SPC基础
- 格式:pptx
- 大小:200.00 KB
- 文档页数:39
SPC统计方法根底知识1. 什么是SPC统计方法SPC,即统计过程控制〔Statistical Process Control〕,是一种通过统计方法来监控和控制生产过程的方法。
它的目标是保证生产过程中的产品质量稳定和一致性,从而提高产品的可靠性和一致性,并减少生产过程中的变异性。
SPC统计方法通过收集和分析生产过程中的数据,确定过程中的变异性。
通过建立控制图和指标,可以监测过程的变化,并及时采取控制措施。
SPC统计方法主要基于统计原理和数学模型,能够帮助生产企业实现质量改良和过程优化。
2. 控制图的根本原理控制图是SPC统计方法中最常用的工具之一,用于监控过程中的变化。
控制图的根本原理是根据过程中的样本数据,通过计算和分析统计指标,画出上下限控制线,观察样本数据是否在控制限范围内。
如果样本数据超过控制限,可能存在特殊因素导致过程变化,需要进行分析和处理。
常用的控制图包括平均控制图〔X图〕、范围控制图〔R图〕、极差控制图〔s图〕等。
平均控制图用于监控过程的中心位置,范围控制图用于监控过程的变异程度,极差控制图用于监控过程的变异程度。
3. SPC统计方法的应用场景SPC统计方法适用于各种生产过程的质量控制和监控,具体应用场景包括:•常变性过程:SPC可以帮助监控常变性过程的稳定性和变异性,如化工生产、电子制造等。
•不稳定过程:对于不稳定的过程,SPC可以帮助找出并消除特殊因素,提高过程的稳定性和一致性。
•高精度要求:对于需要高精度和高一致性的生产过程,SPC 可以帮助控制和优化过程,提高产品质量。
•具有统计规律性的过程:对于具有规律性的生产过程,SPC 可以帮助发现和解释过程中的规律,从而优化过程。
4. SPC统计方法的优点和挑战SPC统计方法具有以下优点:•实时性:通过实时监控过程中的数据,可以及时发现和处理过程变化,减少产品不合格率和质量问题。
•可靠性:SPC基于统计原理和数学模型,具有较高的可靠性和准确性,可以帮助寻找过程中的问题和改良方向。
SPC培训讲义—基础知识简介SPC(Statistical Process Control,统计过程控制)是一种基于统计方法的质量管理工具,旨在通过对过程数据的统计分析,帮助组织识别和解决可能导致质量问题的根本原因,从而提高产品的稳定性和可靠性。
本讲义将介绍SPC的基础知识,包括SPC的原理、常用的SPC 工具和应用案例等内容。
1. SPC的原理SPC的核心原理是基于过程数据的统计分析,通过对数据的收集和分析,识别和排除可能导致质量问题的特殊原因,同时通过控制图的使用,监控和改进过程的稳定性和可靠性。
1.1 正态分布在SPC中,数据的正态分布是一个重要的假设。
正态分布是一种对称的概率分布,其特点是均值和标准差能够完全描述分布的情况。
正态分布的图形呈钟形曲线,均值位于曲线的中央。
在实际应用中,SPC 通常假设数据是近似正态分布的,以方便进行统计分析。
1.2 变异性与稳定性在质量管理中,变异性是指同一过程在不同时间或不同条件下相同测量项的数值差异。
通过SPC的应用,可以发现原本被认为是随机变动的过程,实际上可能存在特殊原因造成的异常波动。
稳定性是指过程在一段时间内的变异性较小,并且符合预期的性能要求。
通过SPC 的控制图,可以监控过程的稳定性,并及时采取措施防止不稳定状态的出现。
2. 常用的SPC工具SPC工具是SPC实施过程中使用的具体方法和技术,下面介绍几种常用的SPC工具。
2.1 控制图控制图是SPC中最常用的一种工具,它用来监控过程在一段时间内的变异情况。
控制图是一种统计图表,将过程数据按时间顺序绘制在图表上,同时画出上下限和中心线。
如果过程数据处于控制限之内,说明过程处于稳定状态;如果过程数据超过控制限,说明过程发生了特殊原因的变异,需要进行分析和改进。
2.2 直方图直方图是一种用柱形表示数据分布的图表,它可以直观地展示数据的中心趋势、波动幅度以及偏态情况。
通过直方图,可以判断数据是否符合正态分布,如果数据呈现钟形分布,则可以认为数据符合正态分布的假设。
广州今朝科技有限公司SPC基础知识一SPC术语录1.控制图:SPC的核心工具。
一种标绘着根据相继抽取的样本或子组的某一统计量的值、并画有控制限的图,用于评估或检查一个过程是否处于控制状态之下。
画在坐标系中,横轴表示时间或样本号,纵轴表示数值大小,将采集到的数据以点的形式表示在图中。
2.运行图:一种代表过程特性的简单图形,上面描有一些从过程中收集到的统计数据(通常是单值)和一条中心线(通常是测量值的中位数),可用来进行链分析。
3.排列图:一种用于解决问题的简单工具,按照对成本或变差的影响程度对各种潜在的有问题区域或变差源进行排序。
一般情况下,大多数的成本(或变差)是由于少量原因造成的,所以解决问题的精力最好是首先集中在少量关键的原因上,而暂时忽视多数不重要的原因。
4.散点图(相关图):把两个变量标在横轴与纵轴上,按照一一对应测量值点描绘成的图。
5.计量值:当质量特性值可以取给定范围内的任何一个可能的数值时,这样的质量特性值称为计量值。
6.计数值:当质量特性值只能取一组特定的数值,而不能取这些数值之间的数值时,称之为计数值。
7.过程:过程是指将输入转换成输出的一系列活8.9.10.628052366666611.动的总和。
12.样本:取自总体中的一个或多个个体,用于提供关于总体的信息,并作为可能做出对总体(或产生总体的过程)的某种判定的基础(引自GB3358-82)。
样本中所包含的样本单位数,称为样本大小。
13.样本容量(子组大小):在抽检中抽出来的样本单位数。
14.不良品:指整件物品作为一个整体考虑而未满人意或不能接受。
一件不良品可能具有若干相同的或不相同的缺陷。
15.不良率控制图:即P图,用于控制对象的不合格率。
16.不良品数控制图:即Pn图,是一种计数值控制图,用于控制对象为不合格品数的场合。
)17.采集规划:采集规划指从某过程中选择质量特征值进行数据采集的一种工具。
18.单位缺陷数(U)控制图:是一种计数值控制图,它通过周期性抽取样本以统计单位产品的缺陷率并在控制图上绘制点来监控过程变化,样本的检测结果为平均每个样品包含的缺陷数。
SPC的基础知识与数据整理引言SPC(统计过程控制)是一种用于监控和控制过程的统计方法。
它通过收集一系列的数据并进行分析,以确定过程是否处于控制状态,并采取相应的措施保持过程稳定。
在本文中,我们将介绍SPC的基础知识和数据整理方法。
SPC的基础知识SPC的核心思想是通过采集过程中的样本数据,分析其变异情况,以判断过程是否处于控制状态。
基于不同的过程类型,SPC通常使用控制图来可视化过程的变异情况。
常用的控制图包括X-Bar图、R图和S图等。
X-Bar图X-Bar图是一种用于监控过程均值的控制图。
它基于过程中收集到的样本数据,计算每个样本的均值,并绘制在图表上。
通过观察X-Bar 图,我们可以判断过程均值是否稳定。
R图R图是一种用于监控过程变异性的控制图。
它基于过程中收集到的样本数据,计算每个样本的极差(最大值与最小值之差),并绘制在图表上。
通过观察R图,我们可以判断过程的变异性是否稳定。
S图S图是一种用于监控过程变异性的控制图。
它基于过程中收集到的样本数据,计算每个样本的标准差,并绘制在图表上。
通过观察S图,我们可以判断过程的变异性是否稳定。
数据整理方法数据整理是SPC的一个重要步骤,它涉及收集样本数据、记录数据、计算统计量和绘制控制图等过程。
下面我们将介绍一些常用的数据整理方法。
数据收集在进行数据收集之前,需要确定采集数据的时间间隔和样本容量。
通常,采集数据的时间间隔应保证能够捕捉到过程的变化。
样本容量的确定应根据具体情况和要求进行。
数据记录数据记录是指将收集到的数据记录下来,以备后续分析使用。
可以使用电子表格软件(如Excel)或统计软件(如SPSS)等工具来记录数据。
统计量计算在进行SPC分析之前,需要计算一些统计量,如样本均值、样本标准差等。
这些统计量的计算可通过公式或统计软件完成。
控制图绘制控制图的绘制是用于直观地观察过程变异情况的重要步骤。
可以使用统计软件或绘图软件(如R语言)来绘制控制图。
SPC 基础知识一、基本概念:1、极差:测定值中最大值Xmax与最小值Xmin之差称为极差,用R表示:R=X max-X min2、平方和:各个测定值与平均值之差称为偏差。
各测定值的偏差的平方和称为平方和,简称平方和,用S表示:S=(X1-Xa)2+(X2-Xa)2+(X3-Xa)2+(X4-Xa)2+……+(Xn-Xa)2Xa:平均值3、方差:各个测定值的偏差平方和除以(n-1)后所得的值称为无偏方差(简称方差),用s2表示:s2=S/(n-1)4、标准偏差:方差s2的平方根称为标准偏差(简称标准差),用s表示:s=√s2我们常说的δ和μ是指的总体标准差和总体均值;当过程在受控状态下,且样本容量差较大时,可用样本标准差s和样本平均值Xa;5、正态分布:f(x)=1/√2πδ*e-(x-u)2/2δ2 (1.1)式中:x为随机变量,实为标在横座标上的特性值;e≈2.7183,是自然对数底;π≈3.1416,圆周率;δ为总体标准差;μ-根据公式(1.1)可看出,任一正态分布仅由两个参数,即总体均值μ和总体标准差δ完全确定。
μ亦称分布的位置参数,δ称分布的形状参数;δ越小,曲线越陡,数据(变量)离散也小;δ越大,曲线越扁平,数据的离散也越大,总体数值落在:μ±1δ界限范围内的概率为68.26%;μ±2δ界限范围内的概率为95.46%;μ±3δ界限范围内的概率为99.73%;μ±1.96δ界限范围内的概率为95.0%;而数据落在:μ±3δ之外的概率应小于3‟;μ±1.96δ之外的概率应小于5%;二、质量控制和过程控制概念:质量控制是质量管理的一部分,其目的是“致力于满足质量要求”。
质量控制的内容,主要包含以下三方面:1、识别并确定过程,以做到及时发现和排除产品实现过程中的变异要求,使上过程(工序)的问题不带到下一过程(工序)中去,以保证过程的稳定性和产品质量的一致性,这是一项预防性工作,简称过程控制。
SPC统计基础知识简介SPC(Statistical Process Control,统计过程控制)是一种用于监控和管理过程稳定性和可靠性的统计技术。
通过收集样本数据并进行分析,SPC能够及时发现过程中的变异和异常情况,从而帮助组织实现质量改进、成本控制和客户满意度的提高。
本文将介绍SPC的基本概念和常用统计方法,帮助读者理解和运用SPC统计基础知识。
1. SPC的基本概念SPC是一种通过分析过程数据来监控过程稳定性的方法。
它基于以下三个基本统计概念:1.1 均值过程中的均值是指一组样本数据的平均值。
在SPC中,通过计算样本的均值来了解过程的中心位置。
如果样本均值始终在预设的目标值附近波动,说明过程稳定。
1.2 变异过程中的变异是指一组样本数据的离散程度。
在SPC中,通过计算样本数据的变异度来了解过程的稳定性。
如果样本数据的变异度较低且在预设的范围内,说明过程稳定。
1.3 控制界限控制界限是为了判断过程是否处于可接受的控制范围内而设定的。
上下控制界限定义了过程稳定的上下限,超出这一范围的样本数据将被认为是异常值或异常事件。
2. 常用的SPC统计方法2.1 过程能力指数(Cp)过程能力指数是一种衡量过程稳定性和可靠性的指标。
它通过比较过程的变异度和指定的公差范围来评估过程性能。
Cp值越高,说明过程的稳定性和可靠性越好。
2.2 控制图控制图是SPC中最常用的统计工具之一。
它通过绘制样本数据的均值、上下控制界限和中心线来反映过程的变化趋势。
通过控制图,可以及时发现和纠正过程中的变异和异常情况。
2.3 散点图散点图是用来显示两个变量之间关系的图表。
在SPC中,散点图可以用来发现变量之间的相关性和趋势。
通过分析散点图,可以帮助确定工艺参数的合理范围和优化生产过程。
2.4 直方图直方图是用来显示数据分布情况的图表。
在SPC中,直方图可以帮助了解过程数据的分布特征和变异程度。
通过分析直方图,可以判断过程是否正常、是否满足规定要求。
SPC(统计过程控制)基础知识培训教材 第一部分 SPC 统计过程控制概论 1,什幺是 SPC? SPC 是三个英文单词的缩写(Statistical Process Control) ,即统计过程控制是应用统 计方法对过程中的各个阶段进行监控,从而达到质量保证与质量改进的目的.在此可将 统计学看成是从一系列数据中收集信息的工具, 它是通过预防而不是通过检测来避免浪 费. SPC 的特点是:1.全系统的,要求全员参与,人人有责;2.强调用科学的方法来保 证达到目的;3.SPC 强调全过程的预防为主;4.SPC 不仅用于生产过程,而且可用于服 务过程和一切管理过程. SPC 要点:1.SPC 是运用统计学方法将过程的输出量和预先设定的控制界限进行比 较,并分辨出通常原因和异常原因,从而在生产过程中进行质量控制;2.SPC 是预防行 为,可针对问题的纠正措施提供有效的资源配置;3.SPC 是一系列的"事前"方法,它 不仅是检测,而且是通过系统的分析,使用收集的数据,并以过程能力为基础,来预测 过程的发展趋势. 2,SPC 的发展史与质量管理的进展 20 世纪二三十年代,美国贝尔电话实验室的休哈特(W.A.Shewhart)博士首先提出 过程控制的概念与实施过程控制的方法,并于 1931 年出版了"加工产品品质的经济控 制" (Economic Control of Quality of Manufactured Products)之后,SPC 应用于各种制造 过程改善便从此展开.今天的 SPC 与当年的休哈特方法并没有根本的区别. 当时 SPC 并不流行,二次世界大战后期,美国开始在军工部门推行休哈特的方法, 但应用并不广泛. 战后, 美国成为当时工业强大的国家, 于是统计过程控制方法在 1950~ 1980 年这一阶段内逐渐从美国工业中消失.反之,在战后经济遭到严重破坏的日本,白 废待兴,提出了以产品质量为根本来提高竞争力,所以到美国请了戴明等人到日本指导 品质,将 SPC 的概念引入日本.SPC 在戴明的指导下,功能发挥的很不错,从 1950 年 到 1980 年,日本跃居世界质量和生产率方面的领先地位.日本人为了牢记戴明的功劳, 就在日本设立了一年一度的品质界最高奖项-----戴明品质奖,后来美国和台湾等地也采 用日本的方式,设立了一年一度的戴明奖. 在日本强有力的竞争之下,SPC 在西方工业发达的国家复兴,西方工业发达国家纷 纷加以推行并把 SPC 列为高科技之一.如美国从 80 年代起开始推行 SPC,美国汽车工 业,钢铁工业等许多行业都推行了 SPC. 20 世纪人类跨入了以加工机械化,经营规模化,资本垄断化为特征的工业化时代. 在整整一个世纪中,质量管理的发展经历了生产后检测,生产中使用 SPC,在生产前进 行产品和过程控制三个阶段. 3,SPC 的作用 过程控制是为了确保满足顾客的要求而对过程所执行的一套程序和经过计划的措 施,使用控制图等统计技术来分析过程或其输出,以便采取适当措施来达到并保持统计 控制状态从而提高过程能力. SPC 的作用主要体现在如下几个方面: 3.1 单纯从 SPC 理论上分析对企业的益处,它具有经济性,预警性,能合理的使用企业 的设备; 3.2 从制造过程(制程)上分析对制程的功效,通过分辨共同原因和特殊原因,找出最 大质量问题原因,以便于工作更有绩效;生产过程能力指数(CPK)可作为改善前后简 单比较的依据,作为生产过程检讨的共同语言;减少报表处理工作量,增加了分析数据的真实性,科学性,从宏观到微观全面真实地了解质量状况;建立一个技术,生产,质 管三个与质量有直接管理部门的沟通的平台. 3.3SPC 有利于维护过程控制和过程的稳定性,加强产品的可靠性和可维护性 3.4 理想的运做 SPC 可以达到的做用可以用 3W2H 来描述:找出什幺时候会发生异常 (When) ;找出发生什幺具体异常(What) ;分析出异常的原因(Why) ;得出解决异常 的方法(How) ;建立起预防方案(How) . 4,SPC 的基本理论基础 在 SPC 中,虽然任何统计方法都可以应用的,但最常用的是控制图理论.现在将 SPC 的理论要点简单介绍如下: 4.1 产品质量的统计观点 产品质量的统计观点是现代质量管理的基本观点之一.它包括两部分的内容:1.产 品质量具有变异性:在生产中,影响产品质量的因素按不同的来源分可分为人员,原材 料,机器设备,操作方法,测量设备,环境等(即 5M1E)几个方面,这些质量因素不 可能保持绝对不变,因此,产品质量在一系列客观存在的因素的影响下必然会不停的变 化着.这就是产品质量的变异性;2.产品质量的变异具有统计规律性:生产正常的情况 下,对产品质量的变异经过大量调查与分析,可应用概率论和数理统计方法来精确地找 出产品质量变异的幅度及不同大小的变异幅度出现的可能性,即产品质量的分布,这就 是产品质量变异的统计规律.在质量管理中,计量特性值常见的分布有正态分布等,计 件质量特性值常见的分布有二项分布等,计点质量特性值常见的分布有泊松分布等,利 用这些规律,可以做到保证和提高产品质量. 从哲学的观点看,前者是认识世界,后者是改造世界.引入产品质量的统计观点是 近代质量管理的区别于传统质量管理的一个重要的标志. 近代质量管理不再把产品质量 仅仅看成是产品和规格的比较, 而是辨证的认为产品质量是受一系列因素的影响并遵循 一定的统计规律在不停的变化着的,这种观点就是产品质量的统计观点. 4.2 抓住异常因素就是抓住主要矛盾 将质量因素分为通常因素和异常因素两类,通常因素对产品质量影响微小,随生产 过程始终存在,难以去除,反之,异常因素对产品质量影响很大,在生产过程中有时存 在,有不难除区.因此在生产过程中,对通常因素的是听之任之,而对异常因素则不然, 异常因素一旦发生,要尽快找出来,并采取措施将其消除,这就是抓住主要矛盾(前面 我们介绍的因果图和排列图) .这里控制图是发现异常因素的科学工具. 4.3 稳定状态是生产过程追求的目标 在生产过程中,只存在通常因素而不存在异常因素时的状态称为稳定状态,简称稳 态,也叫统计控制状态.在稳态下生产,我们对产品的质量有完全的把握,同时生产过 程也是最经济的,所生产的不合格品最少.因此,稳定状态是生产过程追求的目标.一 道工序稳定称为稳定工序,道道工序稳定称为全稳生产线.建立全稳生产线是建立产品 质量保证体系的科学基础.对于如何判断过程是否稳定,有无异常,已建立了一套判断 稳定的准则和判断异常的准则. 4.4 预防为主是质量管理的重要原则 控制图是实现预防为主的原则的重要的科学方法, 这部分内容我们将在控制图部分 的学习时详细学习. 4.5SPD 诊断理论是 SPC 的重要新发展 SPC 可以判断过程的异常,及时告警,但 SPC 也具有其局限性,它不能告诉我们 异常发生的原因,发生在何处,换句话说,SPC 不能进行诊断.而生产现场迫切需要解 决诊断的问题,否则即使想要纠正异常也无从下手,故现场和理论都迫切需要将 SPC发展为 SPD(Statistical Process Diagnosis) .SPD 不仅具有 SPC 及时警告的功能,而且 具有 SPC 所没有的诊断功能,故 SPD 是 SPC 发展的新阶段.SPD 就是利用统计技术方 法对过程的各个阶段进行监控与诊断, 从而达到缩短诊断时间, 以便迅速采取解决措施, 减少损失,降低成本保证产品质量的目的. 4.6 生产线的系统分析工具 不是从孤立的一道工序出发, 而是从上下工序互相联系的整个系统出发来分析一条 生产线是 SPC 分析方法的特色. 以上 SPC 的理论要点将在以后的培训中进行详细的阐明. 5,SPC 进行的基本步骤 SPC 进行过程改进的流程如图所示.SPC的 重 要 性 正 态 分 布 等 统 计 基 础 知 识 质 量 管 理 的 七 个 工 具 如 何 制 定 过 程 控 制 网 图 , 即 控 制 点 工 艺 流 程 图 如 何 制 定 工 序 控 制 表SPC培 训确 定 关 键 变 量 , 提 出 规 格 标 准建 立 过 程 改 进 的 机 会选 择 过 程 改 进 小 组进 行 测 量 可 重 复 性 和 可 再 现 性 研 究进 行 过 程 能 力 研 究建 立 过 程 监 控 系 统持 续 过 程 改 进图 1 SPC 过程改进流程图 6,几个基本的品质概念 下面,我们了解几个与品质有关的重要的观念. 6.1 可能出问题的地方一定会出问题,不可能出问题的地方也可能出问题; 6.2 不要认为所有产品都符合规格就一定品质好了; 6.3 品质目标永远是零缺点,好的品质并不代表一定是高成本; 6.4 品质不是靠制造,检验,设计出来的,而是靠全体员工在一个良好的体系下面,并 拥有良好和完备的方法和工具,形成了一个良好的习惯并得到客户的认同并制造出来 的; 6.5 作了控制图和 CPK 并不代表做了 SPC; 6.6 对自身各环节要多注意任何一点的改善,认识同仁,建立团队默契,发挥团队功能; 6.7PDCA 观念. 第二部分 SPC 的研究对象----差异 SPC 是一种用来分析资料的科学方法,并且利用分析结果来解决实际的问题.只要 问题能以数字表示,就可以应用 SPC 来分析.在生产过程中,产品的加工尺寸的波动是不可避免的.为何会有这些波动发生?它是由人(Man) ,机(Machine) ,料(Material) , 法(Method) ,测(Measurement) ,环(environment) ,简称 5M1E,等基本因素的波动 影响所致.通常我们对产生了变异的系统也是从这六个方面去调查系统产生变异的原 因,这也是过程控制的主要影响因素.在此,我们用图 2 及图 3 来表示变异的来源,这 些来源影响并造成了产品的变异.生产原料机器设备操作者产品品质方法测量系统环境图2品质特性的因果图人机 法料环测产品图3 产品变异来源 生产系统的波动分为两种:正常波动和异常波动.正常波动是偶然性原因(不可避 免因素)造成的.它对产品质量影响较小,在技术上难以消除,在经济上也不值得消除. 异常波动是由系统原因(异常因素)造成的.它对产品质量影响很大,但能够采取措施 避免和消除.过程控制的目的就是消除,避免异常波动,使过程处于正常波动状态.图 4 异常变异和通常变异示意图 生产系统的波动造成数据的波动,在测量的结果上存在一定的差异,是事物所固有 的.但是,只有两种原因:一种是通常原因引起的差异,其过程是稳定的,可预测的, 差异的多种根源共同起作用,是过程所固有的,这些原因导致过程的自然波动;另一种 是异常原因引起的差异,存在异常差异过程是不稳定的,不可预测的,这种差异不是过 程固有的,它是间断差异的根源,是不可预测的,不稳定的.我们在分析差异产生的原 因时一般采用 80/20 原则. 第三部分 统计学基础 离开了数据收 数据收集和分析对于任何一个管理体系都是一个很基本的项目之一, 集和分析,所有的管理体系都是一纸空谈.1,数据的收集和分析 1.1 数据的分类 数据大体上可以分为两类:计量型数据和计数型数据.计量型数据是指那些作为连 续量测得到的质量特性值,如长度,重量,强度,化学成分,时间,电阻.计数型数据 是指按个数数得的非连续性取值的质量特性值,如铸件的疵点,统计抽样中的不合格判 定数,审核中的不合格数等可以用 0,1,2……等阿拉伯数一直数下去的数据.计数型 数据还可以进一步分为计件数(如不合格数)和计点数(如疵点数) ,将这些数据变换 成概率后的数据就是计数型数据. 两类数据的差别,决定了数据所反映的统计性质和数据处理的不同的方法.例如对 于计量型数据都属于连续性数据,最常见的是正态分布(Normal distribution) ;而计数 型数据属于离散概率分布,最典型的是二项分布和泊松分布. 1.2 数据的收集 在 SPC 中,数据收集是非常重要的,收集数据的好坏关系到 SPC 的意义是否存在, 关系到 SPC 的功能能否实现. 因为 SPC 应用的精神在于收集最简洁最基本的数据,经过一系列科学而复杂的运 算,以最简单,直观,明了的方式表现,以便于深入了解品质状况和预测问题.所以 SPC 在数据收集过程中必须强调四项原则:真实,及时,简洁,标准. SPC 在数据的收集过程中,通常包括两大类:一是所检验项目的各项位置条件,如 批号,产品类别,材料编号,收集时间,工序位置,批量数,检验数,检验人员等;二 是各种检验项目,如各缺点代码的缺点个数,各缺点类别个数,各质量特性值所测量出 来的类别个数,各产品控制特性值所测量出来的数值等. 还可根据需要收集:客户名称,班别,机台别,关键材料商等位置条件项目,但根 据的原则为:所订字段需要层别分析,以利于问题地深入分析. 数据收集流程简单来说, 就是把检验出来的数据收集整理好, 其基本流程如图所示.开 始QC工 程 图 或 客 户 要 求确 定 品 检 项 目 及 品 质 要 求制 定 抽 样 计 划 及 现 场 抽 样 表检 验 人 员 现 场 实 际 检 验 并 填 写 检 查 表做 数 据 处 理 或 正 确 无 误 地 输 入 计 算 机结 束图5数据收集流程图2,常用的统计学术语 2.1 必然事件,不可能事件和随机事件 必然事件(event)是指在一定条件下,必然发生的事件,而不可能事件是在一定的 条件下不可能发生的事件. 在质量管理方面我们经常遇到的是随机事件, 即一定条件下, 可能发生,也可能不发生的事件.如我们无法预料 SM 的 SW 一定是目标值,但我们从大量统计的基础上我们可以说 SW 在目标值附近; 再如我们无法预知电灯泡的使用寿命 一定是 1000 小时,但我们在大量统计的基础上可以说电灯泡的寿命有 80%的可能性在 1000 小时以上,这都是随机现象的一种科学的描述. 对于随机现象我们知道,随机现象的结果至少有两个,至于出现那一个,人们事先 并不知道.举一个最简单的例子.抛一枚硬币,可能出现正面,也可能出现反面,至于 出现那一面事先并不知道. 随机事件的发生是偶然的,但随即事件发生的概率还是可能有大小之别的,是可以 设法度量的.而在实际的生产过程中随机事件发生的可能性大小,我们是十分关注的. 例如在上边的例子中,硬币出现中面和反面的几率各是 1/2,足球裁判就是利用抛硬币 的方法让双方队长选择场地的,以示机会均等.再如购买彩票的中奖机会是多少? 2.2 总体和样本 在实际的生产过程中,当产品的批量很大,破坏性试验或无限总体的情况下,很难 或根本不可能对所有原料或产品进行检验,通常的做法是:从总体中抽取取部分个体进 行检验,并依据部分个体的检验结果,去推断总体的水平.例如我们在生产时一检检验 下线 SM 的 25%左右,对我们的生产情况作出推测,进行控制.总体是我们要研究或考 察的全体,而从总体中抽取的部分个体称为样本.所谓的统计判断就是依据对样本的检 测或观察的结果进行推断总体状况. 3,常用的表征数据情况的特征值 用来表示随机现象结果的变量称为随机变量,在生产过程中,产品的质量特性就是 表征产品性能的指标,产品的性能一般是随机的,为了表征这些问题我们引入如下几个 常用的表示随机变量的特征值. 3.1 平均数(Mean,但通常用 Xbar 或 x 表示) 把一组数据全部相加,再除以该组数据的个数, x = ( x1 + x2 + L + xn ) / n (1)在 SPC 的计量值中, 通过平均数可以看出这组数据的准确度状况如何, 判断出制程 控制与规格之间的关系,如果偏差过大,说明我们当初设定的规格有问题,并可进一步 判断是我们的规格订错了还是我们的机器设备或测量设备有较大的偏差;如果偏差很 小,则表明我们当初设定的规格正常,同时我们的制程也还可以,所以,平均数离规格 中心线越近越好. 3.2 中位数(median,通常用 M 表示) 为了减少计算,将一组数据先按大小顺序排列起来,然后取最中间的那个数(当数 据为奇数)或取中间两位数的平均值(数据为偶数) .在 SPC 的计量值中,通过中位数 也可以看出该组数据的准确度,它的变化与平均数有些相同,同样也是越接近中心规格 值越好. 3.3 极差(R) 极差是一组数据中的最大值减去最小值; R=Xmax-Xmin (2) 在 SPC 的计量值中, 通过极差的大小可以看出这组数据的精密度状况如何, 判断出 这一组数据的制程幅度是否很大,如果很大则表明制程能力较差,如果组距较小,则表 明制程能力还不错,如果在几组数据中有极差突然增大,则表明出现了特殊原因,必须 马上查出真正的问题点,并尽快解决. 3.4 方差( σ ,有时也用 S 表示)2方差是由该组数据中每个数据减去实际平均数的差值的平方和除以该组数据的个 数,计算公式如下:n 1 在 SPC 的计量值中, 方差是用来后面算标准方差用的, 通过方差我们可以了解该组 产品在这一控制特性值的制程能力.如果方差很大,则说明我们的制程能力较差,后面 的标准差就大,CPK 也就小,如果方差较小,则说明我们的制程能力较好,后面的标准 差就小,CPK 也就越大,也就是说方差小好.但是在 SPC 系统中,通常不用方差来分 析制程,这只是在后面使用的标准差的一个前奏. 3.5 标准差(s) 标准差可以直接有方差开平方的来,n 1 例如我们计算上例中的两组数据的方差和标准偏差.s12 =8.52 s 2 =72σ2∑ (x x ) =i2s=∑ (xix)2s1 = 8.5 =2.915 s 2 = 72 =8.485在 SPC 的计量值中,通过标准差可以判断该组数据的准确度和精密度,反映一定 的制程能力,同时为后面 CPK 和控制上下限算法做基础.如果标准差很大时,则表明 我们的制程能力不好,同时也不稳定,说明共同原因需要改善,CPK 也就小,控制上下 限距离也就大,如果标准差较小,则表明我们的制程能力很好,同时也很稳定,同时说 明我们可以维持现状,甚至考虑到成本时可以将制程适当放松,这时 CPK 也就大,控 制上下限距离也就小了,并且基本上所有数据都在规格上下限之间. 4,常用的数据处理工具 在实际的数据处理常用的统计工具有如下几种:质量管理的七个工具分别是:分层 法(Stratification) ,排列图(Pareto diagram) ,因果图(Cause-effect diagran) ,直方图 (Histogram) ,散布图(Scatter diagram) ,控制图(Control chart) ,检查表(Check list) . 5,常用的数据分布情况 对于随机现象通常用分布(distribution)来描述,分布可以告诉我们:变异的幅度 有多大,出现这幺大幅度的可能性(概率,probability)有多大,这就是统计规律.对 于计量特性值,如长度,重量,时间,强度,纯度,成分收率等连续性数据,最常见的 是正态分布(Normal distribution) .对于计件特性值,如特性测量的结果只有合格与不 合格两种情形的离散性数据,最常见的是二项分布(Binomial distribution) .对于计点特 性值,如铸件的沙眼数,布匹上瑕点数,电视机中的焊接不合格数等离散性数据,最常 见的是泊松分布(Poisson distribution) .掌握这些数据的统计规律可以保证和提高产质 量量. 5.1 正态分布 正态分布是一种最常见,应用最广泛的一种分布,当质量特性值(随机变量)由为 数众多的因素影响,而没有一个因素起主导作用的情况下,该质量特性值的分布规律符 合正态分布,例如,轴承的加工尺寸,化工产品的化学组成,测量误差,下线 SM 的尺 寸,透过率等都属于正态分布. 正态分布的曲线的特点有:1. 曲线的最高点的横坐标, 称为正态分布的均值用μ表示, 这意味着随机变量在μ附近 出现的概率最大,当 X 向左右远离时,X 出现的概率随分布曲线的降低而迅速下降. 2. 曲线以μ为对称轴,从理论上讲,如将曲线以该轴对折时,曲线应该能重合. 3. 如果用数学表达式来表述正态分布曲线,我们有: 1 2 f ( x) = e 2σ 2π σ 4. 根据上式可以看出, 任一正态分布仅由两个参数, 即总体平均值μ和总体标准偏差σ 完全确定,其中μ称为分布的位置参数,σ称为分布的形状参数,σ值 越小,曲线越 陡,数据变量离散性也越小,σ越大,曲线越扁平,数据的离散性也越大.如图给出了 标准偏差σ分别为 0.5,1 和 2 的三种情况的示意图. ( x )2图 6 σ变化的直观意义 5. 从理论上讲,曲线对横轴是渐进的,即横轴定义的区域是从-∞到+∞.通过计算可以 得到以下几个在质量管理中常用到的结论: 总体平均值落在:μ±1σ范围内的概率为 68.26% μ±2σ范围内的概率为 95.46% μ±3σ范围内的概率为 99.73% μ±1.96σ范围内的概率为 95.0% 而数据落在:μ±3σ之外的概率为 3‰ μ±1.96σ范围之外的概率为 5%图 7 以σ为基准分布曲线下不同面积所包含的概率 中心极限定理:对于较大样本,从总体中(其平均值为μ,标准偏差为 s)随机抽样的 各样本的平均值的分布接近正态分布,无论抽样总体的概率分布如何.样本容量越大, 样本平均值的分布越接近正态分布. 这是从统计学得出的重要结论, SPC 中占有重要 在地位.在 SPC 中,我们使用平均数据来判定过程是否受控.由于这个理论,我们知道样 本平均值的分布接近正态分布,其平均值等于μ,标准偏差等于 σ / n ,在此 n 是样 本数. 因为样本平均值的分布比总体的分布要紧密,所以它对过程的变化更加敏感.我们 将在讲述控制图时再做讨论.图 8 样本平均值对曲线的影响 掷骰子个数不同,其平均值的分布情况如下:随着样本容量(在此为掷骰子的个数) 的增加,你发现了什么变化?图 9 中心值定理的理解 5.2 二项分布 有时,一个事物只有两种可能的状态或结果,例如一张 SM 的检验,要么合格,要 么不合格;一颗卫星的发射要么成功,要么不成功;谈恋爱也是如此,要么成功要么不 成功,等等,二者必具其一,此时我们就可以用二项分布来研究和分析这些问题. 以 SM 的检验为例,虽然结果只有合格与不合格两种情况,但抽到的不合格品的概 率显然取决于该批产品的固有的不合格率,如果我们用 p 和 q 来代表 SM 的合格率和不 合格率,则有 p+q=1, (p+q)2=1,则我们通过二项分布的展开 n 个产品中出现 x 个不 合格品的概率为:C nx p x q n x 或 C nx p x (1 p ) n x = C nx p x (1 p ) n x ,在此是 n 个产品取 x 的组合C nx =n! x!( n x )!。
SPC基础培训资料一、SPC 是什么?SPC 即统计过程控制(Statistical Process Control),是一种借助数理统计方法的过程控制工具。
它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。
二、SPC 的发展历程SPC 起源于 20 世纪 20 年代,当时美国的休哈特博士提出了控制图的概念,并成功将其应用于生产过程的监控。
在随后的几十年里,SPC 不断发展和完善,逐渐成为质量管理领域的重要方法。
随着计算机技术的普及,SPC 的应用变得更加便捷和高效。
三、SPC 的作用和意义1、预防不合格产品的产生通过对过程数据的实时监控和分析,能够提前发现潜在的问题,及时采取措施进行调整,从而避免不合格产品的出现。
2、降低生产成本减少废品、返工和保修等成本,提高生产效率和资源利用率。
3、提高产品质量和一致性使生产过程更加稳定,产品质量更加稳定和可靠,满足客户的需求和期望。
4、增强企业竞争力能够帮助企业在市场上树立良好的质量形象,提高客户满意度和忠诚度,增强市场竞争力。
四、SPC 常用的工具1、控制图控制图是 SPC 中最基本、最重要的工具。
它用于监控过程的稳定性和判断过程是否处于受控状态。
常见的控制图有均值极差控制图(XR 图)、均值标准差控制图(XS 图)、中位数极差控制图(XR 图)、单值移动极差控制图(XMR 图)等。
2、直方图用于展示数据的分布情况,帮助我们了解数据的集中趋势和离散程度。
3、排列图也称为帕累托图,用于找出影响产品质量的主要因素。
4、散布图用于研究两个变量之间的关系,判断它们是否相关。
五、控制图的原理控制图基于“3σ 原则”,即认为在正常情况下,过程数据的分布服从正态分布。
如果数据点超出控制限(通常为均值 ± 3 倍标准差),则认为过程出现了异常。
控制限分为上控制限(UCL)、下控制限(LCL)和中心线(CL)。