输入 输出反馈线性化
- 格式:pdf
- 大小:456.14 KB
- 文档页数:53
第三章 非线性微分方程动力系统的简化在非线性微分方程动力系统研究中,很自然地期望有一些有效的方法使原系统降阶或简化,井能保持原系统的动态特性。
目前,现有的知识主要有中心流形、范式、奇异摄动与精确线性化等。
本章将简要地叙述相关方面的基本内容3.1中心流形3.1.1中心流形的基本定理本节考虑以下形式非线性微分方程系统(,)(,)x Ax f x y y By g x y '=+⎧⎨'=+⎩Equation Section 3(3.1) 其中,m n x R y R ∈∈,假定A 和B 是具有相应维数的常数矩阵,并且A 的所有特征值具有零实部,B 的所有特征值具有负实部。
函数f 和g 关于其变元皆二阶连续可微,且(0,0)0,(0,0)0f g ==;(0,0)0,(0,0)0f g ''==(注: f '和g '是它们各自的雅可比矩阵)。
定义3.1 一个集合(流形)m n S R R ⊂⨯被称为系统(3.1)的局部不变流形(Local invariant manifold)是指,对任何的00(,)x y S ∈系统(3.1)的初值为00((0),(0))(,)x y x y =的解()x t 始终在集合S 内,其中||t T <,T 为某正数。
进而,如果,T =∞,那么S 就称为不变流形(invariant manifold)。
定义3.2 如果()y h x =是系统(3.1)的一个不变流形,并且()h x 为光滑函数,(0)0h =,(0)0h '=,那么它被称为中心流形(centre manifold )。
对于系统(3.1),我们有,定理3.1 对系统(3.1)而言,若A ,B ,和g 满足假设条件,那么存在一个中心流形()y h x =,其中||x δ< (δ为某一个正数),且2h C ∈。
证今:[0,1]n R ψ→为C ∞函数,取值为1,||1,0,|| 2.x x ψ≤⎧=⎨≥⎩又设(,)((),),(,)((),)x xF x y f x yG x y g x y εεψψ==其中0ε>。
第六章非线性系统的反馈线性化反馈线性化方法的基本思想是用反馈的方法,将非线性被控对象补偿成为一个具有线性特性的系统,然后利用线性系统理论进行控制系统设计。
基于微分几何的反馈线性化方法是一种精确线性化方法。
6.1 反馈线性化基本概念反馈线性化设计步骤是:(1)通过反馈的方法将非线性系统转化为线性系统,这个过程可以微分几何方法;(2)经过线性化处理后的系统进行设计。
与泰勒级数展开的近视线性化方法不同,它是建立在系统状态变换与非线性反馈基础上的一种精确方法。
它是大范围有效的,而不是仅仅局限于工作点附近。
1水槽的系统模型为()()2h d A h dhu t a ⎡⎤=−∫4()f B =+ xx u 考虑如下系统x是系统状态,f(x)是光滑向量场,u是控制输入,B是输入矩阵且可逆。
设跟踪轨迹为x d 。
=d e x x−定义跟踪误差=f()B d ex x u −− 主要思路是设计如下的补偿控制算法1=(f())d u Bxx ke −−+ =-eke 补偿后的误差动态方程为稳定例2 两关节机械手111212121112122212220H H qhq hqhq q g H H qhq qg ττ−−−⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦&&&&&&&&&&(6.1)5其中,[]12,Tq q =q 为关节角,[]12,Tττ=τ为关节输入。
12222221222221111211222222221212122221211122122122122cos cos sin cos cos()cos cos()c c c c c c c c c c H m l I m l l l l q I H m l I H H m l l q m l I h m l l q g m l g q m g l q q l q g m l g q q ⎡⎤=+++++⎣⎦=+==++=⎡⎤=+++⎣⎦=+表示成向量形式()(,)()H q qC q q q g q τ++=&&&&两边同乘以1H −,可变成仿射非线性系统(6.1)。
华东师范大学系统分析与集成博士研究生课程专业名称:系统分析与集成课程编号:B0112010711003 课程名称:非线性控制系统理论与应用课程英文名称:Nonlinear Control-System Theory and Application学分: 3 周学时总学时:54课程性质:博士学位专业课适用专业:系统理论、系统分析与集成教学内容及基本要求:教学内容:1. 反馈系统分析(包括绝对稳定性,小增益定理,描写函数方法)2. 反馈线性化(包括输入-状态线性化,输入-输出线性化,状态反馈控制)、3. 微分几何方法(包括微分几何工具,输入-输出线性化,输入-状态线性化4. Lyapunov设计方法5. Backstepping方法6. 滑模控制7. 自适应控制。
基本要求:要求掌握解决问题的思想方法和技巧。
考核方式及要求:笔试。
学习本课程的前期课程要求:线性系统教材及主要参考书目、文献与资料:1. Hassan K. Khalil:《Nonlinear System (Second edition)》。
填写人:陈树中教授审核人:顾国庆教授课程编号:B0112010711004 课程名称:分布计算与分布式系统课程英文名称:Systems and Architecture of Distributed Databases学分: 3 周学时总学时:54课程性质:博士学位专业课适用专业:系统理论、系统分析与集成教学内容及基本要求:教学内容:本课程主要讨论分布式数据库系统的原理,技术和系统结构。
在第一部分,介绍DBMS的主要成分。
第二部分介绍经典的分布数据库系统理论和系统。
第三部分主要讨论Internet/Intranet时代的分布数据库理论和系统。
基本要求:学生在理解讲课内容的基础上,阅读大量相关论文,从而对基本知识有深入理解和对前沿技术有全面的了解。
考核方式及要求:考试。
学习本课程的前期课程要求:数据库系统基础,计算机网络基础教材及主要参考书目、文献与资料:1.周龙骧等:《分布式数据库管理系统实现技术》,科学出版社,1998。