相关与回归分析课后习题解答
- 格式:pdf
- 大小:3.80 MB
- 文档页数:16
第一章回归分析概述1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。
第六章一、单项选择题1.下面的函数关系是( )A现代化水平与劳动生产率 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D亩产量与施肥量2.相关系数r的取值范围( )A -∞< r <+∞B -1≤r≤+1C -1< r < +1D 0≤r≤+13.年劳动生产率x(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度高,则计算出的相关系数应接近于( )A +1B -1C 0.5D 15.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程ŷ=a+bx。
经计算,方程为ŷ=200—0.8x,该方程参数的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的D a值和b值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的 B都不是随机的C一个是随机的,一个不是随机的 D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系 B变量之间的变动关系C变量之间的相互关系的密切程度 D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数 ( )A r=0B r=lC 0< r<1D -1<r <012.当相关系数r=0时,表明( )A现象之间完全无关 B相关程度较小C现象之间完全相关 D无直线相关关系13.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关系数为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8114.估计标准误差是反映( )A平均数代表性的指标 B相关关系的指标C回归直线方程的代表性指标 D序时平均数代表性指标二、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系 B圆的面积与它的半径关系C广告支出与商品销售额关系D商品价格一定,商品销售与额商品销售量关系2.相关系数表明两个变量之间的( )A因果关系 C变异程度 D相关方向 E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号4.可用来判断现象线性相关方向的指标有( )A相关系数 B回归系数 C回归方程参数a D估计标准误5.单位成本(元)依产量(千件)变化的回归方程为y c=78- 2x,这表示( ) A产量为1000件时,单位成本76元B产量为1000件时,单位成本78元C产量每增加1000件时,单位成本下降2元D产量每增加1000件时,单位成本下降78元6.估计标准误的作用是表明( )A样本的变异程度 B回归方程的代表性C估计值与实际值的平均误差 D样本指标的代表性7.销售额与流通费用率,在一定条件下,存在相关关系,这种相关关系属于( ) A完全相关 B单相关 C负相关 D复相关8.在直线相关和回归分析中( )A据同一资料,相关系数只能计算一个B据同一资料,相关系数可以计算两个C据同一资料,回归方程只能配合一个D据同一资料,回归方程随自变量与因变量的确定不同,可能配合两个9.相关系数r的数值( )A可为正值 B可为负值 C可大于1 D可等于-110.从变量之间相互关系的表现形式看,相关关系可分为( )A正相关 B负相关 C直线相关 D曲线相关11.确定直线回归方程必须满足的条件是( )A现象间确实存在数量上的相互依存关系B相关系数r必须等于1C y与x必须同方向变化D现象间存在着较密切的直线相关关系12.当两个现象完全相关时,下列统计指标值可能为( )A r=1B r=0C r=-1D S y=013.在直线回归分析中,确定直线回归方程的两个变量必须是( )A一个自变量,一个因变量 B均为随机变量C对等关系 D一个是随机变量,一个是可控制变量14.配合直线回归方程是为了( )A确定两个变量之间的变动关系 B用因变量推算自变量C用自变量推算因变量 D两个变量都是随机的15.在直线回归方程中( )A在两个变量中须确定自变量和因变量 B一个回归方程只能作一种推算C要求自变量是给定的,而因变量是随机的。
《统计学概论》第八章课后练习答案一、思考题1.什么是相关系数?它与函数关系有什么不同?P237- P2382.什么是正相关、负相关、无线性相关?试举例说明。
P238- P2393.相关系数r的意义是什么?如何根据相关系数来判定变量之间的相关系数?P245 4.简述等级相关系数的含义及其作用?P2505.配合回归直线方程有什么要求?回归方程中参数a、b的经济含义是什么?P2566.回归系数b与相关系数r之间有何关系?P2587.回归分析与相关分析有什么联系与区别?P2548.什么是估计标准误差?这个指标有什么作用?P2619.估计标准误差与相关系数的关系如何?P258-P26410.解释判定系数的意义和作用。
P261二、单项选择题1.从变量之间相互关系的方向来看,相关关系可以分为()。
A.正相关和负相关B.直线关系与曲线关系C.单相关和复相关D.完全相关和不完全相关2.相关分析和回归分析相比较,对变量的要求是不同的。
回归分析中要求()。
A.因变量是随机的,自变量是给定的B.两个变量都是随机的C.两个变量都不是随机的D.以上三个答案都不对3.如果变量x与变量y之间的相关系数为-1,这说明两个变量之间是()。
A.低度相关关系B.完全相关关系C.高度相关关系D.完全不相关4.初学打字时练习的次数越多,出现错误的量就越少,这里“练习次数”与“错误量”之间的相关关系为()。
A.正相关B.高相关C.负相关D.低相关5.假设两变量呈线性关系,且两变量均为顺序变量,那么表现两变量相关关系时应选用()。
A.简单相关系数r B.等级相关系数r sC.回归系数b D.估计标准误差S yx6.变量之间的相关程度越低,则相关系数的数值()。
A.越大B.越接近0C.越接近-1 D.越接近17.下列各组中,两个变量之间的相关程度最高的是()。
A.商品销售额和商品销售量的相关系数是0.9B.商品销售额和商品利润率的相关系数是0.84C.产量与单位成本之间的相关系数为-0.94D.商品销售价格与销售量的相关系数为-0.918.相关系数r的取值范围是()。
第一章习题1.1变量间统计关系和函数关系的区别是什么?1.2回归分析与相关分析的区别和联系是什么?1.3回归模型中随机误差项的意义是什么?1.4线性回归模型中的基本假设是什么?1.5回归变量设置的理论依据是什么?在设置回归变量时应注意哪些问题?1.6收集、整理数据包括哪些基本内容?1.7构造回归理论模型的基本依据是什么?1.8为什么要对回归模型进行检验?1.9回归模型有哪几个方面的应用?1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合?第二章 习题2.1一元线性回归模型有哪些基本假定? 2.2 考虑过原点的线性回归模型1,1,,i i i y x i n βε=+=误差1,,n εε仍满足基本假定。
求1β的最小二乘估计。
2.3证明(2.27)式,10nii e==∑,10ni i i x e ==∑。
2.4回归方程01Ey x ββ=+的参数01,ββ的最小二乘估计与极大似然估计在什么条件下等价?给出证明。
2.5 证明0ˆβ是0β的无偏估计。
2.6 证明(2.42)式 ()()222021,i x Var n x x βσ⎡⎤=+⎢⎥-⎢⎥⎣⎦∑成立 2.7 证明平方和分解式SST SSR SSE =+2.8 验证三种检验的关系,即验证:(1)t ==(2)2212ˆ1ˆ2xx L SSR F t SSE n βσ===-2.9 验证(2..63)式:()()221var 1i i xx x x e n L σ⎡⎤-=--⎢⎥⎢⎥⎣⎦2.10 用第9题证明()2211ˆˆ2n i ii y y n σ==--∑是2σ的无偏估计。
2.11* 验证决定系数2r 与F 值之间的关系式 22Fr F n =+-以上表达式说明2r 与F 值是等价的,那么我们为什么要分别引入这两个统计量,而不是只使用其中的一个。
2.12* 如果把自变量观测值都乘以2,回归参数的最小二乘估计0ˆβ和1ˆβ会发生什么变化?如果把自变量观测值都加上2,回归参数的最小二乘估计0ˆβ和1ˆβ会发生什么变化? 2.13 如果回归方程01ˆˆˆy x ββ=+相应的相关系数r 很大,则用它预测时,预测误差一定较小。
应用回归分析-第3章课后习题参考答案一般来说,R2越接近1,即R2取值越大,说明回归拟合的效果越好。
但由于R2的大小与样本容量n和自变量个数p有关,当n与p的值接近时,R2容易接近1,说明R2中隐含着一些虚假成分。
而当样本容量n较小,自变量个数p较大时,尽管R2很大,但参数估计效果很不稳定。
所以该题中不能仅仅因为R2很大而断定回归方程很理想。
3.5 如何正确理解回归方程显著性检验拒绝H0,接受H0?答:一般来说,当接受假设H0时,认为在给定的显著性水平α之下,自变量x1,x2,…,x p对因变量y无显著性影响,则通过x1,x2,…,x p 去推断y就无多大意义。
此时,一方面可能该问题本应该用非线性模型描述,我们误用线性模型描述了,使得自变量对因变量无显著影响;另一方面可能是在考虑自变量时,由于认识上的局限性把一些影响因变量y的自变量漏掉了,这就从两个方面提醒我们去重新考虑建模问题。
当拒绝H0时,也不能过于相信该检验,认为该模型已经很完美。
其实当拒绝H时,我们只能认为该回归模型在一定程度上说明了自变量x1,x2,…,x p与因变量y的线性关系。
因为这时仍不能排除我们漏掉了一些重要自变量。
此检验只能用于辅助性的,事后验证性的目的。
(详细内容可参考课本P95~P96评注。
)3.6 数据中心化和标准化在回归分析中的意义是什么?答:原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。
中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。
3.7 验证ˆˆ,1,2,,jj j j yy L j p L β*==证明:多元线性回归方程模型的一般形式为:01122p p y x x x ββββε=+++++其经验回归方程式为01122ˆˆˆˆˆp p y x x x ββββ=++++, 又01122ˆˆˆˆp py x x x ββββ=----, 故111222ˆˆˆˆ()()()p p py y x x x x x x βββ=+-+-++-, 中心化后,则有111222ˆˆˆˆ()()()i p p py y x x x x x x βββ-=-+-++-, 21()n yy i i L y y ==-∑ 令21(),1,2,,n jj ij j i L x x i n ==-=∑,1,2,,j p =11221122121122()ˆˆˆpp ip i i i p yy yy yy pp yyL x x L L y x x L L L L L L L βββ-=++ 样本数据标准化的公式为1,2,,i ij i jj yy x x y x y i n L L **-===,1,2,,j p =则上式可以记为112211221122ˆˆˆˆˆˆpp i i i p ip yy yy yy i i p ipL L L y x x x L L L x x x ββββββ**********=+++=⨯+⨯++⨯则有ˆˆ,1,2,,jj j j yy L j p L ββ*==3.8 验证3.9 验证决定系数R 2与F 值之间的关系式:p p n F FR /)1(2--+=3.10 验证决定系数R 2与F 值之间的关系式:pp n F F R /)1(2--+= 证明:2/,/(1)111(1)/1SSR p F SSE n p F SSE SSR p n p F SSE p SSR SSR F p F n p R F SSE SST SSR SSE F p n p F n p p p SSE n p =--⋅∴=⨯--⋅⨯⨯--∴=====⋅+⨯+--+--⨯+--。
1.1回归分析的基本思想及其初步应用例题:1.在画两个变量的散点图时,下面哪个叙述是正确的()(A)预报变量在x轴上,解释变量在y轴上(B)解释变量在X轴上,预报变量在y轴上(0可以选择两个变量中任意一个变量在x轴上(D)可以选择两个变量中任意一个变量在y轴上解析:通常把自变量X称为解析变量,因变量y称为预报变量.选B2,若一组观测值(xi, yi) (x2, y2) ••- (x…, y n)之间满足 y-bxi+a+e;(i=l> 2. •••!!)若巳恒为0,则仁为_____________解析:e』亘为0,说明随机误差对方贡献为0.答案:1.3.假设关于某设备的使用年限x和所支出的维修费用y (万兀),有如下的统计资料:X 2 3 4 5 6y 22 38 55 65 70若由资料可知y对x呈线性相关关系试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?解:(1)列表如下:i 1 2 3 4 5X] 2 3 4 5 622 38 55 65 70时•44 114 220 325 420X; 4 9 16 25 36_ _ 5 5x = 4, y = 5,»;=9o, »,北=112.3z'=l z'=l5 ___况一5xy干旱,仃112.3-5x4x5 …c十正方= ------------- = ------------ -- = 1.23,S,厂2 90 —5x42小「- 5x<=|a = y -bx = 5-1.23x4 = 0.08线性回归方程为:y =bx + a = 1.23x + Q.QS ( 2 )当 x=10 时,y = 1.23x10 + 0.08 = 12.38 (万兀)即估计使用10年时维修费用是1238万元课后练习:1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7. 19x+73.93 用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145. 83cm;B.身高在145. 83cm以上;C.身高在145. 83cm以下;D.身I W J在 145. 83cm 左右.2.两个变量y与x的回归模型中,分别选择了 4个不同模型,它们的相关指数人2如下,其中拟合效果最好的模型是()A.模型1的相关指数人2为0. 98B.模型2的相关指数R2为。
应用回归分析_第2章课后习题参考答案1. 简答题1.1 什么是回归分析?回归分析是一种统计建模方法,用于研究自变量与因变量之间的关系。
它通过建立数学模型,根据已知的自变量和因变量数据,预测因变量与自变量之间的关系,并进行相关的推断和预测。
1.2 什么是简单线性回归和多元线性回归?简单线性回归是指只包含一个自变量和一个因变量的回归模型,通过拟合一条直线来描述两者之间的关系。
多元线性回归是指包含多个自变量和一个因变量的回归模型,通过拟合一个超平面来描述多个自变量和因变量之间的关系。
1.3 什么是残差?残差是指回归模型中,观测值与模型预测值之间的差异。
在回归分析中,我们希望最小化残差,使得模型与观测数据的拟合效果更好。
1.4 什么是拟合优度?拟合优度是用来评估回归模型对观测数据的拟合程度的指标。
一般使用R方(Coefficient of Determination)来表示拟合优度,其值范围为0到1,值越接近1表示模型拟合效果越好。
2. 计算题2.1 简单线性回归假设我们有一组数据,其中X为自变量,Y为因变量,如下所示:X Y13253749511我们想要建立一个简单线性回归模型,计算X与Y之间的线性关系。
首先,我们需要计算拟合直线的斜率和截距。
根据简单线性回归模型的公式Y = β0 + β1*X,我们可以通过最小二乘法计算出斜率和截距的估计值。
首先,计算X和Y的均值:mean_x = (1 + 2 + 3 + 4 + 5) / 5 = 3mean_y = (3 + 5 + 7 + 9 + 11) / 5 = 7然后,计算X和Y的方差:var_x = ((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2) / 5 = 2var_y = ((3-7)^2 + (5-7)^2 + (7-7)^2 + (9-7)^2 + (11-7)^2) / 5 = 8接下来,计算X和Y的协方差:cov_xy = ((1-3) * (3-7) + (2-3) * (5-7) + (3-3) * (7-7) + (4-3) * (9-7) + (5-3) * (11-7)) / 5 = 4根据最小二乘法的公式:β1 = cov_xy / var_x = 4 / 2 = 2β0 = mean_y - β1 * mean_x = 7 - (2 * 3) = 1因此,拟合直线的方程为:Y = 1 + 2X。