某连体结构设计要点
- 格式:pdf
- 大小:1.86 MB
- 文档页数:3
关于连体结构这主要是由于连体部分的存在,使与其连接的两个塔不能独立解放振动,每个塔的振动都要受另一个塔的约束。
两个塔可以同向平动,也可相向振动。
而对于连体结构,相向振动是最晦气的。
2、连接体部分受力繁复连体结构由于要协调两个塔的内力和变形,因此受力繁复。
更何况,连体部分跨度都比较大,除要承受水平地震作用所产生的较大内力外,竖向地震作用的影响也较明明,有事甚至是控制工况。
3、连接方式多样连体结构的连接方式大致分为两种,一种是强连接,另一种是弱连接。
(1)强连接当连体结构有足够的刚度,足以协调两塔之间的内力和变形时,可设计成强连接形式。
强连接又可分为刚接和铰接,但无论采用哪种形式,对于连接体而言,由于它要负担起整体内力和变形协调功能,因此它受力非常繁复。
在大震下连接体与各塔楼连接处的混凝土剪力墙往往简易开裂,是设计中需要重点加强的地方。
强连接形式主要用于连体跨度层数较多,其本身刚度比较大,连体两端塔体刚度大致相等的结构。
(2)弱连接当连体的刚度比较弱,不足以协调两塔之间的内力和变形时,可设计成弱连接形式。
(如连廊)二、连体结构的计算要点连体结构应按繁复高层建筑进行结构设计,因此,按规范的要求连体结构应符合下列要求:(1)应采用至少两个例外力学模型的三维空间分析软件进行整体内力和位移的计算。
《高规》5.1.13条可采用SATWE和PMSAP进行分析和校核。
ETABS是啥东西还没用过。
(2)抗震计算时,要考虑偶然偏心的影响,振型数要足够多,以保证振型参与质量不小于总质量的90%。
(3)于连体结构采用强连接形式,结构的扭转效应非常明明,因此在地震作用时宜考虑双向地震作用的影响。
(4)《高规》3.3.4条第3款,应采用弹性动力时程分析进行补充计算。
有条件的最佳采用弹塑性静力或动力分析法验算单薄层弹塑性变形,并从中找出结构构件的单薄部位,做到大震下结构不倒塌。
在PKPM系列软件中PUSH&EPDA软件可以进行弹塑性静力或动力时程分析计算,可以输出怯懦层位置及结构裂缝宽度分布图。
关于连体结构这主要是由于连体部分的存在,使与其连接的两个塔不能独立自由振动,每个塔的振动都要受另一个塔的约束。
两个塔可以同向平动,也可相向振动。
而对于连体结构,相向振动是最不利的。
2、连接体部分受力复杂连体结构由于要协调两个塔的内力和变形,因此受力复杂。
更何况,连体部分跨度都比较大,除要承受水平地震作用所产生的较大内力外,竖向地震作用的影响也较明显,有事甚至是控制工况。
3、连接方式多样连体结构的连接方式大致分为两种,一种是强连接,另一种是弱连接。
(1)强连接当连体结构有足够的刚度,足以协调两塔之间的内力和变形时,可设计成强连接形式。
强连接又可分为刚接和铰接,但无论采用哪种形式,对于连接体而言,由于它要负担起整体内力和变形协调功能,因此它受力非常复杂。
在大震下连接体与各塔楼连接处的混凝土剪力墙往往容易开裂,是设计中需要重点加强的地方。
强连接形式主要用于连体跨度层数较多,其本身刚度比较大,连体两端塔体刚度大致相等的结构。
(2)弱连接当连体的刚度比较弱,不足以协调两塔之间的内力和变形时,可设计成弱连接形式。
(如连廊)二、连体结构的计算要点连体结构应按复杂高层建筑进行结构设计,因此,按规范的要求连体结构应符合下列要求:(1)应采用至少两个不同力学模型的三维空间分析软件进行整体内力和位移的计算。
《高规》5.1.13条可采用SATWE和PMSAP进行分析和校核。
ETABS是啥东西还没用过。
(2)抗震计算时,要考虑偶然偏心的影响,振型数要足够多,以保证振型参与质量不小于总质量的90%。
(3) 于连体结构采用强连接形式,结构的扭转效应非常明显,因此在地震作用时宜考虑双向地震作用的影响。
(4)《高规》3.3.4条第3款,应采用弹性动力时程分析进行补充计算。
有条件的最好采用弹塑性静力或动力分析法验算薄弱层弹塑性变形,并从中找出结构构件的薄弱部位,做到大震下结构不倒塌。
在PKPM系列软件中PUSH&EPDA软件可以进行弹塑性静力或动力时程分析计算,可以输出柔弱层位置及结构裂缝宽度分布图。
南京金鹰天地广场超高层三塔连体结构分析与设计3篇南京金鹰天地广场超高层三塔连体结构分析与设计1南京金鹰天地广场超高层三塔连体结构分析与设计南京金鹰天地广场位于南京市鼓楼区将军山路8号,是南京市中心地带的重要商业中心。
该建筑由三栋不同高度的塔楼及中央商业裙房组成,总建筑面积约20万平方米。
其中,西塔是55层、高290米的超高层建筑,是南方地区高度最高的超高层建筑之一。
该建筑的设计与施工由国内知名的建筑师与工程师团队完成。
本文将对其超高层三塔连体结构进行分析与设计。
一、整体结构设计南京金鹰天地广场的超高层三塔连体结构采用了异型空心钢结构。
设计师们在设计中融入了抗震、自重与风压等因素,力求将建筑的安全性与美观性兼顾。
其中,钢结构采用了空心和实心两种构造形式,使得三栋塔楼可以在高度上呈现出流畅的曲线。
这样的设计方案不仅增强了整个建筑的空间感,同时在光影角度也起到了一定的作用。
二、各个建筑结构的区别南京金鹰天地广场的三栋塔楼高度不同,造型各异,因此其结构设计也各有特点。
其中,西塔是最高的一栋,整个建筑高度与重量均超出其他两个塔楼。
为了增强西塔的刚度与稳定性,设计师们在其周围设计了一个六组合边形,有效地降低了弯曲应力。
同时,在设计中还采用了钢结构构件,使得整个建筑的重量能够更加均匀地承受荷载,并减轻施工难度。
另外,东塔和南塔的结构设计比较类似,主要采用了楼板上覆盖式钢梁,使得整体结构更加均匀。
同时,在防风、减震等设计方面也采用了相似的技术手段。
三、建筑师的设计意图在南京金鹰天地广场的设计中,建筑师们主要考虑到了人文与环境因素。
因此,除了结构的优化设计之外,他们还在外立面的设计上体现了大量的文化元素。
其中,金鹰的“鹰”造型,使得建筑结构非常凸显,同时静态与动态的结合呈现了一种融合之感。
同时,东塔、南塔、中间裙房的造型也分别采用了不同的建筑元素,如砖墙、玻璃幕墙等,呈现出一种多彩多姿的视觉效果。
四、总结南京金鹰天地广场的超高层三塔连体结构,既具有良好的建筑结构与安全性能,又体现了人文与环境意义。
2019年第7期图3连廊立面结构图图2连廊结构平面布置图合肥某工程建筑连体结构设计马霖摘要:连体结构是在一定的高度上用连廊将两个塔楼相连形成的一种结构形式。
合肥某公司新建总部大楼项目在第3、4层处设8.4m 高连廊相连。
通过对两端塔楼结构特点的分析决定采用弱连接的钢桁架连廊结构形式。
介绍了设计中连体结构计算模型的建立和相关设计要点;需对楼盖结构进行舒适度要求的分析验算,不满足时需采用TMD 阻尼器进行减震设计。
关键词:连体结构钢桁架支座调谐质量阻尼器1工程概况某公司新建总部大楼项目位于中国安徽省合肥市经开区核心区,项目建设内容含办公、社区中心及配套设施。
项目建设用地面积约1.38万平方米,总建筑面积约6.93万平方米。
全部建筑由两栋高层和一座裙房组成,其中两栋高层之间采用连廊相连。
项目建筑立面图如图1所示。
2结构形式本工程抗震设防烈度为7度0.1g ,场地类别为域类,主要结构为标准设防类,抗震等级为三级(高层塔楼框架柱为二级)。
较高塔楼采用钢管混凝土框架-支撑结构,较矮塔楼采用钢管混凝土框架结构,裙房采用钢框架结构,连廊采用钢桁架结构,梁均采用焊接H 型钢梁,板采用现浇钢筋混凝土楼板。
地上部分裙房与塔楼之间设缝分开,两栋塔楼之间在3~4层处采用钢桁架连廊连接。
3连体结构概述/原则连体结构通常有桁架式、悬臂式、吊梁式或托梁式。
某高层连体结构抗震设计及其弹塑性时程分析。
根据与两侧塔楼连接刚度不同可分为强连接与弱连接。
其中强连接体需要有足够的刚度以协调两侧单体的变形和内力,而弱连接体可通过滑动支座将两侧传递来的水平力释放掉。
对于两侧塔楼刚度、体型或层数相差较大时,宜选用弱连接。
4本工程连体结构选择本工程西侧塔楼高度为93.3米,采用钢管混凝土-钢支撑结构形式;东侧塔楼高度为47.1米采用钢管混凝土结构形式。
两侧塔楼高度相差近一半,结构形式也不同,因此适合采用弱连接体相连。
连廊跨度为30.6米,宽度24.3米,两侧主楼在相应位置设柱侧钢牛腿,西侧采用滑动支座与主楼牛腿相连,东侧采用固定铰支座与主楼牛腿相连,连廊结构平、立面布置。
某高层双塔连体抗震超限结构设计摘要:高层双塔连体结构受力比一般多塔结构更为复杂,本文结合某高层双塔连体结构抗震超限设计,对性能化目标选择、连体设计细节、结构抗震加强措施等方面提出了合理的建议。
关键词:双塔连体;柔性连接;连体选型1 前言双塔连体结构的连接方式分为强连接和弱连接两类,弱连接方式的连体一端与结构铰接另一端为滑动支座或两端均为滑动支座,两塔楼结构独立工作,连体结构受力较小,两端滑动连接的连体在地震作用下与两塔楼相对振动较大,支座设计特别关键。
强连接方式的连体结构包含多层楼盖,连体结构刚度足够大,能将主体结构连接为整体,协调受力和变形。
2 工程概况本工程为综合办公类公共建筑,两栋办公塔楼,部分配套商业展览及裙房办公,项目考虑为该片区提供办公及商业配套,完善城市功能。
总建筑面积124951.41平米,其中地上建筑面积105454.46,地下建筑面积19496.95,建筑总高度为97.5m,两栋塔楼层高均为3.9米,平面对称,高度相同,平面尺寸41米X30米,为对称双塔结构。
19~20层两个塔楼在长边中间中心通过钢结构连廊连接,连体跨度40米,宽度8.6米,高度7.8米,连接三层楼面。
工程效果图如图1所示图1该工程建筑场地抗震设防烈度为6度,设计基本地震加速度值为0.05g,设计地震分为第一组,设计特征周期值,Ⅱ类取0.35s。
基本风压0.3KN/M2,地面粗糙度为B类。
塔楼结构采用框架-核心筒结构,与连体相连的框架柱采用型钢混凝土结构。
3 结构设计塔楼采用框架-核心筒结构,核心筒布置在结构平面中心。
该连体跨度较大,相对塔楼刚度较弱,采用刚接无法协调两塔共同作用,综合比较采用柔性连接,连体宽度较小,两端支座放置在两个框架柱伸出的牛腿支座上,为了增加结构可靠度,连体通过4个支座与下部每个塔楼相连。
由于连体跨度达到40米,为了减轻结构重量,减小地震作用,连体采用钢构架结构,通过两榀桁架与主体框架柱连接,两榀桁架之间通过楼面形成整体,与桁架相连接的框架与内部核心筒墙体形成一片完整的框架,增加结构整体刚度。
高层建筑连体结构设计论文摘要:高层建筑连体结构设计时非常复杂的结构体系,在进行结构设计时要科学合理的设计连体结构,确保高层建筑连体结构在面对地震灾害时具有可靠的安全,保障人民生命财产安全。
一.引言高层建筑连体结构是指除开裙楼外,高层建筑在两个或两个以上的塔楼之间存在带有连接体的建筑结构。
在高层建筑结构中,连体结构部分是较为薄弱的,因此对高层建筑连体结构设计增加了难度。
由于高层建筑在遭受地震灾害时,容易对地震区的连体高层造成严重破坏,因此需要加强高层建筑连体结构设计,最大限度提升建筑的安全性。
二.工程概况某建筑工程建筑面积为52000㎡,项目占地面积约25000㎡,建筑抗震设防烈度为7度。
A楼和B楼由同一主楼组成,主楼的高度为16层,主楼10层以下为相互独立的建筑结构,在11层和15层之间设置一连体结构,连通A楼和B楼。
在连体部分中,将11层作为可用建筑空间,其余楼层均为架构部分。
在A楼和B楼之间设置连通的地下室。
三.高层建筑的连体结构设计1. 高层建筑连体结构设计基本原则(1)计算数据分析按照JGJ3-2002《高层建筑混凝土结构技术规程》的规定,对高层建筑的复杂体型进行分析,需要符合下列基本要求:1)至少需要采用两个具有不同力学模型的三维空间软件对整体内力位移进行数据计算;由于高层建筑连体结构的体型具有特殊性,连体部位的承受力非常复杂,因此需要采用有限元模型对结构整体进行建模分析,并采用弹性盖楼对连体部分进行分析计算。
2)在计算结构抗震系数时,需要考虑平扭耦联计算结构的扭转效应,设置振型数高于15,计算振型数要使振型参与质量不得小于总质量的90%。
3)需要采用弹性时,要采用程分析法补充进行计算。
4)需要采用弹塑性动力或静力分析方法对薄弱层弹塑性变形进行验算。
2. 结构选型高层建筑的连体结构由于各独立部分存在相同或相近的体型、刚度或平面,抗震设计为7度或8度时,刚度和层数差别较大的建筑,不适合简单采用强连接方式。
浅议连体结构设计问题发布时间:2022-01-11T06:31:13.388Z 来源:《建筑学研究前沿》2021年18期作者:殷明霞[导读]身份证号码:61042419790819xxxx 高级工程师高层建筑连体结构是近年发展起来的一种新型结构形式,因连廊上良好的视觉体验、空中交通以及共享空间功能,越来越受到大家的认可。
连体结构是指两个塔楼或多个塔楼由设置在一定高度处的连接体(又称连廊)相连而组成的建筑物。
连体结构不仅需要协调连接其两侧塔楼的受力和变形,还要考虑连体本身由于双塔变形不协调而产生的扭转作用。
连体结构与塔楼的连接节点构造复杂、连体结构自身结构形式要求较高,故而需要采用不同的分析计算软件,才能保证整体结构体系的可靠度和连体结构的舒适度。
一、连接体分类:1.根据连接体自身强度分为强连接和弱连接。
强连接的连接体本身刚度较大。
比如层数较多的连廊,一般可采用刚性连接。
因其自身承载变形的能力较强,有利于协调各单体塔楼受力和变形。
弱连接的连接体本身刚度较弱,比如单层连体、室外空中走廊,或宽度方向有向内收缩仅有部分宽度用于连接塔体。
对单体塔楼的地震动力等效应影响较小,可将塔楼与连体结构分开设计。
以滑动支座为例,北京当代万国城北区工程,为多塔楼大跨度连体结构,由7座空中连廊将8幢塔楼首尾相连而成。
采用多塔楼滑动连体设计方法,提高了连体和塔楼抗震安全性。
2.根据连体结构形式分为:钢桁架结构、悬索结构、预应力结构及型钢混凝土结构等。
根据经济性和使用净空等因素进行选择。
二、连体结构的设计原则1. 连体结构要控制扭转。
当地震或风力作用时,结构除产生平动变形外,还将会产生扭转变形,扭转效应随两塔楼不对称性的增加而加剧。
即便对于对称双塔连体,因连接体楼板变形,两塔除有同向的平动外,还有可能产生两塔楼的相向运动。
实际工程中,因地震在不同塔楼间的震动差异存在,两塔楼相向运动的振动形态极有可能发生响应,此时连体受力很不利。