植物细胞的全能性
- 格式:ppt
- 大小:1.89 MB
- 文档页数:32
植物细胞全能性离体培养的植物器官、组织或细胞之所以经培养能够再生出完整植株,其原因在于植株细胞具有全能性。
1.全能性的概念植物细胞的全能性是指植株体内任何具有完整的细胞核的细胞都拥有形成一个完整植株所必须的全部遗传信息,即一套完整的基因组,并具有发育成完整植株的能力。
植物从一个受精卵进行有丝分裂,发育成具有一定形态、结构和功能的植株。
植物的体细胞染色体与受精卵是一致的,也即它们所携带的遗传信息是一样的,这样体细胞由于在植物体上所处的位置不同,表现不同的形态,承担一定的功能,这是由于它们受到具体器官或组织所在环境的束缚,是细胞核中DNA链上不同基因按一定顺序选择性地活化和阻止的结果,但遗传潜能并未丧失,具有发育成完整植株的能力。
植物细胞的全能性包括两方面的含义:一是植物细胞,无论是体细胞还是生殖细胞,都具有该物种全部的遗传信息;二是每个植物细胞具有发育成完整植株的潜在能力。
2.全能性的研究早在1839年,细胞学家施旺在他发表的细胞学说中就曾这样说过:“每个细胞应该可以独立生活和发展,假如具有的条件正如它存在于有机体内一样。
”1902年,德国著名植物学家哈伯兰特根据这个学说的理论,预言离体细胞在生理上、发育上具有潜在的“全能性”。
他这一预言阐明了一个理论:植物体内所有活的细胞都有在离体条件下,可以逐步失去原有的分化状态,转变为具有分化能力的胚胎细胞,增值分化成完整植株的潜在能力。
哈伯兰特本人以及以后的德国植物胚胎学家汉宁等人,用植物的根、茎、叶、花的小块组织或它们的细胞,进行离体的无菌培养试验,没有得到满意的结果。
1937年美国科学家怀特首先研制出了化学成分为已知化合物的培养基配方。
该培养基能促使细胞全能性体现。
他还发现了B族维生素对培养离体根的生长具有重要意义,并认识甙吲哚-3-乙酸在植物生长中调控作用。
同时,怀特和法国植物学家高斯雷特等人经过研究,第一次成功地用烟草的茎段形成层细胞和胡萝卜根的小块组织,在人工培养的条件下,使细胞增值和诱导形成愈伤组织。
《细胞具有全能性》知识清单一、什么是细胞的全能性细胞全能性是指细胞经分裂和分化后,仍具有产生完整有机体或分化成其他各种细胞的潜能和特性。
简单来说,就是一个细胞具备发育成完整个体的能力。
这种全能性在植物细胞中表现得较为明显。
比如,将植物的一小块组织或细胞培养在适当的条件下,它可以重新生长并发育成一棵完整的植株。
二、细胞全能性的证明1、植物细胞全能性的证明最经典的例子就是植物组织培养技术。
通过无菌操作,将植物的器官、组织或细胞接种在含有营养物质和植物激素的培养基上,它们能够脱分化形成愈伤组织,再经过再分化,最终形成完整的植株。
这一过程充分证明了植物细胞具有全能性。
2、动物细胞全能性的证明相较于植物细胞,动物细胞的全能性受到了一定的限制。
但细胞核仍具有全能性。
例如,多利羊的诞生就是一个有力的证明。
科学家将一只羊的乳腺细胞的细胞核取出,植入到另一只羊去核的卵细胞中,经过一系列的处理和培养,最终发育成了一只新的个体——多利羊。
这表明动物细胞的细胞核具有全能性,但要使已分化的动物体细胞表现出全能性,则比较困难。
三、细胞全能性的大小不同类型的细胞,其全能性的大小有所不同。
1、受精卵受精卵的全能性最高,它具有发育成一个完整个体所需的全部遗传信息,并且能够进行一系列的分裂和分化,形成各种组织和器官。
2、生殖细胞生殖细胞(如精子和卵子)的全能性也比较高,它们在受精过程中能够结合形成受精卵,进而发育成新的个体。
3、体细胞体细胞的全能性相对较低,但在特定条件下,一些体细胞也可以表现出一定的全能性。
例如,骨髓中的造血干细胞可以分化成各种血细胞。
四、影响细胞全能性表达的因素1、细胞的分化程度一般来说,细胞的分化程度越高,其全能性越难以表达。
未分化的细胞全能性较高,而高度分化的细胞全能性较低。
2、营养物质细胞在发育和分化过程中需要充足的营养物质来支持。
缺乏必要的营养物质会影响细胞全能性的表达。
3、植物激素在植物组织培养中,不同种类和比例的植物激素对细胞全能性的表达起着重要的调节作用。
第二节植物组织培养1.理解植物细胞全能性的含义。
2.简述植物组织培养的过程。
(重点)3.说出植物组织培养技术的应用。
(难点)知识点一| 植物细胞的全能性与植物组织培养技术1.植物细胞的全能性(1)含义植物体的每一个活细胞都具有形成完整植物体的遗传潜能。
(2)物质基础植物体的全部体细胞都具有发育为完整个体所必需的全套遗传物质。
(3)现实表现①在植物体内,细胞分化成为不同的组织和器官。
②原因:基因在特定的时间和空间条件下选择性表达的结果。
(4)体现全能性的必需条件①脱离原来组织器官的束缚,成为游离状态。
②一定的营养条件和植物激素的诱导。
2.植物组织培养技术(1)植物组织培养的概念①培养对象:外植体(即离体的植物器官、组织或细胞)。
②条件:a.无菌,b.含有营养物质的培养基,c.适宜的光照、温度、湿度等环境条件。
③结果:形成完整植株。
④核心:诱导脱分化和再分化。
(2)原理植物细胞的全能性。
(3)过程[合作探讨]探讨1:植物的种子能发育成完整的植株,是否体现了细胞的全能性?为什么?提示:没有,因为种子中的胚已完成了早期发育,相当于新植物体的幼体,发育成完整植株的过程,相当于植物的长大。
探讨2:美国科学家将分离得到的成熟胡萝卜根的韧皮部细胞进行培养,由单个细胞发育成了完整植株,培养过程如下图所示。
此实验说明了什么问题?提示:分化的植物细胞仍具有全能性。
探讨3:在菊花的组织培养操作完成了3~4天后,观察同一温室中的外植体,发现有的瓶内外植体正常生长,有的瓶内外植体死亡,你认为外植体死亡的原因可能有哪些?提示:接种时培养基灭菌不彻底;接种工具灼烧后未待冷却就接种外植体;培养过程中保持温度、pH 的适宜,但没有及时调整各种营养物质和激素的比例。
[思维升华]1.植物细胞全能性表达所需条件(1)体细胞未表现全能性的原因:基因的选择性表达。
(2)体现细胞全能性的条件:(1)无菌:植物组织培养成功的关键是避免微生物的污染,所有实验用具要严格灭菌,接种过程进行严格的无菌操作。
植物学名词解释细胞的全能细胞是生物体的基本单位,在植物学中具有极大的重要性。
细胞不仅组成了植物的各个组织和器官,还负责植物的生命活动和遗传传递。
然而,当我们提到细胞的全能性时,很多人可能并不了解它的含义。
在下文中,我们将详细解释细胞的全能性以及其在植物学中的意义。
细胞的全能性是指细胞具有在适当条件下能够发育成为完整有机体的能力。
简单来说,就是一种细胞可以分化为各种类型的细胞,并最终形成完整的个体。
这种现象最早被人们观察到是在植物中,特别是在植物的组织培养中。
通过合适的培养条件和生长因子的添加,单个细胞可以分化为多种细胞类型,形成完整的植物体。
细胞的全能性背后的关键因素是细胞内的遗传物质DNA。
DNA是植物细胞中的遗传信息库,包含了生物体生命活动的全部指令。
在细胞分化的过程中,DNA会通过特定的机制选择性地激活或关闭不同基因的表达,从而导致不同细胞类型的形成。
这一过程被称为基因调控,是细胞分化的基础。
在植物学中,细胞的全能性有着重要的实际应用价值。
首先,它为观察和研究植物生长和发育提供了便利。
通过培养细胞,我们可以观察到细胞分化的过程,研究不同类型细胞的形成机制。
这种研究有助于我们深入了解植物的发育过程,为植物育种和疾病防治提供理论依据。
其次,细胞的全能性也为植物的繁殖和繁育提供了新的途径。
通过细胞培养和组织工程技术,科学家们可以在实验室中繁殖植物,无需依赖自然条件。
这种技术在农业和园艺中有着广泛的应用。
例如,我们可以通过细胞培养技术大规模繁殖高产的农作物品种,提供足够的食物供给。
同时,还可以利用细胞培养技术培育新的优良植物品种,改善作物的抗病性和适应性。
最后,细胞的全能性还对植物的再生和修复具有重要意义。
植物受到环境胁迫或生物侵害时,往往会出现组织损伤或死亡。
然而,某些植物的细胞具有再生能力,可以修复受损的组织或器官。
通过对这些全能细胞的研究,我们可以开发出更有效的植物保护方法,提高植物的适应能力和生存率。
植物细胞全能性和细胞分化一、植物细胞全能性1902年,Haberlandt提出了植物细胞的全能性理论,即植物的体细胞在适当条件下,具有不断分裂和繁殖、发育成完整植株的能力。
20世纪70年代,细胞全能性的概念被解释为:每一个细胞具有该植物的全部遗传信息,具有发育成完整植株的能力。
80年代,此概念又进一步被解释为:每一个植物细胞带有该植物的全部遗传信息,在适当条件下可表达出该细胞的所有遗传信息,分化出植物有机体所有不同类型的细胞,形成不同类型的器官甚至胚状体,直至形成完整再生植株。
植物细胞培养中次生物质的产生及单细胞培养再生完整植株,都是细胞全能性的表现,只是表现形式不同而已。
植物体全部活细胞都是由细胞分裂产生的,每个细胞都包含着整套遗传基因。
但是,由于受到整个植株、具体器官或组织环境的束缚,致使植株中不同部位的细胞仅表现出一定的形态和功能。
但它们的遗传潜力并未消失,一旦脱离原器官或组织的束缚呈游离态,并在一定的营养和环境条件下培养,就可实现其全能性。
但是,由于目前技术水平的限制,还无法使所有的离体植物细胞都实现其全能性,而多数情况下离体细胞全能性的实现是在分生组织等全能性保持较好的细胞中进行的。
离体条件下,由于摆脱了原来供体(组织、器官或完整植株)的束缚,离体细胞(组织、器官)生命特征属性的表现过程和形式都将发生变化。
如在新陈代谢方面,离体细胞主要依靠培养基提供碳源,没有或很少进行光合作用;在调控能力方面,培养物从自养转变为异养;在生长发育与繁殖方面,离体细胞(组织、器官)可以改变原来的生长发育方向或进程,如离体细胞的胚胎发生、细胞脱分化等;在遗传变异与进化方面,离体培养可大大增加培养物的变异性,或使某些变异在短时间内大量扩增,改变其数量等。
但生物有机体总是处在严格而有序的动态平衡中,任何内环境的改变必然使旧的平衡打破而达到新的平衡。
植物体是由各个层次或小系统如基因水平、亚细胞水平、细胞水平、器官水平构成的生命大系统,各系统内和系统间的协调运行不仅是维持植物生长的先决条件,而且他们的动态平衡关系还制约其发育进程。
植物细胞的全能性植物细胞全能性,指的是植物的每个细胞都包含着该物种的全部遗传信息,从而具备发育成完整植株的遗传能力。
植物细胞全能性是植物组织培养的理论基础。
一个植物体的全部细胞,都是从受精卵经过有丝分裂产生的。
受精卵是一个特异性的细胞,它具有本种植物所特有的全部遗传信息。
因此,植物体内的每一个体细胞也都具有和受精卵完全一样的DNA序链和相同的细胞质环境。
当这些细胞在植物体内的时候,由于受到所在器官和组织环境的束缚,仅仅表现一定的形态和局部的功能。
可是它们的遗传潜力并没有丧失,全部遗传信息仍然被保持在DNA的序链之中,一旦脱离了原来器官组织的束缚,成为游离状态,在一定的营养条件和植物激素的诱导下,细胞的全能性就能表现出来。
于是就象一个受精卵那样,由单个细胞或离体组织形成愈伤组织然后成为胚状体,再进而长成一棵完整的植株。
所以离体培养之所以能够成功,首先是由于植物细胞具有全能性的缘故。
1902年,德国植物学家哈伯兰特预言植物体的任何一个细胞,都有长成完整个体的潜在能力,这种潜在能力就叫植物细胞的“全能性”。
为了证实这个预言,他用高等植物的叶肉细胞、髓细胞、腺毛、雄蕊毛、气孔保卫细胞、表皮细胞等多种细胞放置在他自己配制的营养物质中(人工配制的营养物),称为培养基。
这些细胞在培养基上可生存相当长一段时间,但他只发现有些细胞增大,却始终没有看到细胞分裂和增殖。
1934年,美国的怀特用无机盐、糖类和酵母提取物配制成怀特培养基,培养番茄根尖切段,400多天后,在切口处长出了一团愈合伤口的新细胞,这团细胞被称为愈伤组织。
法国的高斯雷特制成了一种固体培养基,使山毛柳、黑杨形成层组织增殖,最后形成了类似藻类的突起物。
1946年,中国学者罗士韦培养菟丝子的茎尖,在试管中形成了花。
以后许多科学家为证实这一论断做了不懈的努力。
1958年,Steward等将高度分化的胡萝卜根的韧皮部组织细胞放在合适的培养基上培养,发现根细胞会失去分化细胞的结构特征,发生反复分裂,最终分化成具有根、茎、叶的完整的植株;1964年,Cuba和 Mabesbwari利用毛叶曼陀罗的花药培育出单倍体植株;1969年Nitch将烟草的单个单倍体孢子培养成了完整的单倍体植株;1970年Steward用悬浮培养的胡萝卜单个细胞培养成了可育的植株。
⾼中⽣物植物的组织培养技术知识点总结 植物组织培养技术是⾼中⽣物的⼀个重要组成部分,学⽣需要掌握相关知识点,下⾯是店铺给⼤家带来的⾼中⽣物植物的组织培养技术知识点,希望对你有帮助。
⾼中⽣物植物的组织培养技术基础知识点 1、植物组织培养过程: (1)原理:植物细胞具有全能性。
(2)过程: 2、⽤途: (1)微型繁殖 微型繁殖就是⽤于快速繁殖优良品神的植物组织培养技术,也叫快速繁殖技术。
繁殖过程中的分裂⽅式是有丝分裂,亲、⼦代细胞内DNA不变,所以能够保证亲、⼦代遗传特性不变。
(2)作物脱毒 作物脱毒是利⽤茎尖、根尖等⽆毒组织,进⾏微型繁殖,所获幼苗是⽆毒的。
(3)⼈⼯种⼦:通过组织培养技术,可把植物组织的细胞培养成在形态及⽣理上与天然种⼦胚相似的胚状体,也叫作体细胞胚。
这种体细胞胚有于叶、根、茎分⽣组织的结构。
科学家把体细胞胚包埋在胶囊内形成球状结构,使其具备种⼦机能。
所以,⼈⼯种⼦是⼀种⼈⼯制造的代替天然种⼦的颗粒体,可以直接播种于⽥间。
①制作⽅法:⼈⼯种⼦是利⽤植物组织培养获得胚状体、不定芽、顶芽和腋芽等,然后包上⼈丁种⽪就形成了⼈⼯种⼦,如图: ②优点:可使在⾃然条件下不结实或种⼦昂贵的植物得以繁殖;保持亲本的优良性状,因该过程为⽆性繁殖;节约粮⾷,减少种⼦的使⽤;可以控制添加⼀些物质,如除草剂、农药、促进⽣长的激素、有益菌等。
周期短,易储存和运输,不受⽓候和地域的限制。
(4)细胞产物的⼯⼚化⽣产:从⼈⼯培养的愈伤组织细胞中提取某种成分,如紫草素、⾹料等。
⾼中⽣物植物的组织培养技术重要知识点 1、植物细胞的全能性 (1)概念:具有某种⽣物全部遗传信息的任何⼀个细胞,都具有发育成完整⽣物体的潜能。
(2)原理:细胞内含有本物种的全部遗传信息。
(3)全能性表达条件:具有完整的细胞结构,处于离体状态,提供⼀定的营养、激素和其他适宜外界条件。
2、作物新品种培育 (1)单倍体育种: ①过程:植株(AaBb)通过减数分裂得到花粉(AB、Ab、aB、ab四种类型);对花粉进⾏花药离体培养(技术是植物组织培养);得到单倍体植株;对其幼苗时期进⾏秋⽔仙素处理;得到了正常的纯合⼆倍体植株(AABB、Aabb、aaBB、aabb四种类型)。