所能找到的性染色体类型在鱼类中均能找到。
总的来说,硬骨鱼类主要有以下五种性染色体类型:(1)XX/XY型高等哺乳动物性染色体大多属此种类型,雌性性染色体为XX,为配子同型,雄性性染色体为XY,为配子异型。
大多数鱼类属于这种类型,鲤形目中的螂鱼、鳃形目的胡子蛤、革胡子鳃等鱼类均属于此类型,而我国引入且在全世界范围内都在进行养殖的尼罗罗非鱼也属于此类型。
(2)ZW/ZZ型ZW/ZZ型件鸟类中常见的性染色体类型。
和XX/XY相反,雌性为配子异型,即Zw,雄性为配子同型,即22。
常重杰等发现了大鳞副泥鳅的染色体属于此类型的细胞遗传学证据。
(3)XX/XO型这是一种以性染色体数目差异存在的性染色体类型,在某些昆虫中较为常见。
一般情况下,XX为雌性,而XO为雄性,即雄性缺少Y染色体。
如褶胸鱼雌鱼具有36条染色体,而雄鱼只有35条染色体。
(4)ZO/ZZ型ZO/ZZ型也是以性染色体数目差异存在的性染色体类型,某些蛾类就属于此类型,同ZW/ZZ型相比,雌性缺少W染色体。
(5)复性染色体此类型性染色体多表现为X1X1X2X2/X1X2Y,这是由于性染色体和常染色体融合所致。
如花鳅,原来雄性花鳅的染色体为X1X2X2Y,雌花鳅的性染色体为X1X1X2X2,其中,X2X2是一对常染色体,而X1Y是一对性染色体,在进化过程中雄性的一条X2染色体与Y染色体融合形成新的Y染色体。
石斑鱼的性别分化和性腺发育机制研究石斑鱼是一种重要的经济性鱼类,在亚洲地区有广泛的养殖和消费市场。
然而,对于石斑鱼的性别分化和性腺发育机制仍存在较多的研究空白。
下面我将就这一主题展开探讨。
一、石斑鱼的性别分化在石斑鱼的性别分化中,存在着许多复杂的调控因素,如遗传因素、环境因素等。
其中,环境因素在形成石斑鱼性别决定中起着至关重要的作用。
比如说,养殖环境的水温、光照、饲料、密度等都会对石斑鱼的性别产生影响。
1.1 温度对石斑鱼性别的影响温度是影响石斑鱼性别决定的主要环境因素之一。
对于大多数石斑鱼而言,较高的水温通常会诱导雄性的发生,而较低的水温会使成鱼分化为雌性。
例如,常见的黑斑石斑鱼,温度在28-36℃之间是典型的雄性环境,而在22-28℃之间则是雌性环境。
这是由于在高温下,睾丸细胞可以继续分裂,而在低温下,卵巢细胞比较容易分裂。
因此,可以通过控制水温来实现养殖石斑鱼时的性别选择。
1.2 光照对石斑鱼性别的影响石斑鱼对于光照的敏感性也是其性别分化和性腺发育机制的重要因素之一。
日照时间和夜晚的亮度这两种因素都会对石斑鱼的性别分化产生影响。
在黑斑石斑鱼中,夜间亮度的增加会促进卵巢的成熟和卵子产生,而在白斑石斑鱼中则是促进睾丸的发育和精子的生产。
1.3 其他环境因素对石斑鱼性别的影响除温度和光照之外,水质、饲料等因素也会对石斑鱼的性别分化产生影响。
在石斑鱼的养殖中,通过控制这些因素,可以调整石斑鱼的性别分布,实现优质种苗的生产。
二、石斑鱼的性腺发育机制在石斑鱼的性腺发育机制研究中,主要研究的是石斑鱼的性腺组织结构、激素调节机制和生殖周期等。
2.1 石斑鱼的性腺组织结构石斑鱼的卵巢和睾丸都是由成排的生殖小叶组成的。
其中,卵巢小叶含有大量的卵母细胞,而睾丸小叶则含有大量成熟的精子。
在石斑鱼的性腺组织结构中,还存在着基质细胞和间质细胞等非特定性细胞。
2.2 石斑鱼的激素调节机制通过控制激素水平,可以调节石斑鱼性腺的生长和发育。
鱼类的性别转换和性别控制1. 鱼类的性别大多数硬骨鱼类,一生或者只具有精巢,或者只具有卵巢(雌雄异体)。
但对于某些鱼类来说,体内同时存在卵巢和精巢(雌雄同体)则是一种正常生理现象,而且有的种类还能自体受精。
目前发现的雌雄同体鱼类约有400种,根据其生活史中卵巢和精巢在不同年龄阶段的发育进展情况,大致可分为3种类型:①雄性先成熟雌雄同体(protandrous hermaproditism)在生活史中由雄性转为雌性。
在性腺的发育过程中,早期卵巢的发育受到抑制,而精巢发育较快,低龄鱼表现为雄性,只能排精,不能产卵。
随着年龄增大,精巢逐渐萎缩,卵巢逐渐发育成熟,表现为雌鱼。
鲷科(Sparidae)鱼类中的黑鲷(Sparus macrocephalus)、黄鳍鲷(Sparus latus)、金头鲷(Sparus auratus)等属于这一类型。
②雌性先成熟雌雄同体(Protogynous hermaphroditism)与第一种相反,生活史中由雌性转为雄性。
低龄鱼卵巢先成熟,表现为雌性。
随着年龄的增大,卵巢萎缩吸收,精巢发育成熟。
在海水鱼类中有石斑鱼类中的Epinephelus aeneus、巨石斑鱼(Epinephalus tauvina)、灰石斑鱼(Epinephalus guttatus)等;淡水鱼类中有黄鳝(Monopterus albus)等。
这些鱼类第一次性成熟时都是雌鱼,产过卵以后才逐渐变为雄鱼。
有些自然性转换的鱼类,并不同时具有雌雄两性生殖腺,隆头鱼科中的盔鱼(Coris julis)是先表现为雌性功能,然后才转换为雄性功能的雄鱼,但没有观察到它同时有卵巢和精巢。
盔鱼的性转换特点是雌性生殖细胞完全为雄性生殖细胞所代替。
在性转换开始时,先是卵母细胞的萎缩,然后才出现精原细胞。
精原细胞是由分布在卵巢壁上的原生殖细胞分化出来的。
盔鱼的性细胞转换是在卵巢内部发生。
自然性逆转早期阶段的赤点石斑鱼性腺组织学切片埋植AI后赤点石斑鱼性腺组织结构的变化鱼类同时具有雌雄性腺,但并不同时成熟,不同的年龄表现为不同的性别,即在生活史中性别有一个转换的过程,这种现象我们称为性转换,也有人称为“性逆转”、“性位移”或“性邻接”。