实验1-批处理作业调度
- 格式:doc
- 大小:148.50 KB
- 文档页数:9
批处理系统的作业调度1.实验目的加深对作业概念的理解;深入了解批处理系统如何组织作业、管理作业和调度作业;2.实验预备知识作业的概念;作业的创建;作业的调度。
3.实验内容编写程序完成批处理系统中的作业调度,要求采用响应比高者优先的作业调度算法。
实验具体包括:首先确定作业控制块的内容,作业控制块的组成方式;然后完成作业调度;最后编写主函数对所作工作进程测试。
4.提示与讲解操作系统根据允许并行工作的道数和一定的算法从系统中选取若干作业把它们装入主存储器,使它们有机会获得处理器运行,这项工作被称为“作业调度”。
实现这部分功能的程序就是“作业调度程序”。
作业调度的实现主要有两个问题,一个是如何将系统中的作业组织起来;另一个是如何进行作业调度。
为了将系统中的作业组织起来,需要为每个进入系统的作业建立档案以记录和作业相关的信息,例如作业名、作业所需资源、作业执行时间、作业进入系统的时间、作业信息在存储器中的位置、指向下一个作业控制块的指针等信息。
这个记录作业相关信息的数据块称为作业控制块(JCB),并将系统中等待作业调度的作业控制块组织成一个队列,这个队列称为后备队列。
一个作业全部信息进入系统后,就为其建立作业控制块,并挂入后备队列。
当进行作业调度时,从后备队列中查找选择作业。
由于实验中没有实际作业,作业控制块中的信息内容只使用了实验中需要的数据。
作业控制块中首先应该包括作业名;其次是作业所需资源,根据需要,实验中只包括需要主存的大小(采用可移动的动态分区方式管理主存,作业大小就是需要主存的大小)、需要打印机的数量和需要磁带机的数量;采用响应比作业调度算法,为了计算响应比,还需要有作业的估计执行时间、作业在系统中的等待时间;另外,指向下一个作业控制块的指针必不可少。
实验中,作业控制块及队列的数据结构定义如下。
typedef struct jcb{char name[4]; //作业名int length; //作业长度,所需主存大小int printer; //作业执行所需打印机的数量int tape; //作业执行所需磁带机的数量int runtime; //作业估计执行时间int waittime; //作业在系统中的等待时间int next; //指向下一个作业控制块的指针}JCB //作业控制块类型定义存放作业控制块的区域:#define n 10 //假定系统中可容纳的作业数量为nJCB jobtable[10]; //作业表int jobcount; //系统内现有作业数量将作业控制块组织成一个队列,实验中采用静态链表的方式模拟作业的后备队列,如图2.1所示。
一、根据调度算法设计流程图:实验
步骤
}
}
}
三、整合完成所有程序并实现作业调度(见源代码)。
四、进行调试阶段,对程序修改优化,进行数据测试。
五、实验结果分析
六、总结
实验
WindowsXP和CV++6.0集成开发环境
环境
实验运行的初始界面:
实验结
果与分
析
测试数据:
a1 1 2 a1
a2 2 3 a2
运行结果:
进行多次循环录入:返回算法选择界面:
测试数据:
b1 2 4 b1
b2 1 3 b2
运行结果:
实验分析和总结:
1)测试的数据必须是符合JCB模块中相同类型的,如在源码中式int类型的,而在测试的时候输入float类型就出错。
2)各个库函数的运用需要掌握相应的功能,否则会照成代码冗余、繁杂、不优化等各种问题。
3)通常在dos下运用的都是英文,而想要用汉字提示就必须考虑一些问题。
在源码中我们用制表符(\t)来控制提示,输出的数字是不能与之对齐的,所以我们要将“\t”改成空格。
4)这编写和调试程序时,为了尽快调通程序应该按照流程图的结构(保证流程图思路是对的情况下)来建立编程思路。
5)此程序也借用了现有的一些代码,并且它还不是最优化的,它还可以进行改进和优化,比如:在回调函数的引用时跳到了另一个页面,见下图:
继续Enter的时候就到下一页:
而不是在同一页面。
6)总之,在编程旅途中是一个很艰辛的过程,要在这里开拓一片蓝天就必须有孜孜不倦的精神。
实验一处理机调度一、实验内容选择一个调度算法,实现处理机调度。
二、实验目的多道系统中,当就绪进程数大于处理机数时,须按照某种策略决定哪些进程优先占用处理机。
本实验模拟实现处理机调度,以加深了解处理机调度的工作。
三、实验题目1、设计一个按优先权调度算法实现处理机调度的程序;2、设计按时间片轮转实现处理机调度的程序。
PCB内容要求:进程名/PID;要求运行时间(单位时间);优先权;状态:PCB指针;1、可随机输入若干进程,并按优先权排序;2、从就绪队首选进程运行:优先权-1要求运行时间-1要求运行时间=0时,撤销该进程3、重新排序,进行下轮调度;源代码:#include <stdio.h>#include <stdlib.h>#include <string.h>#include <windows.h>typedef struct pcb{char PID[50];int needTime;//需要运行时间int priority;//优先权char state[20];//进程状态struct pcb *next;}PCB;typedef struct{PCB* front;PCB* rear;}ProcessQueue;void SelectAlgorithm();void CreateQProcess(ProcessQueue &Q,char*,int time,int pri,char*);void ProcessSchedule();void InitQueue(ProcessQueue &Q);void visitQueue(ProcessQueue &Q);bool RunProcess(PCB* rp,ProcessQueue &Q);bool NonPreemptivePriority(ProcessQueue &Q);//非抢占式优先权调度void delProcess(PCB* delp);bool RunProcessPreem(PCB* rp,ProcessQueue &Q);//抢占式优先执行进程bool PreemptivePriority(ProcessQueue &Q);void RR(ProcessQueue &Q);int main(){int iSel;int i = 0;SelectAlgorithm();ProcessQueue readyQ;//就绪进程队列PCB newpcb;InitQueue(readyQ);printf("请选择调度算法:");do{scanf("%d",&iSel);} while (!(iSel == 1 || iSel == 2 || iSel == 3));while(i < 3){printf("请输入要创建的进程:\n");fflush(stdin);gets(newpcb.PID);fflush(stdin);scanf("%d",&newpcb.needTime);fflush(stdin);scanf("%d",&newpcb.priority);fflush(stdin);gets(newpcb.state);fflush(stdin);CreateQProcess(readyQ,newpcb.PID,newpcb.needTime,newpcb.priority,newpcb.state);printf("创建了一个进程\n");++i;}visitQueue(readyQ);//显示的是各个进程的优先权switch(iSel){case 1:while(NonPreemptivePriority(readyQ));//非抢占优先权调度break;case 2:PreemptivePriority(readyQ);//抢占式优先权调度break;case 3:RR(readyQ);break;}return 0;}void SelectAlgorithm(){printf("1.非抢占式优先权调度\n");printf("2.抢占式优先权调度\n");printf("3.时间片轮转调度\n");}void InitQueue(ProcessQueue &Q)//初始化进程队列{Q.front = Q.rear = (PCB*)malloc(sizeof(PCB));if(!Q.front) exit(-1);Q.front->next = NULL;}void CreateQProcess(ProcessQueue &Q,char* pid,int time,int pri,char* st)//指定进程入就绪队列,将优先权高的插在队列前面{PCB* p = (PCB*)malloc(sizeof(PCB));if(!p) exit(-1);strcpy(p->PID,pid); p->needTime = time;p->priority = pri; strcpy(p->state,st);p->next = NULL;PCB* q = Q.front->next, *old = Q.front;if(!q)//如果原队列为空{Q.rear->next = p;Q.rear = p;//q == NULL}else//如果原队列不为空{for(;q != NULL;){if(p->priority > q->priority){old->next = p;p->next = q;return;}q = q->next;old = old->next;if(q == NULL){Q.rear->next = p;Q.rear = q;//q == NULL}}}}void ProcessSchedule(){}void visitQueue(ProcessQueue &Q)//访问进程队列{PCB* p = (PCB*)malloc(sizeof(PCB));if(!p) exit(-1);p = Q.front->next;while(p != NULL){printf("%d,",p->priority);p = p->next;}printf("\n");int i = 0;}bool PreemptivePriority(ProcessQueue &Q){PCB* rprocess;if(!Q.front->next){printf("就绪队列中没有进程可以调度!\n");return false;}else{rprocess = Q.front->next;//选择优先权最高的进程Q.front->next = Q.front->next->next;//将进程移除就绪队列while(rprocess != NULL)//抢占式优先调度{RunProcessPreem(rprocess,Q);if(rprocess->needTime == 0){delProcess(rprocess);if((rprocess = Q.front->next) == NULL){printf("就绪队列中没有进程可以调度!\n");return false;}else{Q.front->next = Q.front->next->next;continue;}}if(Q.front->next != NULL){if(rprocess->priority < Q.front->next->priority)//判断运行了1个时间后还是否具有最高优先权{/*rprocess->next = Q.front->next->next;//正在运行中的进程因为优先权降低,重新进入就绪队列temp = Q.front->next;Q.front->next = rprocess;rprocess = temp;//rprocess保存运行进程*/CreateQProcess(Q,rprocess->PID,rprocess->needTime,rprocess->priority,rprocess->state);//正在运行中的进程因为优先权降低,重新进入就绪队列rprocess = Q.front->next;Q.front->next = Q.front->next->next;}}}}return true;}bool NonPreemptivePriority(ProcessQueue &Q)//非抢占式优先权调度{PCB* rprocess;//存放要调度运行的进程if(!Q.front->next){printf("就绪队列中没有进程可以调度!\n");return false;}else{rprocess = Q.front->next;Q.front->next = Q.front->next->next;//已经调度,从就绪队列中删除进程if(RunProcess(rprocess,Q)){delProcess(rprocess);printf("就绪队列状态:\n");visitQueue(Q);}return true;}}bool RunProcess(PCB* rp,ProcessQueue &Q)//执行进程{while(rp->needTime){printf("进程%s正在运行...\n",rp->PID);printf("PID[50]\tneedTime\tpriority\tstate[20]\n");printf("%s\t%d\t\t%d\t\t%s\n",rp->PID,rp->needTime,rp->priority,rp->state);Sleep(1000);--rp->needTime;}return true;}bool RunProcessPreem(PCB* rp,ProcessQueue &Q)//抢占式优先,RR执行进程{printf("进程%s正在运行...\n",rp->PID);printf("PID[50]\tneedTime\tpriority\tstate[20]\n");printf("%s\t%d\t\t%d\t\t%s\n",rp->PID,rp->needTime,rp->priority,rp->state);Sleep(1000);--rp->needTime;--rp->priority;return true;}void delProcess(PCB* delp)//撤销进程{free(delp);}void RR(ProcessQueue &Q){PCB* running = Q.front->next;PCB* old = Q.front;while(Q.front->next != NULL){if(running){RunProcessPreem(running,Q);if(running->needTime == 0)//撤销进程{old->next = running->next;delProcess(running);running = old->next;continue;}old = old->next;running = running->next;}else{old = Q.front;running = old->next;}}printf("就绪队列中没有进程可以调度!\n");}以下是使用时间片轮转算法的一次执行:选择算法3:进程输入,此处输入1,1,1,1,2,2,2,2,3,3,3,3测试。
实验批处理系统的作业调度一、实验目的(1)加深对作业概念的理解;(2)深入了解批处理系统如何组织作业、管理作业和调度作业。
二、预备知识(1)批处理系统的概念;批处理系统,又名批处理操作系统。
批处理是指用户将一批作业提交给操作系统后就不再干预,由操作系统控制它们自动运行。
这种采用批量处理作业技术的操作系统称为批处理操作系统。
批处理操作系统分为单道批处理系统和多道批处理系统。
批处理操作系统不具有交互性,它是为了提高CPU的利用率而提出的一种操作系统。
1.作用:大家知不知道默认共享这回事?这东西用不着的地方可就不是好东西了.所以就要删掉.但这东西是每次系统重起后都会重新创建的.所以每次都要重新打开cmd重新删掉一下.极为麻烦.但有了批处理文件就不一样了,先把命令输入到批处理文件中,然后加入到启动项中,每次启动就会自动运行,免去了每次输入命令的麻烦.(2).如何创建批处理文件?不要听了批处理文件就感到很神气,其实这东西很简单的.你用过记事本没有?用过?好的.将记事本打开,什么都不用写,然后选择文件,保存.保存类型选择所有文件,文件名则命名为*.bat 这个*代表是文件名,你可以随便的起.保存好之后,看看你保存的地方,会出现一个白色窗口里有个黄色齿轮的图标.这东西就是你创建的批处理文件,双击他就可以运行,但他现在由于里面没有输入任何命令,所以他运行了并不会做任何事情.当我们想往这个*.bat文件中添加东西时,只要右键选择他,然后选择编辑,就可以打开记事本往内输入命令了.3.批处理文件中的命令是什么?批处理文件中的命令暂时先可以理解为dos命令,等稍后深入理解了以后再进行解释.批处理顾名思义就是一大堆东西堆在一起处理.换句话说就是往里面写一条条dos命令,然后按顺序挨个执行,效果跟你在cmd里敲dos命令是一个效果.只不过用批处理写好之后,要运行只要双击下就可以运行了.而不用再一遍一遍的重复的往里面打命令.这就是批处理文件的好处.(2)批处理系统的调度。
操作系统实验报告作业调度操作系统实验报告:作业调度引言作业调度是操作系统中的重要部分,它负责管理和调度系统中的各种作业,以最大化系统资源的利用率和提高作业的执行效率。
在本次实验中,我们将探讨作业调度的基本原理和实现方法,并通过实验验证其效果。
实验目的本次实验的主要目的是通过实际操作,了解作业调度的基本原理和实现方法,掌握作业调度的相关算法,并通过实验验证其有效性。
实验内容1. 实现作业调度的基本算法在本次实验中,我们将实现作业调度的基本算法,包括先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)和多级反馈队列调度(Multilevel Feedback Queue Scheduling)等。
通过编写代码,模拟这些算法的执行过程,并观察它们的效果。
2. 实验验证我们将设计一些测试用例,通过模拟作业的执行过程,分别使用不同的作业调度算法,并比较它们的执行效果。
通过实验验证,我们将得出不同算法的优劣势,并分析其适用场景。
实验结果经过实验验证,我们得出以下结论:1. 先来先服务(FCFS)算法适用于作业执行时间相对均匀的情况,但可能会导致平均等待时间较长。
2. 最短作业优先(SJF)算法能够最大程度地减少平均等待时间,但可能会出现作业饥饿现象。
3. 优先级调度(Priority Scheduling)算法能够根据作业的优先级进行调度,适用于有明确优先级需求的情况。
4. 多级反馈队列调度(Multilevel Feedback Queue Scheduling)算法能够根据作业的执行情况动态调整优先级,适用于各种类型的作业。
结论作业调度是操作系统中的重要组成部分,不同的作业调度算法适用于不同的场景。
通过本次实验,我们深入了解了作业调度的基本原理和实现方法,掌握了不同算法的优劣势,并通过实验验证了它们的有效性。
这将对我们进一步深入学习操作系统和提高系统性能有着重要的意义。
《操作系统原理》实验教学大纲一、实验教学内容与基本要求实验一 批处理系统的作业调度1 目的要求1.加深对作业概念的理解;2.深入了解批处理系统如何组织作业、管理作业和调度作业。
2 实验内容编写程序完成批处理系统中的作业调度,要求采用响应比高者优先的作业调度算法。
实验具体包括:首先确定作业控制块的内容,作业控制块的组成方式;然后完成作业调度;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验二 进程管理1 目的要求1.加深对进程概念的理解,明确进程和程序的区别。
2.深入了解系统如何组织进程、创建进程。
3.进一步认识如何实现处理器调度。
2 实验内容编写程序完成单处理机系统中的进程调度,要求采用时间片轮转调度算法。
实验具体包括:首先确定进程控制块的内容,进程控制块的组成方式;然后完成进程创建原语和进程调度原语;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验三 动态分区存储管理方式的主存分配回收1 目的要求深入了解动态分区存储管理方式主存分配回收的实现。
2 实验内容编写程序完成动态分区存储管理方式的主存分配回收的实现。
实验具体包括:首先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配和回收;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验四 页式虚拟存储管理中地址转换和缺页中断1 目的要求1.深入了解页式存储管理如何实现地址转换;2.进一步认识页式虚拟存储管理中如何处理缺页中断。
2 实验内容编写程序完成页式存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所做工作进行测试。
实验一处理机调度实验报告一、实验目的处理机调度是操作系统中的一个重要组成部分,其目的是合理地分配处理机资源,以提高系统的性能和效率。
本次实验的主要目的是通过模拟处理机调度算法,深入理解不同调度算法的工作原理和性能特点,并能够对它们进行比较和分析。
二、实验环境本次实验使用了以下软件和工具:1、操作系统:Windows 102、编程语言:Python3、开发环境:PyCharm三、实验内容1、先来先服务(FCFS)调度算法先来先服务调度算法按照作业或进程到达的先后顺序进行调度。
即先到达的作业或进程先得到处理机的服务。
2、短作业优先(SJF)调度算法短作业优先调度算法优先调度运行时间短的作业或进程。
在实现过程中,需要对作业或进程的运行时间进行预测或已知。
3、高响应比优先(HRRN)调度算法高响应比优先调度算法综合考虑作业或进程的等待时间和运行时间。
响应比的计算公式为:响应比=(等待时间+要求服务时间)/要求服务时间。
4、时间片轮转(RR)调度算法时间片轮转调度算法将处理机的时间分成固定大小的时间片,每个作业或进程在一个时间片内运行,当时间片用完后,切换到下一个作业或进程。
四、实验步骤1、设计数据结构为了表示作业或进程,设计了一个包含作业或进程 ID、到达时间、运行时间和等待时间等属性的数据结构。
2、实现调度算法分别实现了上述四种调度算法。
在实现过程中,根据算法的特点进行相应的处理和计算。
3、模拟调度过程创建一组作业或进程,并按照不同的调度算法进行调度。
在调度过程中,更新作业或进程的状态和相关时间参数。
4、计算性能指标计算了平均周转时间和平均带权周转时间等性能指标,用于评估不同调度算法的性能。
五、实验结果与分析1、先来先服务(FCFS)调度算法平均周转时间:通过计算所有作业或进程的周转时间之和除以作业或进程的数量,得到平均周转时间。
在 FCFS 算法中,由于按照到达顺序进行调度,可能会导致长作业或进程长时间占用处理机,从而使平均周转时间较长。
批处理作业调度(回溯).算法设计例题:批处理作业调度(回溯)memory limit: 5000KB time limit: 2000MSaccept: 13 submit: 33Description给定n个作业的集合J = { J1,J2,…,Jn }。
每一个作业Ji都有两项任务分别在两台机器上完成。
每个作业必须先由机器1处理,然后由机器2处理。
作业Ji需要机器j的处理时间为tji,其实i=1,2,…,n,j=1,2。
对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。
所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
Input输入的第一个为测试样例的个数T(T < 120 ),接下来有T个测试样例。
每个测试样例的第一行是作业个数n(n ≤7 ),接下来n行,每行两个整数t1i 和t2i ,分别表示当前作业在机器1和机器2上的处理时间。
(0 ≤t1i , t2i ≤100 )Output对应每个测试样例输出两行,第一行格式为"Case #: M",其中'#'表示第几个测试样例(从1开始计),M为最佳作业调度的时间和。
第二行为n个以空格分隔的整数,表示最佳作业调度方案中各作业执行顺序的序号。
Sample Input132 13 12 3Sample OutputCase 1: 181 3 2源代码:#include<cstdio>#include<cstring>class FlowShop{public:int n, //作业数f1, //机器1完成处理时间f, //完成时间和bestf, //当前最优值m[35][3], //各作业所需处理时间x[35], //当前作业调度bestx[35], //当前最优作业调度f2[35]; //机器2完成处理时间void swap(int &a,int &b){int c=a;a=b;b=c;}int play(){f1=0;f=0;bestf=0x3f3f3f3f;int i;for(i=0;i<=n;++i)x[i]=i,f2[i]=0;backtrack(1);return bestf;}void backtrack(int i){if(i>n){for(int j=1;j<=n;++j)bestx[j]=x[j];bestf=f;}else{for(int j=i;j<=n;++j){f1+=m[x[j]][1];f2[i]=((f2[i-1]>f1)?f2[i-1]:f1)+m[x[j]][2];f+=f2[i];if(f<bestf){swap(x[i],x[j]);backtrack(i+1);swap(x[i],x[j]);}f1-=m[x[j]][1];f-=f2[i];}}}};int main(){int T,cas=1;scanf("%d",&T);while(T--){FlowShop p;scanf("%d",&p.n);int i;for(i=1;i<=p.n;++i)scanf("%d %d",&p.m[i][1],&p.m[i][2]);printf("Case %d: %d\n",cas++,p.play());for(i=1;i<=p.n;++i){if(i!=1) putchar(' ');printf("%d",p.bestx[i]);}puts("");}return 0;}。
实验二作业调度实验题目1、编写并调试一个单道解决系统的作业等待模拟程序。
作业调度算法:分别采用先来先服务(FCFS),最短作业优先(SJF)的调度算法。
(1 )先来先服务算法:按照作业提交给系统的先后顺序来挑选作业,先提交的先被挑选。
(2)最短作业优先算法:是以进入系统的作业所提出的“执行时间”为标准,总是优先选取执行时间最短的作业。
二.实验目的:本实验规定用高级语言(C语言实验环境)编写和调试一个或多个作业调度的模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解三.实验过程〈一〉单道解决系统作业调度1)单道解决程序作业调度实验的源程序:zuoye.c 执行程序:zu o y e.exe2)实验分析:1、由于在单道批解决系统中,作业一投入运营,它就占有计算机的一切资源直到作业完毕为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所占用的CP U时限等因素。
2、每个作业由一个作业控制块JCB表达,JCB可以包含如下信息:作业名、提交时间、所需的运营时间、所需的资源、作业状态、链指针等等。
作业的状态可以是等待W(Wait)、运营R(Run)和完毕F(Finish)三种状态之一。
每个作业的最初状态else i f (p->n e e d time<min->need t ime) m in=p; p= p ->next;( while (p!=NULL);i f (iden) {i—;/ / pr i n tf ("\nt i m e =%d: \ t no JCB sub mib.. . wait . . . t ime);tim e s++;i f ( times> 10 0) {prin t f("\nru n t ime i s too Ion g . .. error z,) ;g etc h () ; ))e 1 s e{ru n ning(m i n, m) ;//调用running ()函数}} //forf i na 1 (); 〃调用r u nn i ng()函数)voi d fefs (int m)〃先来先服务算法(int i, iden;syst e m ("cl s ");i ni t a 1 ();f or(i=0;i<n;i++)(p= r ea d y; i d en=l;do{if (p-> s tate= = , W* & &p ->reach t i me<=t i mes) i d e n=0:i f (i d e n )p= p -> n ext;}while(p!=NULL&&iden);if (i d on){i——;prin tf(〃\ n没有满足规定的进程,需等待”);t imes++;i f (time s >1 0 0 ) {prin t f ("\n 时间过长");getch () ;})e 1 se{runn i ng(p, m); 〃调用r u nn i n g ()函数))final () ;//调用ru n n i n g ()函数}void muneO{int m;s y s tem (〃 c 1 s〃);p r i n t f (z/\ n\n\t\t *** 火 * ****** * ***** * ***** *** *** * *** * **** ***** **\ t \ t\n ");P rintf ('\t \ t \ t\t 作业调度演示\ n ");pr i ntf( " \t\t^ ***** * * *** * *** * ******** * * **** * ******** * * *** * \t\P r intf(*\n\n\n\t\ t \tl.先来先服务算法.;pr i nt f ("\n\t\ t \ t2.最短作业优先算法.;printfC\n\ t \ t \t3.响应比高者优先算法");prin t f ( ° \0.退出程序.;P rintfC \n\n\t \t\ t \t 选择所要操作:");s c anf (*%d*, &m);sw i tc h (m)(c ase 1:f c f s (m);getchO ;s y stem("c 1 s");mune();brea k ;c a se 2 :sjf (m):getch ();system ( " cis*);mune ();break;case 3 :hr n (m);g e t c h ();sys t em("cls");mune ();br e a k ;case 0:system ("cis");break;d e f a u 1 t :pr intf(〃选择错误,重新选择getchO ;system ("c Is");muneO ;))main ()//主函数(i niz e ();muneO ;)5)调试结果:i.选择操作的界面程课件'计算机操作系统联作系统实验八作业调度\zuoye.exe ,作业调度演示.先来先服务算法.1 .最短企业优先算法.2 .响应居意者优先萱法 4战出程序.选择所要操作:2.输入操作初始信息:c 「E:\课程课件'计算机》3 .先来先服务算法作业调度结果:(调度顺序:a -> b ->c->d->e )输入作业数:5输入作业数:5太人作业名:a7、侬、|到达时间:0要运行的时间:4 必法崎松时间其要运行的时间:3植入作业名:c 作业默认到达时间:2 曲人作批要运行的时间;5 植入作业名:d 伟业默认到达时间:3 曲入作要运行的时间;2 检入作业名:e 伟业默认到达时间;4 输入作业要运行的时间;4作业证在运行,估计其运行情况: 开始运宜时刻:。
批处理系统的作业调度
1.实验目的
加深对作业概念的理解;
深入了解批处理系统如何组织作业、管理作业和调度作业;
2.实验预备知识
作业的概念;
作业的创建;
作业的调度。
3.实验内容
编写程序完成批处理系统中的作业调度,要求采用响应比高者优先的作业调度算法。
实验具体包括:首先确定作业控制块的内容,作业控制块的组成方式;然后完成作业调度;最后编写主函数对所作工作进程测试。
4.提示与讲解
操作系统根据允许并行工作的道数和一定的算法从系统中选取若干作业把它们装入主存储器,使它们有机会获得处理器运行,这项工作被称为“作业调度”。
实现这部分功能的程序就是“作业调度程序”。
作业调度的实现主要有两个问题,一个是如何将系统中的作业组织起来;另一个是如何进行作业调度。
为了将系统中的作业组织起来,需要为每个进入系统的作业建立档案以记录和作业相关的信息,例如作业名、作业所需资源、作业执行时间、作业进入系统的时间、作业信息在存
储器中的位置、指向下一个作业控制块的指针等信息。
这个记录作业相关信息的数据块称为作业控制块(JCB),并将系统中等待作业调度的作业控制块组织成一个队列,这个队列称为后备队列。
一个作业全部信息进入系统后,就为其建立作业控制块,并挂入后备队列。
当进行作业调度时,从后备队列中查找选择作业。
由于实验中没有实际作业,作业控制块中的信息内容只使用了实验中需要的数据。
作业控制块中首先应该包括作业名;其次是作业所需资源,根据需要,实验中只包括需要主存的大小(采用可移动的动态分区方式管理主存,作业大小就是需要主存的大小)、需要打印机的数量和需要磁带机的数量;采用响应比作业调度算法,为了计算响应比,还需要有作业的估计执行时间、作业在系统中的等待时间;另外,指向下一个作业控制块的指针必不可少。
实验中,作业控制块及队列的数据结构定义如下。
typedef struct jcb
{char name[4]; //作业名
int length; //作业长度,所需主存大小
int printer; //作业执行所需打印机的数量
int tape; //作业执行所需磁带机的数量
int runtime; //作业估计执行时间
int waittime; //作业在系统中的等待时间
int next; //指向下一个作业控制块的指针
}JCB //作业控制块类型定义
存放作业控制块的区域:
#define n 10 //假定系统中可容纳的作业数量为n
JCB jobtable[10]; //作业表
int jobcount; //系统内现有作业数量
将作业控制块组织成一个队列,实验中采用静态链表的方式模拟作业的后备队列,如图2.1所示。
作业队列头指针定义:
int *head;
图2.1 采用响应比高者优先算法的作业调度程序的流程图
确定作业组织方式之后,就要开始考虑如何进行作业调度。
尽管不同的计算机系统可以采用不同的调度原则和调度算法,但是都必须遵循一个必要条件,即系统现有的尚未分配的
资源可以满足被选作业的资源要求。
就是说,所有的作业调度都是按照一定的算法,从满足必要条件的作业中选择一部分作业装入主存储器。
实验中,主存采用可移动的动态分区管理方法,即只要主存空闲区总和比作业大就可以满足作业对主存的需求;对打印机和磁带机这两种独占型设备采用静态分配法,即作业执行前必须获得所需资源,并且执行完才归还。
常用的作业调度算法有先来先服务算法、计算时间短的作业优先算法、响应比高者优先算法、优先数调度算法和均衡调度算法。
实验中采用响应比高者优先算法,响应比的定义为:响应比=作业的等待时间/作业估计执行时间
采用响应比高者优先调度算法,进行调度时必须计算出系统中的所有满足必要条件作业的响应比;从中选择响应比最高的一个作业装入主存储器、分配资源,由于是实验,所以就用将作业的作业控制块出队,并输出作业的作业名代替装入主存储器,同时修改系统的资源数量;用同样方法选择第二个、第三个……直到不再有满足必要条件的作业。
采用响应比高者优先算法的作业调度程序流程图如图2.1所示。
模拟程序中,首先要假设系统的资源情况,假设系统资源只有主存(memory)64MB(以KB为单位分配)、磁带机(tape)4台和打印机(printer)2台;然后,手工输入某个时刻系统中的各个作业情况;最后进行作业调度,并将结果输出。
5.课外题
将上述实验中的作业调度算法改为短作业优先调度算法重新完成上述工作。
6.参考程序
#include "string.h"
#define n 10 //假定系统中可容纳的作业数量为n
typedef struct jcb
.
{char name[4]; //作业名
int length; //作业长度,所需主存大小int printer; //作业执行所需打印机的数量int tape; //作业执行所需磁带机的数量
int runtime; //作业估计执行时间
int waittime; //作业在系统中的等待时间
int next; //指向下一个作业控制块的指针}JCB; //作业控制块类型定义
int head; //作业队列头指针定义
int tape,printer;
long memory;
JCB jobtable[n]; //作业表
int jobcount=0; //系统内现有作业数量shedule( )
//作业调度函数
{float xk,k;
int p,q,s,t;
do
{p=head;
q=s=-1;
k=0;
while(p!=-1)
{ if(jobtable[p].length<=memory&&jobtable[p].tape<=tape&&jobtable[p].printer <=printer)
{ //系统可用资源是否满足作业需求
xk=(float)(jobtable[p].waittime)/jobtable[p].runtime;
if(q==0||xk>k) //满足条件的第一个作业或者作业q的响应比小于作业p的响应比
{k=xk; //记录响应比
q=p;
t=s;
}//if
}//if
s=p;
p=jobtable[p].next; //指针p后移
}//while
if(q!=-1)
{ if(t==-1) //是作业队列的第一个
head=jobtable[head].next;
else
jobtable[t].next=jobtable[q].next;
//为作业q分配资源:分配主存空间;分配磁带机;分配打印机
memory=memory-jobtable[q].length;
tape=tape-jobtable[q].tape;
printer=printer-jobtable[q].printer;
printf("选中作业的作业名:%s\n",jobtable[q].name);
}
}while(q!=-1);
}//作业调度函数结束
main( )
{char name[4];
int size,tcount,pcount,wtime,rtime;
int p;
//系统数据初始化
memory=65536;
tape=4;
printer=2;
head=-1;
printf("输入作业相关数据(以作业大小为负数停止输入):\n");
//输入数据,建立作业队列
printf("输入作业名、作业大小、磁带机数、打印机数、等待时间、估计执行时间\n"); scanf("%s%d%d %d %d %d",name,&size,&tcount,&pcount,&wtime,&rtime); while(size!=-1)
{//创建JCB
if(jobcount<n)p=jobcount;
else { printf("无法再创建作业\n");
break;
}
jobcount++;
//填写该作业相关内容
strcpy(jobtable[p].name,name);
jobtable[p].length=size;
jobtable[p].printer=pcount;
jobtable[p].tape=tcount;
jobtable[p].runtime=rtime;
jobtable[p].waittime=wtime;
//挂入作业队列队首
jobtable[p].next=head;
head=p;
// 输入一个作业数据
printf("输入作业名、作业大小、磁带机数、打印机数、等待时间、估计执行时间\n");
scanf("%s%d%d%d%d%d",name,&size,&tcount,&pcount,&wtime,&rtime);
}//while
shedule( ); //进行作业调度
}//main( )函数结束。