电离层物理和电波传播27页PPT
- 格式:ppt
- 大小:3.68 MB
- 文档页数:27
电离层无线电波传播dianliceng wuxian dianbo chuanbo电离层无线电波传播radio wave propagation in the ionosphere无线电波在电离层中传播的规律及其应用的研究,早先着重于电波在电离层F2层电子密度峰值以下区域的传播问题,人造卫星上天以后,扩展到穿越整个电离层区域的传播规律问题。
基本理论电离层由自由电子正离子负离子、分子和原子组成,是部分电离的等离子体介质。
带电粒子的存在影响无线电波的传播,其机制是带电粒子在外加电磁场的作用下随之振动,从而产生二次辐射,同原来的场矢量相加,总的效果表现为电离层对电波的折射指数小于1。
由于自由电子的质量远小于离子的质量,一般电子的作用是主要的,只要考虑电子就够了。
但如电波频率较低而接近于离子的等离子体频率时,离子的影响也不能忽略。
由于地磁场的存在,带电粒子也受它的影响,所以电离层又是各向异性的(见磁离子理论)。
电离层的形成和结构特性是受太阳控制的,因此它既随时间又随空间变化。
在这样复杂的介质中,分析无线电波传播问题必须建立相对简化的物理模型并根据电波的频率采用相应的理论和方法。
对于电离层电波传播,介质的折射指数是一个最根本的参数,实验证明相当有效。
为人们普遍接受的磁离子理论表达的折射指数的公式称为阿普尔顿-哈特里公式,它是电离层电子密度和电波频率的函数,所以又被称为色散公式,而电离层则是一种色散介质。
对于短波和波长更短的电波传播问题,可以采用近似的射线理论,对长波和超长波则一般需要采用波动理论,有时可将地面和电离层底部之间看作一个同心球形波导。
折射和反射电离层的折射指数主要取决于电子密度和电波频率,电子密度愈大或电波频率愈低,折射指数愈小。
因为电离层的折射指数小于1,电波在电离层中受到向下折射,在垂直投射的情况下,折射指数等于零时,电波不能传播,产生“反射”。
在一定值的电子密度情况下,使折射指数为零的频率称为电波的临界频率,在地磁场的影响可以忽略时,这一频率就等于电子的等离子体频率。
一.电磁场基本性质:1.电场和磁场:静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
2. 电磁波及麦克斯韦方程:如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
静电场与恒定磁场相互无关、彼此独立,可以分别进行研究。
0c D B B E t D H J t ρ∇=⎧⎪∇=⎪⎪∂⎨∇⨯=-∂⎪⎪∂∇⨯=+⎪∂⎩cD E B H J E εμσ=⎧⎪=⎨⎪=⎩ 3. 物质属性 电磁场与电磁波虽然不能亲眼所见,但是客观存在的一种物质,因为它具有物质的 两种重要属性:能量和质量。
但电磁场与电磁波的质量极其微小,因此,通常仅研究电磁场与电磁波的能量特性。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
当空间存在媒质时,在电磁场的作用下媒质中会发生极化与磁化现象,结果在媒质中又产生二次电场及磁场,从而改变了媒质中原先的场分布,这就是场与媒质的相互作用现象。
4. 历史的回顾与电磁场与波的应用公元前600年希腊人发现了摩擦后的琥珀能够吸引微小物体;公元前300年我国发现了磁石吸铁的现象;后来人们发现了地球磁场的存在。
1785年法国科学家库仑(1736-1806)通过实验创建了著名的库仑定律。
1820年丹麦人奥斯特(1777-1851)发现了电流产生的磁场。
同年法国科学家安培(1775-1836)计算了两个电流之间的作用力。
1831年英国科学家法拉第(1791-1867)发现电磁感应现象,创建了电磁感应定律,说明时变磁场可以产生时变电场。