配位化学的应用
- 格式:doc
- 大小:422.00 KB
- 文档页数:9
配位化学在医药中的应用配位化学在医药中的应用配位化学自19世纪的出现发展至今,经历了100多年。
在这100多年里,人类取得了巨大的成就,并逐步把配位化学充分地运用到了日常的生命活动中,从而使我们的生活质量应为有了配位化学而得到大大提高。
配位化学的应用涉及到众多领域,在本文着重介绍配位化学在医药中的医用。
一、治疗类药物中的配位化学根据对众多药物的主要成分的分子式和结构式可以看出,大部分药物的主要成分都是含有金属元素的配位化合物,还有好多药物其主要成分虽然不是金属配合物,但是他们属于金属元素的配体,其在机体内的作用机理也是配位反应。
配位化学在药物上的广泛应用,其主要依据应该是,机体内的金属元素在体内的吸收、运送、储存、分布、排泄及整个代谢过程都涉及配位反应,任何能与生物配体争夺金属配体位置的外源性物质都将产生生物效应。
1 关于机体金属中毒的解毒剂1.1中毒和解毒中的配位反应和机理生物体内存在着各种生物配体,同时存在着各种含有多种金属元素的蛋白和酶,这些都是维持正常生命活动的基础。
当外来的重金属进入体内,因这些重金属与体内的所必需的金属元素进行竞争生物配体,这就会造成体内必需的金属平衡失调,那些金属蛋白和金属酶也随之失去原有的生物活性,从而使机体新陈代谢出现混乱,即机体表现出金属中毒症状。
根据软硬酸碱理论的划分,硬酸类金属离子对机体一般没有毒性,而软酸类金属离子则对机体有较大毒性,如Hg、Au、Pd等,碱类也与此相同,硬碱一般没有毒性,而软碱则对机体有毒性,如CN-、巯基及有机硫化合物等。
重金属离子进入机体内根据软硬酸碱理论中的硬亲硬,软亲软原理,即它们易跟机体内的软碱进行配位结合,如巯基(—SH),且这些重金属易和与它们同族较轻的必需金属元素进行配位竞争,置换出必需金属元素,而使那些需要这些必需金属的蛋白和酶失去了生物作用,如Cd2+和Hg2+易与同族的Zn2+离子竞争酶的活性部位从而改变酶的活性。
配位化学在有机合成中的应用引言:配位化学是无机化学的一个重要分支,广泛应用于催化剂、药物、材料等领域。
在有机合成中,配位化学的应用也越来越受到关注。
本文将介绍配位化学在有机合成中的应用,并探讨其在有机合成中的优势和局限性。
一、配位化学在有机合成中的优势1. 催化剂:配位化合物作为催化剂在有机合成中扮演着重要角色。
通过选择合适的配体和过渡金属,可以调控反应的速率、选择性和产率。
例如,金属有机配合物常用于氢化反应、氧化反应、交叉偶联反应等。
此外,由于配位化合物的可调性,可以根据具体需求设计和合成新型配体,进一步提高反应的效果。
2. 金属有机化合物:一些金属有机化合物在有机合成中具有独特的反应性。
例如,Grignard试剂和有机锂试剂是常见的金属有机化合物。
它们可与各种化合物发生加成、消除、置换等反应,从而构建复杂的有机分子骨架。
此外,金属有机化合物还可通过金属催化的反应合成,如Suzuki偶联、Heck反应等,为有机合成提供了更多的选择。
3. 配位聚合物:配位聚合物是由金属离子和配体通过配位效应相互连接而成的大分子。
它们具有多样的结构和性质,可用于控制聚合物的形貌、分子量、相互作用等。
在有机合成中,配位聚合物可以用作催化剂、药物递送系统、分离膜等,拓宽了有机合成的应用领域。
二、配位化学在有机合成中的具体案例1. 配位催化:过渡金属配合物在有机合成中广泛应用于催化各种反应。
以铂催化剂为例,它可以催化烯烃的氢化、烯烃和芳烃的异构化、烯烃和烯炔的偶联等。
这些反应可以高产率、高选择性地得到有机化合物,有助于构建有机分子骨架。
2. 金属有机试剂的应用:金属有机试剂如Grignard试剂和有机锂试剂可与各类化合物发生反应,实现C-C键的构建。
例如,通过与酰氯反应,Grignard试剂可以合成醇、醛、酮等有机化合物;通过与卤代烷反应,有机锂试剂可以合成烷烃、芳香化合物等。
3. 配位聚合物的应用:金属配合物可以用作聚合物的交联剂,实现聚合物的多样化。
阳离子配位化学机制及其在化学反应中的应用配位化学是化学的一支重要分支,它研究的是汇合成一体的分子中所涉及的分子间作用力和内部电荷分布的规律。
而在配位化学中,阳离子配位化学是其中研究最活跃和前景最广的一个领域之一。
本文将从阳离子配位化学的基本概念、机制和在化学反应中的应用等几个方面探讨阳离子配位化学的重要性。
一、阳离子配位化学的基本概念阳离子配位化学是指阳离子与配体之间的化学配位反应。
阳离子是正电荷离子,因此在对反应体系中的配体进行配位时,通常需要以电子对捐赠方式来提供配位位点。
在阳离子配位化学中,配体通常是不带正电荷的分子或离子,它们捐赠的电子对所构成的配位键连接到阳离子中。
二、阳离子配位化学的机制阳离子配位化学的机制大致分为两种:1) 转移性配位机制和2) 静电配位机制。
1) 转移性配位机制转移性配位机制指的是配体上的一个或多个原子依次通过骨架的烷基、烷基桥、双桥等方式来配位于阳离子上。
在配位过程中,当配体的原子与阳离子发生配位时,相邻的原子会接替原有的配位位置。
如图1所示,对于初级胺来说,首先是氮原子上的电子对与阳离子形成配位键,然后就是相邻烷基上的一个氢原子被脱去并形成配位键。
最终,阳离子与配体上的氮原子和碳原子都形成了共价键,而配体上的一个氢原子被脱去。
2) 静电配位机制静电配位机制是指阳离子和配体之间由于电荷作用力而发生的配位反应。
该机制适用于配体上的那些带有不定电荷、极性或偏极性的原子或官能团,如环糊精等有机大分子。
在静电配位机制中,阳离子具有高度的电荷亲和力,它可以吸引配体上带有部分正电荷或局部正电荷的原子或官能团。
三、阳离子配位化学在化学反应中的应用阳离子配位化学在化学反应中具有广泛的应用,其主要应用领域包括以下几个方面:1) 金属催化化学反应金属催化化学反应是阳离子配位化学的重要应用之一。
在金属催化的反应过程中,阳离子与金属络合物中的金属离子形成配位键,从而达到了催化反应的目的。
多功能配位化学一、引言多功能配位化学是一门跨学科研究领域,相较于传统的配位化学,其研究对象不仅包括了有机、无机化合物的合成、结构等方面,更注重探讨其在多种领域中的应用。
二、配位化学的基础概念1、配位化学的定义配位化学是研究由一个中心原子或离子通过化学键连接一定数量的第二、第三原子或离子所形成的化合物性质及其反应机理的一门学科。
2、配位化合物的结构配位场理论是现代配位化学研究中的一大基础理论。
其核心思想是通过构建配合物的配位场,来解释其结构、性质和反应机理。
3、配位化学的应用价值配位化学的应用最为广泛的是在材料科学中,如金属有机骨架材料(MOFs)、非金属有机骨架材料(NOMs)、多孔有机聚合物(MOPs)等领域中有着重要的应用。
三、多功能配位化学1、多光子响应型配合物多光子响应型配合物结构中包含了多个光学薄膜,可用于制备光递归电路和光学存储器,并在纳米技术中有着广泛的应用。
2、氧化还原型配合物氧化还原型配合物主要是指具有可逆电子传递的能力的化合物,这一类配合物的应用范围相较于传统的配合物更为广泛,可以用于生物传感、电子器件等领域。
3、可溶性有机金属配合物可溶性有机金属配合物不仅具有传统金属物质的优良性质,更在医学、电子器件等众多领域有着广泛的应用,如医用磁共振成像材料等。
四、多功能配位化学在电子器件领域中的应用1、染料敏化太阳能电池染料敏化太阳能电池是一种基于量子化学理论设计的新型电池,其关键在于金属配合物的选择和染料的吸附。
2、有机场效应晶体管在有机场效应晶体管中,金属离子往往作为主要的电子接受者参与电荷的传输和电子的输运。
3、光控开关光控开关是一种基于可逆光学原理制作的微型电子元件,其应用广泛,如光开关、光控器等。
五、结论多功能配位化学作为一门重要的跨学科研究领域,其研究成果对于现代化学产业的发展至关重要,同时也为各领域的应用提供了新的思路和解决方案。
化学反应中的配位化学反应化学反应是化学领域中的重要研究内容之一,其中配位化学反应是一种非常重要的反应类型。
配位化学反应指的是在化学反应中,发生了配位键的形成、断裂或重排的反应过程。
配位化学反应在有机合成、无机化学和生物化学等领域中都有广泛的应用和研究。
配位化学反应的基本概念可以追溯到19世纪中叶,当时化学家们开始研究过渡金属化合物的性质和反应。
配位化学反应的核心是配位键的形成和断裂。
在配位化学反应中,通常涉及到一个或多个配体与中心金属离子之间的相互作用。
配体可以是无机物,也可以是有机物,它们通过配位键与中心金属离子形成稳定的络合物。
配位化学反应可以分为配体取代反应、配体加成反应和配体重排反应等几类。
其中,配体取代反应是最常见的一类反应。
在配体取代反应中,一个或多个配体被其他配体所取代,形成新的络合物。
这种反应可以通过控制反应条件和配体的选择来实现。
例如,当溴化铂(II)与氯化铵反应时,氯离子会取代溴离子,形成氯化铂(II)。
配体加成反应是另一类常见的配位化学反应。
在配体加成反应中,一个或多个配体与中心金属离子发生加成反应,形成新的络合物。
这种反应在有机合成中有着广泛的应用。
例如,乙烯与氯化铂(II)反应时,乙烯分子会加成到铂离子上,形成乙烯基铂(II)络合物。
配体重排反应是一类较为复杂的配位化学反应。
在配体重排反应中,一个或多个配体发生位置的重新排列,形成新的络合物。
这种反应通常需要较高的反应温度和适当的反应条件。
例如,氯化铂(II)和氨反应时,氨分子会取代其中的氯离子,形成氨基铂(II)络合物。
除了以上几类常见的配位化学反应,还有一些特殊的反应类型,例如还原反应、氧化反应和配体脱离反应等。
这些反应在配位化学中也有着重要的地位。
例如,还原反应是指中心金属离子接受电子,发生氧化态的降低。
氧化反应则是指中心金属离子失去电子,发生氧化态的增加。
配体脱离反应是指一个或多个配体从中心金属离子上脱离,形成新的络合物。
配位化学知识点总结一、配位化学的基本概念配位化学是研究金属离子(或原子)与配体之间形成的配位化合物的结构、性质和反应的化学分支。
首先,我们来了解一下什么是配体。
配体是能够提供孤对电子与中心金属离子(或原子)形成配位键的分子或离子。
常见的配体有水分子、氨分子、氯离子等。
而中心金属离子(或原子)则具有空的价电子轨道,可以接受配体提供的孤对电子。
配位键是一种特殊的共价键,由配体提供孤对电子进入中心金属离子(或原子)的空轨道而形成。
配位化合物则是由中心金属离子(或原子)与配体通过配位键结合形成的具有一定空间结构和化学性质的化合物。
二、配位化合物的组成配位化合物通常由内界和外界两部分组成。
内界是配位化合物的核心部分,由中心金属离子(或原子)与配体紧密结合而成。
例如,在Cu(NH₃)₄SO₄中,Cu(NH₃)₄²⁺就是内界。
外界则是与内界通过离子键结合的其他离子。
在上述例子中,SO₄²⁻就是外界。
中心金属离子(或原子)的化合价与配体的化合价之和等于配位化合物的总化合价。
配位数指的是直接与中心金属离子(或原子)结合的配体的数目。
常见的配位数有 2、4、6 等。
三、配位化合物的结构配位化合物具有特定的空间结构。
常见的配位几何构型有直线型、平面三角形、四面体、八面体等。
例如,配位数为 2 时,通常形成直线型结构;配位数为 4 时,可能是平面正方形或四面体结构;配位数为 6 时,多为八面体结构。
这些结构的形成取决于中心金属离子(或原子)的电子构型和配体的大小、形状等因素。
四、配位化合物的命名配位化合物的命名有一套严格的规则。
先命名外界离子,然后是内界。
内界的命名顺序为:配体名称在前,中心金属离子(或原子)名称在后。
配体的命名顺序遵循先无机配体,后有机配体;先阴离子配体,后中性分子配体。
对于同类配体,按配体中原子个数由少到多的顺序命名。
如果配体中含有多种原子,先列出阴离子配体,再列出中性分子配体。
配位化学的应用配位化学是化学中的一个重要分支,它研究的是配合物的结构、性质和反应。
配合物是由中心金属离子和周围的配体离子或分子组成的化合物。
配位化学的应用非常广泛,下面我们就来看看其中的一些应用。
1. 催化剂配位化学在催化剂领域有着广泛的应用。
许多催化剂都是由金属离子和配体组成的配合物。
这些配合物可以通过改变配体的种类和结构来调节催化剂的活性和选择性。
例如,铂金属离子和氨配体组成的配合物是一种常见的催化剂,它可以催化许多有机反应,如氢化反应、加氢反应等。
2. 药物配位化学在药物领域也有着广泛的应用。
许多药物都是由金属离子和配体组成的配合物。
这些配合物可以通过改变配体的种类和结构来调节药物的活性和选择性。
例如,铁离子和血红素组成的配合物是一种常见的药物,它可以用于治疗贫血等疾病。
3. 电子材料配位化学在电子材料领域也有着广泛的应用。
许多电子材料都是由金属离子和配体组成的配合物。
这些配合物可以通过改变配体的种类和结构来调节电子材料的性质。
例如,铜离子和吡啶配体组成的配合物是一种常见的电子材料,它可以用于制备电子元件。
4. 光学材料配位化学在光学材料领域也有着广泛的应用。
许多光学材料都是由金属离子和配体组成的配合物。
这些配合物可以通过改变配体的种类和结构来调节光学材料的性质。
例如,银离子和吡啶配体组成的配合物是一种常见的光学材料,它可以用于制备光学元件。
5. 生物学配位化学在生物学领域也有着广泛的应用。
许多生物分子都是由金属离子和配体组成的配合物。
这些配合物可以通过改变配体的种类和结构来调节生物分子的性质。
例如,铁离子和血红素组成的配合物是一种常见的生物分子,它可以用于运输氧气。
配位化学在许多领域都有着广泛的应用,它为我们研究和开发新材料、新药物、新催化剂等提供了重要的思路和方法。
化学反应机理的配位化学反应配位化学反应是化学反应机理中的一种重要类型,它涉及到配合物的形成、转化和分解过程。
配位化学反应的研究对于理解化学反应机理、探索新化合物的合成途径以及应用于催化剂等领域具有重要意义。
本文将从配位化学反应的基本原理、机理解析以及应用方面进行详细阐述。
一、配位化学反应的基本原理配位化学反应基于配位键的形成、断裂和重排。
在这些反应中,一个或多个配体(通常是无机或有机配体)与中心金属离子结合,形成配合物。
与配体的选择和数目不同,配合物的性质和结构也会发生相应的变化。
配位化学反应的基本原理可以通过以下几个方面来说明:1. 配体与中心金属离子的结合:配体通常是具有富电子性质的分子或离子,它通过配位键与中心金属离子结合。
常见的配体包括氯离子、氨分子、水分子等。
配体的化学性质和结构对配位化学反应的速率和产物有重要影响。
2. 配合物的形成:当配体与中心金属离子结合时,形成了配位键。
配位键通常是由配体的配位原子与中心金属离子的空位轨道相互作用形成的。
配位键的强弱取决于配体和中心金属离子之间的相互作用力。
3. 配合物的转化和分解:配位化学反应不仅包括配合物的形成过程,还包括配合物的转化和分解过程。
例如,配合物可以通过配体的替换反应形成新的配合物;配合物也可以发生分解反应,释放出配体或其他反应产物。
二、配位化学反应的机理解析配位化学反应的机理可以分为两种类型:基于配体的转位反应和中心金属离子的转位反应。
1. 基于配体的转位反应:在这种反应中,一个或多个配体被替换成其他配体。
这种转位反应被称为配体置换反应。
配体置换反应的机理可以通过配体之间的竞争性配位进行解释。
竞争性配位是指两个或多个配体竞争与中心金属离子结合,最终形成具有较强结合能力的配合物。
2. 中心金属离子的转位反应:在这种反应中,中心金属离子被替换成其他金属离子。
这种反应被称为金属离子的转位反应。
金属离子的转位反应可以通过金属离子之间的电子转移或配体之间的电荷转移进行解释。
化学反应中的配位化学反应在化学反应中,配位化学反应是一类非常重要的反应类型。
简单说,配位化学反应是指在化学反应中,一定的配位体(例如,水、氨、配体离子等)与金属离子发生反应,形成稳定的配合物化合物。
这种反应特点鲜明,对于新材料的制备、有机金属化学等有广泛应用。
一、基础知识1. 配位体:能形成孤对电子与金属离子形成配合物的分子或离子。
2. 配位数:一个金属离子与其周围配位体结合的数目。
3. 配合物:由中央金属离子和其周围一定数目的配位体组成的物质。
4. 配位键:在配位化合物中,孤对电子和金属离子之间形成的化学键。
5. 配位化合物中的化学键:包括共价键和离子键两种。
二、配位化学反应的分类1. 配体置换反应这种反应在化学实验中最常见。
即,已有的金属离子与某一种配位体发生反应,生成的产物中该配位体取代了原先的配位体或水合物。
例如,一般情况下[Fe(H2O)6] 2+是黄色的,但如果加入Cl- 离子,则形成[FeCl4] 2- ,是绿色或紫色的。
这是因为当 Fe2 + 离子与 Cl- 离子反应时,Cl- 离子取代了水分子。
2. 配位部分降解反应在这个反应中,一个原本具有高配位数的金属离子,带着一定数目的配位体(例如水分子、溶剂分子)缓慢失去配位体,并形成一个配位数更低的离子。
例如, [Co(NH3)6]3 + 到 [Co(NH3)5H2O]3 + 再到[Co(NH3)5H2O]2 + ,每从一个化合物转换到另一个化合物中,该化合物中的 Co2 + 离子配位数都减少1。
3. 配体加入反应在这个反应中,金属离子对配位体的取代是及时的。
例如光合成反应中,光合色素(Mg2 +),其周围的顶,底面被卡宾分子侵入时,可立即取代分子。
加入卡宾分子的金属中心变为N,而分子上的氢原子被去除形成C-H 键形式的产品。
三、应用观念—配位化学反应的工业应用配位化学反应在工业应用中有广泛的应用,其中一些优势包括:1. 物质的特定性能:通过调节配位数、配位体等特定参数,可以制备出物质的不同性质。
化学中的配位化学化学中的配位化学是现代化学的重要分支之一,它研究的是含有配体的化合物的性质和反应机理。
在配位化学中,分子中的中心原子和其周围的配体之间形成了一种特殊的结构——配合物。
这些配合物具有独特的物理化学性质,如催化反应、生物酶的活性、光学活性等等。
本文将简要介绍配位化学的相关概念和应用。
配体和配位键配体是指在配合物中与中心原子形成配位键的化学物质。
配体可以是单个原子或者是一个复杂的分子。
常见的配体包括水、氨、卤素、羰基、氮气和磷酸基等等。
在配合物中,配体以配位键的形式与中心原子结合,形成一个有机功能团体。
配合物中的配位键是一种新的化学键,它由配位原子和中心原子之间的电子共享所形成。
配合物的构成和稳定性一个配合物通常是由一个中心原子和若干个配体组成的化合物。
在配合物中,配体通过形成配位键与中心原子结合,在配位键的形成中充当了一个具有强吸电子特性的末端原子。
一个配合物中通常会存在多个配位键,这样就构成了一个三维的配位空间。
由于分子中的配体和中心原子之间的相互作用,配合物具有较高的稳定性和较低的反应活性。
配合物的结构与电子排布在配合物中,中心原子和配体之间形成的配位键具有不同的构型和电子排布。
大多数情况下,配合物的排布是球形对称的。
但是也存在一些不规则的配合物,如四面体和八面体配合物等等。
配位键的形成导致了分子中的原子的电子状态的改变,大部分配合物具有复杂的电子排布。
特别地,在一些过渡金属化合物中,d 轨道的电子也参与到配位键的形成中,这样就会产生一些更加复杂的配位键结构。
配合物的性质和应用配合物具有广泛的应用价值,在医药、催化剂、材料科学、化学分析等领域有着重要的应用。
其中,医药领域中的金属配合物被广泛用于肿瘤治疗、抗病毒治疗等。
催化剂领域中的过渡金属配合物可以通过空间位阻和电子效应的调节来提高催化剂的催化效率和选择性。
材料科学领域中的金属配合物可以被用于纳米材料的制备、电子材料的研究等。
化学分析领域中的金属配合物也被广泛用于水污染、重金属检测等方面。
配位化学中的新发展和应用近年来,配位化学在新发展和应用方面取得了令人瞩目的进展。
配位化学是研究过渡金属离子与配体之间相互作用的科学领域。
它涉及了金属配合物的合成、结构表征以及在催化、生物学和材料科学等领域的广泛应用。
本文将介绍配位化学在新发展和应用方面的几个重要领域。
首先,金属有机框架(MOFs)在配位化学中的应用获得了广泛关注。
MOFs是由金属离子和有机配体通过配位键相连接形成的二维或三维结构。
MOFs具有高度可调性和多样性,可以通过选择不同的金属离子和配体来调控其化学性质和结构。
由于其大孔道结构和高比表面积,MOFs在气体储存、催化、分离等领域具有重要应用价值。
例如,我们可以利用MOFs来储存和释放氢气,从而解决氢能源存储和转换的挑战。
此外,MOFs还可用于吸附和分离气体、液体和离子,具有潜在的应用于环境治理和能源领域。
除了MOFs,金属有机骨架材料(MOMs)是近年来配位化学中的另一个重要发展方向。
MOMs与MOFs相似,也是由金属离子和有机配体组装而成。
不同之处在于,MOMs具有更大的孔道结构和更高的热稳定性,使其在气体存储、催化和分离等领域具有广泛应用。
例如,在碳捕捉和储存方面,MOMs材料可以通过与CO2的高度选择性吸附来帮助减缓全球变暖。
此外,配位化学在生物学领域的应用也备受关注。
金属配合物可以作为药物的活性成分或生物传感器的组成部分。
例如,铂配合物被广泛应用于抗癌药物的开发。
铂配合物能与DNA结合,从而阻止癌细胞的复制和生长。
另外,镍、铜、锌等金属离子也被用作生物传感器,用于检测生物体内的重金属离子和有害物质。
这些应用展示了配位化学在生物医药和生物传感领域的潜力。
最后,配位化学在可持续发展和环境保护方面也具有重要意义。
金属配合物可以作为催化剂用于催化转化废弃物或可再生资源。
例如,钼、钨等金属配合物可以催化生物质转化为燃料和化学品,从而减少对化石燃料的依赖和减少温室气体的排放。
此外,配位化学的发展也可以帮助开发更高效、环境友好的化学过程。
配位化学知识点总结配位化学是化学的一个重要分支,它探讨的是化学中的配位作用,即两个或多个分子相互作用形成复合物。
在高分子材料、医药、冶金、土木工程和环境科学等领域应用广泛。
配位化学的基础知识和技能是化学专业学生和研究人员必备的求生技能之一。
本文将介绍配位化学的基本概念、重要原则以及主要应用。
一、配位化学的基本概念1. 配位体在化学中,配位体是指通过给体原子与金属中心之间的化学键与金属形成配合物的分子或离子。
著名的例子有氨、水、五硝基吡啶、乙二胺等。
2. 配位作用配位作用是指配位体的给体原子利用孤对电子与金属中心形成协同共振化学键的过程。
配位能力取决于给体原子的化学性质。
一般来说,仅具有孤对电子的原子或离子能够作为配位体。
在配位作用中,给体原子发生了电子的向金属中心的迁移,原子中的孤对电子与金属中心的未配对电子形成共价键。
3. 配位数配位数是一个复合物中与离子或分子互相作用的中心原子数量。
通常,金属离子具有高配位数,而范德瓦尔斯复合物和氢键配合物具有较低的配位数。
二、配位化学的重要原则1. 八面体配位八面体配位是指配合物中金属中心周围八个空间位置上配位体的均匀分布,也是最常见的配位几何形态之一。
一些典型的八面体配位化合物包括六氟合铁酸钾和硫脲铜硫脲。
2. 方阵配位方阵配位是一种由四个配位体组成的四面体形态的配位体,常见的方阵配位化合物包括四氟合镍和四氯合钴。
3. 配体场理论配体场理论是解释元素化学、配位化学和配位化合物性质的一种理论。
该理论通过将配位体组合成简单的场点,进而表征复合物的化学键结构和物理性质。
三、配位化学的主要应用1. 工业催化工业化学中的催化剂往往是由配位化合物构成,钯的催化反应、铂的催化脱氢和钨的催化氧化反应都是利用了配位体的协同作用完成的。
例如,五氯甲基钌配合物和卟啉钴配合物在氧气氧化和n 桥苯甲基乙烯二醇转移反应中均被用作催化剂。
2. 生物学知识生物配合物(例如血红蛋白和维生素B12)中的重要化学反应是由于配位体与活性中心原子之间的化学反应所形成的。
化学反应中的配位化学与络合反应化学反应是当今化学领域最为基础和重要的研究方向之一。
在化学反应中,有许多种不同的反应类型,其中包括了配位化学反应和络合反应。
这两种反应在现代家庭、工业、医药、农业和环境治理等多个领域中都发挥着非常重要的作用。
在本文中,我们将深入探讨这两种反应类型的特点、应用以及研究进展。
一、配位化学反应的特点和应用配位化学反应是指由金属离子与吸电子基团的配体分子中的一个或几个原子相互作用而发生的化学反应。
在配位化学反应中,金属离子与配体分子之间通过电子互相传递和共享形成新的化合物。
配位化学反应的方式多种多样,一般包括了配体取代反应、还原反应、氧化反应和加成反应等。
以配体取代反应为例,这种反应方式是金属离子与一个或多个配体分子发生作用,使配体上的基团被新的基团所取代,从而形成新的配位化合物。
这种反应通常在有机合成化学中被广泛地应用,并且在医药研究领域也有着重要的应用。
以发明性药物铂络合物为例,它是一种广泛用于治疗癌症的药物,其中铂离子的活性中心即为配位化学反应中与肿瘤细胞中的DNA分子相互作用而实现治疗效果。
二、络合反应的特点和应用络合反应是指由一个或多个络合基团(也称为“配位体”)与金属离子形成配合物的过程。
络合基团可以是有机分子、阴离子、阳离子或其他配合物。
在络合反应中,金属离子与络合基团之间形成的相互作用包括了离子键、共价键、静电键、氢键等多种类型。
络合反应的主要特点包括了化学性质的改变、物理性质的变化以及分子结构的改变等。
络合反应在多个领域中得到了广泛的应用。
以农业领域为例,向土壤中添加浸渍城市生活污水污泥、工业废水渗滤物等含有大量重金属离子的废弃物,会导致土壤中重金属离子的浓度增加,超过了作物所能承受的范围,从而导致植物死亡或产量下降。
为此,通过络合反应将重金属离子与其他有机或无机物质形成络合物,可使重金属形成难溶于水的化学物质,达到净化土壤的目的。
三、配位化学反应与络合反应的关系配位化学反应与络合反应在定义和反应方式上有所不同,但二者都与金属离子和配体分子之间的相互作用有关。
浅谈配位化学在各领域的应用
摘要配位化学已经深入到了工业、农业、生命科学、自然科学等诸多领域如可以应用在磁性,荧光,非线性等,配位化学对经济的发展、人们的生活等有着重要的影响。
关键词配合物应用药物工业化妆品
1、配合物在生物化学中的作用。
1.1配合物在有机体中存在着相当重要的作用。
人类每天除了需要摄入大量的空气、水、糖类、蛋白质及脂肪等物质以外,还需要一定的“生命金属”,它们是构成酶和蛋白的活性中心的重要组成部分。
当“生命金属”过量或缺少,或污染金属元素在人体大量积累,均会引起生理功能的紊乱而致病,甚至导致死亡。
因此显然配位化学在,越来越越显示出其重要作用。
某些分子或负离子,如CO或CN-,可以与血红蛋白形成比血红蛋白ŸO2更稳定的配合物,可以使血红蛋白中断输O2,造成组织缺O2而中毒,这就是煤气(含CO)及氰化物(含CN-)中毒的基本原理。
另外,人体生长和代谢必须的维生素B12是Co的配合物,起免疫等作用的血清蛋白是Cu和Zn的配合物;植物固氮菌中的的固氮酶含Fe、Mo的配合物等。
1.2配合物在药学上的应用
1.2.1抗癌金属配合物的研究
癌症是危害人类健康的一大顽症,专家预计癌症将成为人类的第
一杀手。
化疗是治疗癌症的重要手段,但是其毒副作用较大, 于是寻求高效、低毒的抗癌药物一直是人们孜孜以求、不懈努力的奋斗目标。
自1965年Rosenberg等人偶然发现顺铂具有抗癌活性以来, 金属配合物的药用性引起了人们的广泛关注, 开辟了金属配合物抗癌药物研究的新领域。
随着人们对金属配合物的药理作用认识的进一步深入, 新的高效、低毒、具有抗癌活性的金属配合物不断被合成出来,其中包括某些新型铂配合物、有机锡配合物、有机锗配合物、茂钛衍生物、稀土配合物、多酸化合物等。
顺铂为顺式-二氯二氨合铂(II)的俗称,其抗癌作用是美国生理学家Rosenberg B于1965年偶然发现的。
顺铂为平面四边形结构的
配合物,虽然顺铂已经应用于临床, 有较好的疗效, 但由于它水溶小,使肿瘤细胞产生获得性耐药性, 有很强的毒副作用,为了减少它的活性, 人们尝试对它作结构上的修饰,卡铂便是其中之一。
卡铂化学为1, 1-环丁二羧酸二氨合铂(II)。
结构式中引入了亲水性的1, 1-环丁二羧酸作为配体,因此肾毒性和引发的恶心呕吐均低于顺铂, 其作用机理与顺铂相同,虽然其化学稳定性好,毒性小,但是它与顺铂有交叉耐药性(交叉度达90% )。
金属配合物作为抗癌药物虽有的已经应用于临床, 并且显示出了较好的临床效果,但是大多数仍处于实验阶段, 人们对它们的抗癌机理仍不是十分清楚。
随着人们对金属配合物的抗癌机理以及其构效
关系的进一步认识, 人们必将合成出更多的高效低毒的金属配合物, 金属配合物的抗癌前景将更为广阔。
1.2.2黄芩苷金属离子配合物药效学作用
黄芩,为唇形科,植物黄芩的干燥根,又名子芩、条芩、独尾芩、鼠尾芩、黄芩条等,是在祖国医学的传统药用植物中应用最广泛的一种。
黄芩味苦,性寒。
归肝、肺、胆、大肠、小肠经。
功能清热燥湿,泻火解毒,止血安胎。
临床上用于肺炎、肾炎、肝炎、慢性支气管炎、高血压、急性痢疾、化脓性感染等。
黄芩中含有的成分主要有黄酮类、甾醇类(如菜油甾醇)、氨基酸和糖类,迄今已分离出约40中黄酮,在黄酮类中又以黄芩苷、黄芩素、汉黄芩素和汉黄芩苷、黄芩酮I、II、千层纸黄素等为黄芩的特征化学成分。
(1)对脂加氧酶的抑制作用
有研究表明:黄芩苷---锌配合物(黄芩苷锌)对致敏豚鼠离体肺释放SRS-A的抑制作用强于黄芩苷单体。
由于黄芩苷能选择性地抑制大鼠血小板脂加氧酶的活性,且脂加氧酶中的非血红素3价铁离子是酶的活性中心,在体内锌又是一种重要的微量元素;又由于其生成与脂加氧酶有关的SRS-A可能是引起人类哮喘的主要原因之一。
所以实验启示:黄芩苷对哮喘有效可能是由于体内的锌、铁离子竞争性与黄芩苷螯合,从而抑制SRS-A的释放。
另外,黄芩苷锌对小鼠皮肤被动过敏模型也具有抑制作用,即具有抑制I型变态反应作用,效果亦比黄芩苷好,周晓红等认为黄芩苷锌效果好是由于黄芩苷好,认为黄芩苷锌效果好是由于黄芩苷形成配合物后,增强了它抑制脂加氧酶的作
用。
可见黄芩苷锌将是治疗过敏性支气管哮喘的一种很有希望的新药。
(2)对免疫功能的影响
舒荣华等在黄芩苷锌抗I型变态反应作用的实验基础上,进一步研究了黄芩苷锌对小鼠免疫功能的影响。
发现它能明显促进小鼠腹腔巨噬细胞大的吞噬功能,显著提高血清中溶菌酶的含量,增强细胞C3b受体酵母花环率,且作用均强于黄芩苷。
所以黄芩苷锌不仅具有抑制I型变态反应作用,而且对小鼠非特异性免疫和红细胞免疫系统功能有较好的增强作用,其药效强体液免疫功能强于黄芩苷。
至于它对细胞免疫和体液免疫功能的影响,虽然实验中已证实黄芩苷锌能增加T淋巴细胞百分率的趋势,但其影响无统计学意义,对此还有待于进一步探讨。
1.2.3配位体作为金属解毒剂的作用
由于环境污染、职业性中毒以及金属代谢障碍均能造成体内Hg、Pb、Cd、As、Be等有害元素的累积以及Fe、Ca、Cu等必需元素的过量而引起金属中毒。
为使有害或过量金属元素从体内排除,常运用一些药物,这些药物能有选择地与有毒金属离子(如As、Hg)形成水溶性大,稳定性强而无毒的螯合配合物,经肾脏排除而解毒。
这种药物称为金属解毒剂。
1、2---二硫基丙醇,简称BAI,它和As、Hg、Pb等的螯合配位能力比蛋白质和这些金属的强,所以,它是一种常用来治疗肾中毒和汞中毒的金属解毒剂。
毒性较低的二硫基丁酸(DMSA),它具有良好的耐受性,副作用缓和,对血铅和尿铅等有明显的减低作用,被广泛用于治疗Pb、Hg和As中毒。
2.配合物在工业中的应用
2.1电镀工业中的应用
许多金属制件,常用电镀法镀上一层既耐腐蚀、又增加美观的Zn、Cu、Ni、Cr、Ag等金属。
在电镀时必须控制电镀液中的上述金属离子以很小的浓度,并使它在作为阴极的金属制件上源源不断地放电沉积,才能得到均匀、致密、光洁的镀层。
配合物能较好地达到此要求。
CN-可以与上述金属离子形成稳定性适度的配离子。
所以,电镀工业中曾长期采用氰配合物电镀液,但是,由于含氰废电镀液有剧毒、容易污染环境,造成公害。
近年来已逐步找到可代替氰化物作配位剂的焦磷酸盐、柠檬酸、氨三乙酸等,并已逐步建立无毒电镀新工艺。
2.2配合物在化妆品中的应用
当今,化妆品在我国的使用日趋广泛,估计有数以亿计的人口长期使用。
作为以保护皮肤为目的的化妆品,必须具备优良的品质。
近年来,由于微量元素在诸多方面表现出的特殊功能,国内外许多学者已经注意到某些微量元素在化妆品中的重要作用。
微量元素进入化妆品,是通过与蛋白质、氨基酸,甚至脱氧核糖核酸连结而实现的,它代表了一种新型的化妆用品重要成分[1]。
当这些微量元素被配合时,其配合物更具有生物利用性,使产品更具调理性和润湿性,而且它们更易于被
皮肤、头发和指甲吸收和利用,实现化妆品护肤美容的真实涵义。
目前,铜、铁、硅、硒、碘、铬和锗等七种微量元素在化妆品中的应用已经被许多国内外学者所肯定,而且逐渐为广大消费者所接受。
3配合物在环境监测中的作用
金属配合物作为一种新型的发光材料,近年来在科研工作和实际生产中得到了广泛的应用。
研究者通过合成新型的配体和选择合适的金属离子从而合成具有多功能性的金属配合物发光材料,并应用于各种研究领域中。
铼金属配合物(Re(I)配合物)因具有丰富的光物理化学性质及光化学稳定性等优点,作为一种潜力的发光材料应用于材料、生物、化学、医学众多领域。
铼配合物作为传感分子,作用原理是其与待测物质作用前后,光信号强度发生变化,实现对待测物质的检测,可用于环境中污染水体中酸度的检测。
小结
综上所述,配位化学已经深入到我们生活的各个领域,除此以外,原子能、半导体、激光材料、太阳能储存等高科技领域,印染、鞣革等部门也都与配合物有关。
配合物的研究与应用,无疑具有广阔的前景。
文献参考
[1]《黄芩苷金属离子配合物药效学作用概述》作者王乐、孟庆刚、徐珊、杨巧芳---《中华中医药学刊》2007年4月第上期
[2]《贵金属配合物在医药领域中的应用》作者曾锦萍、袁晓玲、梅
光泉---2005年8月
[3]《铼配合物发光材料在环境监测中的应用》谢瑞加----《海峡科学》2012年09期
[4]《配位化学在工业中的应用(一)》徐延瓞---《化学世界》1987年
《配位化学》———
浅谈配位化合物
在各领域的应用
专业班级:2010级化本(2)班
学号:10060144026
姓名:王姿骄。