2023年浙江省杭州市中考数学必修综合测试试卷附解析
- 格式:docx
- 大小:301.44 KB
- 文档页数:9
2023年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为()A.8.8×104B.8.08×104C.8.8×105D.8.08×105 2.(3分)(﹣2)2+22=()A.0B.2C.4D.83.(3分)分解因式:4a2﹣1=()A.(2a﹣1)(2a+1)B.(a﹣2)(a+2)C.(a﹣4)(a+1)D.(4a﹣1)(a+1)4.(3分)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则=()A.B.C.D.5.(3分)在直角坐标系中,把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等,则m=()A.2B.3C.4D.56.(3分)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()A.23°B.24°C.25°D.26°7.(3分)已知数轴上的点A,B分别表示数a,b,其中﹣1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.8.(3分)设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则()A.当k=2时,函数y的最小值为﹣a B.当k=2时,函数y的最小值为﹣2a C.当k=4时,函数y的最小值为﹣a D.当k=4时,函数y的最小值为﹣2a 9.(3分)一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有出现数字6的是()A.中位数是3,众数是2B.平均数是3,中位数是2C.平均数是3,方差是2D.平均数是3,众数是210.(3分)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF =α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2二、填空题:本大题有6个小题,每小题4分,共24分.11.(4分)计算:=.12.(4分)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC的延长线上.若∠ADE=28°,∠ACF=118°,则∠A=.13.(4分)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n=.14.(4分)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则=.15.(4分)在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于.16.(4分)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)设一元二次方程x2+bx+c=0.在下面的四组条件中选择其中一组b,c的值,使这个方程有两个不相等的实数根,并解这个方程.①b=2,c=1;②b=3,c=1;③b=3,c=﹣1;④b=2,c=2.注:如果选择多组条件分别作答,按第一个解答计分.18.(8分)某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生调查,把收集的数据按照A,B,C,D四类(A表示仅学生参与;B表示家长和学生一起参与;C表示仅家长参与;D表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图.(3)已知该校共有1000名学生,估计B类的学生人数.19.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F在对角线BD 上,且BE=EF=FD,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若△ABE的面积等于2,求△CFO的面积.20.(10分)在直角坐标系中,已知k1k2≠0,设函数y1=与函数y2=k2(x﹣2)+5的图象交于点A和点B.已知点A的横坐标是2,点B的纵坐标是﹣4.(1)求k1,k2的值.(2)过点A作y轴的垂线,过点B作x轴的垂线,在第二象限交于点C;过点A作x轴的垂线,过点B作y轴的垂线,在第四象限交于点D.求证:直线CD经过原点.21.(10分)在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=,求DF的长.(2)求证:AE•CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.22.(12分)设二次函数y=ax2+bx+1(a≠0,b是实数).已知函数值y和自变量x的部分对应取值如下表所示:x…﹣10123…y…m1n1p…(1)若m=4,①求二次函数的表达式;②写出一个符合条件的x的取值范围,使得y随x的增大而减小.(2)若在m,n,p这三个实数中,只有一个是正数,求a的取值范围.23.(12分)如图,在⊙O中,直径AB垂直弦CD于点E,连接AC,AD,BC,作CF⊥AD 于点F,交线段OB于点G(不与点O,B重合),连接OF.(1)若BE=1,求GE的长.(2)求证:BC2=BG•BO.(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.2023年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:80800=8.08×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】根据有理数的混合运算顺序,先计算乘方,再计算加法即可.【解答】解:(﹣2)2+22=4+4=8.故选:D.【点评】本题考查了有理数的混合运算,掌握有理数的乘方的定义是解答本题的关键.3.【分析】直接利用平方差公式分解因式得出答案.【解答】解:4a2﹣1=(2a)2﹣12=(2a﹣1)(2a+1).故选:A.【点评】此题主要考查了公式法分解因式,正确运用平方差公式分解因式是解题关键.4.【分析】先证△ABO是等边三角形,可得∠BAO=60°,由直角三角形的性质可求解.【解答】解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOB=60°,∴△ABO是等边三角形,∴∠BAO=60°,∴∠ACB=30°,∴BC=AB,∴=,故选:D.【点评】本题考查了矩形的性质,等边三角形的判定和性质,直角三角形的性质,掌握矩形的性质是解题的关键.5.【分析】根据点的平移规律可得先向右平移1个单位,再向上平移3个单位得到点B(m+1,2+3),再根据点B的横坐标和纵坐标相等即可求出答案.【解答】解:∵把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.∴点B(m+1,2+3),∵点B的横坐标和纵坐标相等,∴m+1=5,∴m=4.故选:C.【点评】此题主要考查了坐标与图形变化﹣平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.6.【分析】连接OC,根据圆周角定理可求解∠AOC的度数,结合垂直的定义可求解∠BOC 的度数,再利用圆周角定理可求解.【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=∠BOC=26°,故选:D.【点评】本题主要考查圆周角定理,掌握圆周角定理是解题的关键.7.【分析】根据a,b的范围,可得a×b的范围,从而可得点C在数轴上的位置,从而得出答案.【解答】解:∵﹣1<a<0,0<b<1,∴﹣1<a×b<0,即﹣1<c<0,那么点C应在﹣1和0之间,则A,C,D不符合题意,B符合题意,故选:B.【点评】本题主要考查实数与数轴的关系,结合已知条件求得﹣1<a×b<0是解题的关键.8.【分析】令y=0,求出二次函数与x轴的交点坐标,继而求出二次函数的对称轴,再代入二次函数解析式即可求出顶点的纵坐标,最后代入k的值进行判断即可.【解答】解:令y=0,则(x﹣m)(x﹣m﹣k)=0,∴x1=m,x2=m+k,∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),∴二次函数的对称轴是:,∵a>0,∴y有最小值,当时y最小,即,当k=2时,函数y的最小值为;当k=4时,函数y的最小值为,故选:A.【点评】本题考查了二次函数的最值问题,熟练掌握求二次函数的顶点坐标是解题的关键.9.【分析】根据中位数、众数、平均数、方差的定义,结合选项中设定情况,逐项判断即可.【解答】解:当中位数是3,众数是2时,记录的5个数字可能为:2,2,3,4,5或2,2,3,4,6或2,2,3,5,6,故A选项不合题意;当平均数是3,中位数是2时,5个数之和为15,记录的5个数字可能为1,1,2,5,6或1,2,2,5,5,故B选项不合题意;当平均数是3,方差是2时,5个数之和为15,假设6出现了1次,方差最小的情况下另外4个数为:2,2,2,3,此时方差s=×[3×(2﹣3)2+(3﹣3)2+(6﹣3)2]=2.4>2,因此假设不成立,即一定没有出现数字6,故C选项符合题意;当平均数是3,众数是2时,5个数之和为15,2至少出现两次,记录的5个数字可能为1,2,2,4,6,故D选项不合题意;故选:C.【点评】本题主要考查平均数、众数和中位数及方差,解题的关键是掌握平均数、众数和中位数及方差的定义.10.【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,:S正方形ABCD=ab:3ab=1:3,∴S正方形EFGH:S正方形ABCD=1:n,∵S正方形EFGH∴n=3.故选:C.【点评】本题主要考查勾股定理的证明,解直角三角形的应用,利用解直角三角形求得(b﹣a)2=ab,a2+b2=3ab是解题的关键.二、填空题:本大题有6个小题,每小题4分,共24分.11.【分析】直接化简二次根式,再利用二次根式的加减运算法则计算得出答案.【解答】解:原式=﹣2=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减,正确掌握相关运算法则是解题关键.12.【分析】由平行线的性质得到∠B=∠ADE=28°,由三角形外角的性质得到∠A=∠ACF ﹣∠B=118°﹣28°=90°.【解答】解:∵DE∥BC,∴∠B=∠ADE=28°,∵∠ACF=∠A+∠B,∴∠A=∠ACF﹣∠B=118°﹣28°=90°.故答案为:90°.【点评】本题考查平行线的性质,三角形外角的性质,关键是由平行线的性质求出∠B 的度数,由三角形外角的性质即可求出∠A的度数.13.【分析】根据红球的概率公式,列出方程求解即可.【解答】解:根据题意,=,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.【点评】本题考查概率公式,根据公式列出方程求解则可.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】连接OA,OC,OE,首先证明出△ACE是⊙O的内接正三角形,然后证明出=S△AEE=S△CDE S△AOC=S△OAE=S△OCE,进而求解即△BAC≌△OAC(ASA),得到S△ABC可.【解答】解:如图所示,连接OA,OC,OE.∵六边形ABCDEF是⊙O的内接正六边形,∴AC=AE=CE,∴△ACE是⊙O的内接正三角形,∵∠B=120°,AB=BC,∴∠BAC=∠BCA=(180°﹣∠B)=30°,∵∠CAE=60°,∴∠OAC=∠OAE=30°,∴∠BAC=∠OAC=30°,同理可得,∠BCA=∠OCA=30°,又∵AC=AC,∴△BAC≌△OAC(ASA),=S△AOC,∴S△BAC=S△AFE=S△CDE,圆和正六边形的性质可得,S△BAC=S△OAE=S△OCE,由圆和正三角形的性质可得,S△OAC∵S1=S△BAC+S△AEF+S△CDE+S△OAC+S△OAE+S△OCE=2(S△OAC+S△OAE+S△OCE)=2S2,∴,故答案为:2【点评】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.15.【分析】利用待定系数法求出分别求出k1,b1,k2,b2,k3,b3的值,再计算k1+b1,k2+b2,k3+b3的值,最后比较大小即可得到答案.【解答】解:设直线AB的解析式为y1=k1x+b1,将点A(0,2),B(2,3)代入得,,解得:,∴k1+b1=,设直线AC的解析式为y2=k2x+b2,将点A(0,2),C(3,1)代入得,,解得:,∴k2+b2=,设直线BC的解析式为y3=k3x+b3,将点B(2,3),C(3,1)代入得,,解得:,∴k3+b3=5,∴k1+b1=,k2+b2=,k3+b3=5,其中最大的值为5.故答案为:5.【点评】本题主要考查用待定系数法求一次函数解析式,应用待定系数进行正确的计算是解题关键.16.【分析】先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.【解答】解:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DFA,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DFA,∴∠FDE=∠DFA,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.故答案为:.【点评】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明△ABC ∽△ECF.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.【分析】先根据这个方程有两个不相等的实数根,得b2>4c,由此可知b、c的值可在①②③中选取,然后求解方程即可.【解答】解:∵使这个方程有两个不相等的实数根,∴b2﹣4ac>0,即b2>4c,∴②③均可,选②解方程,则这个方程为:x2+3x+1=0,∴x==,∴x1=,x2=;选③解方程,则这个方程为:x2+3x﹣1=0,∴x1=,x2=.【点评】本题主要考查的是根据一元二次方程根的判别式以及解一元二次方程,一元二次方程中根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程无解.18.【分析】(1)由A类别人数及其所占百分比可得总人数;(2)结合(1)的结论求出B类的人数,进而补全条形统计图;(3)总人数乘以样本中B类别人数所占比例.【解答】解:(1)60÷30%=200(名),答:在这次抽样调查中,共调查了200名学生;(2)样本中B类的人数为:200﹣60﹣10﹣10=120(名),补全条形统计图如下:(3)1000×=600(名),答:估计B类的学生人数约600名.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.【分析】(1)由平行四边形的性质得AO=CO,BO=DO,再证OE=OF,即可得出结论;(2)由平行四边形的性质可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形;(2)解:∵BE=EF,=S△AEF=2,∴S△ABE∵四边形AECF是平行四边形,=S△CEF=2,EO=FO,∴S△AEF∴△CFO的面积=1.【点评】本题考查了平行四边形的判定和性质,三角形的面积公式,掌握平行四边形的性质是解题的关键.20.【分析】(1)首先将点A的横坐标代入y2=k2(x﹣2)+5求出点A的坐标,然后代入求出k1=10然后将点B的纵坐标代入求出,然后代入y2=k2(x ﹣2)+5,即可求出k2=2;(2)首先根据题意画出图形,然后求出点C和点D的坐标,然后利用待定系数法求出CD所在直线的表达式,进而求解即可.【解答】(1)解:∵点A的横坐标是2,∴将x=2代入y2=k2(x﹣2)+5=5,∴A(2,5),∴将A(2,5)代入得:k1=10,∴,∵点B的纵坐标是﹣4,∴将y=﹣4代入得,,∴B(﹣,﹣4).∴将B(﹣,﹣4)代入y2=k2(x﹣2)+5得:,解得:k2=2.∴y2=2(x﹣2)+5=2x+1.(2)证明:如图所示,由题意可得:C(,5),D(2,﹣4),设CD所在直线的表达式为y=kx+b,∴,解得:,∴CD所在直线的表达式为y=﹣2x,∴当x=0时,y=0,∴直线CD经过原点.【点评】本题主要考查了一次函数与反比例函数的综合,待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特点,熟练掌握一次函数与反比例函数的性质是解题的关键.21.【分析】(1)通过证明△DEF∽△CBF,由相似三角形的性质可求解;(2)通过证明△ABE∽△CFB,可得,可得结论;(3)设EG=ED=x,则AE=1﹣x,BE=1+x,由勾股定理可求解.【解答】(1)解:∵四边形ABCD是正方形,∴AD∥BC,AB=AD=BC=CD=1,∴△DEF∽△CBF,∴,∴,∴DF=;(2)证明:∵AB∥CD,∴∠ABE=∠F,又∵∠A=∠BCD=90°,∴△ABE∽△CFB,∴,∴AE•CF=AB•BC=1;(3)解:设EG=ED=x,则AE=AD﹣AE=1﹣x,BE=BG+GE=BC+GE=1+x,在Rt△ABE中,AB2+AE2=BE2,∴1+(1﹣x)2=(1+x)2,∴x=,∴DE=.【点评】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是解题的关键.22.【分析】(1)①利用待定系数法即可求得;②利用二次函数的性质得出结论;(2)根据题意m<0,由﹣=1,得出b=﹣2a,则二次函数为y=ax2﹣2ax+1,得出m=a+2a+1<0,解得a<﹣.【解答】解:(1)①由题意得,解得,∴二次函数的表达式是y=x2﹣2x+1;②∵y=x2﹣2x+1=(x﹣1)2,∴抛物线开口向上,对称轴为直线x=1,∴当x<1时,y随x的增大而减小;(2)∵x=0和x=2时的函数值都是1,∴抛物线的对称轴为直线x=﹣=1,∴(1,n)是顶点,(﹣1,m)和(3,p)关于对称轴对称,若在m,n,p这三个实数中,只有一个是正数,则抛物线必须开口向下,且m≤0,∵﹣=1,∴b=﹣2a,∴二次函数为y=ax2﹣2ax+1,∴m=a+2a+1≤0,∴a≤﹣.【点评】本题考查了二次函数的图象与系数的关系,待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,能够明确题意得出m=a+2a+1<0是解题的关键.23.【分析】(1)由垂径定理可得∠AED=90°,结合CF⊥AD可得∠DAE=∠FCD,根据圆周角定理可得∠DAE=∠BCD,进而可得∠BCD=∠FCD,通过证明△BCE≌△GCE,可得GE=BE=1;(2)证明△ACB∽△CEB,根据对应边成比例可得BC2=BA•BE,再根据AB=2BO,BE =BG,可证BC2=BG•BO;(3)设∠DAE=∠CAE=α,∠FOG=∠FGO=β,可证a=90°﹣β,∠OCF=90﹣3α,通过SAS证明△COF≌△AOF,进而可得∠OCF=∠OAF,即90°﹣3a=a,则∠CAD =2a=45°.【解答】(1)解:直径AB垂直弦CD,∴∠AED=90°,∴∠DAE+∠D=90°,∵CF⊥AD,∴∠FCD+∠D=90°,∴∠DAE=∠FCD,由圆周角定理得∠DAE=∠BCD,∴∠BCD=∠FCD,在△BCE和△GCE中,,∴△BCE≌△GCE(ASA),∴GE=BE=1;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CEB=90°,∵∠ABC=∠CBE,∴△ACB∽△CEB,∴=,∴BC2=BA•BE,由(1)知GE=BE,∴BE=BG,∵AB=2BO,∴BC2=BA•BE=2BO•BG=BG•BO;(3)解:∠CAD=45°,证明如下:如图,连接OC,∵FO=FG,∴∠FOG=∠FGO,∵直径AB垂直弦CD,∴CE=DE,∠AED=∠AEC=90°,∵AE=AE,∴△ACE≌△ADE(SAS),∴∠DAE=∠CAE,设∠DAE=∠CAE=α,∠FOG=∠FGO=β,则∠FCD=∠BCD=∠DAE=α,∵OA=OC,∴∠OCA=∠OAC=α,∵∠ACB=90°,∴∠OCF=∠ACB﹣∠OCA﹣∠FCD﹣∠BCD=90°﹣3α,∵∠CGE=∠OGF=β,∠GCE=α,∠CGE+∠GCE=90°,∴β+α=90°,∴α=90°﹣β,∵∠COG=∠OAC+∠OCA=α+α=2α,∴∠COF=∠COG+∠GOF=2α+β=2(90°﹣β)+β=180°﹣β,∴∠COF=∠AOF,在△COF和△AOF中,,∴△COF≌△AOF(SAS),∴∠OCF=∠OAF,即90°﹣3α=α,∴α=22.5°,∴∠CAD=2a=45°.【点评】本题是圆的综合题,考查垂径定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的性质等,难度较大,解题的关键是综合应用上述知识点,特别是第3问,需要大胆猜想,再逐步论证。
2023年浙江省中考数学必修综合测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0C 时冰融化;④如果a 、b 为实数,那么a+b=b+a .其中是必然事件的有( )A .1个B .2 个C .3 个D .4个2.某班学生中随机选取一名学生是女生的概率为35,则该班女生与男生的人数比是( ) A .32 B .35C .23D .25 3.已知二次函数2y ax bx c =++(其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.以上说法正确的个数为 ( )A .0B .1C .2D .3 4.如图,四边形 ABCD 四个顶点在⊙O 上,点E 在 BC 延长线上,且∠BOD =150°,则∠DCE=( )A . l05°B . 150°C .75°D .60°5.下列说法正确的是( )A .一组邻角互补的四边形是平行四边形B .两组邻边相等的四边形是平行四边形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直的四边形是平行四边形6.点P (x ,y )的坐标x ,y 满足0xy =,则P 点在( )A .x 轴上B .y 轴上C .x 轴或y 轴上D .原点7.某种奶制品的包装盒上注明“蛋白质≥2.9%”,它的含义是( )A .蛋白质的含量是2.9%B .蛋白质的含量高于2. 9%C .蛋白质的含量不低于 2. 9%D .蛋白质的含量不高于 2. 9%8.如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示 的是该位置上立方体的个数,则这个几何体的主视图是( )A .B .C .D . 9.方程27x y +=在自然数范围内的解有( )A .1个B . 2个C .3个D .4个 10.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x 1) 11.观察下列“风车”的平面图案:其中轴对称图形有( )A .1个B .2个C .3个D .4个12.轮船在静水中速度为20 km /h .水流速度为每小时4 km /h ,从甲码头顺流航行到乙码 头,再返回甲码头,共用5 h (不计停留时间),求甲、乙两码头的距离.设两码头间距离为x (km ),则列出方程正确的是( )A .(20+4)x+(20-4) x =5B .20 x+4 x =5C .5204x x +=D .5204204x x +=+- 13.在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.( )A .一定不会B .可能会C .一定会D .以上答案都不对二、填空题14. 如图,点0是△ABC 的内心,内切圆与各边相切于点 D .E 、F ,则图中相等的线段(除半径外 )是: , , .15. 如果二次函数y =x 2-3x -2k,不论x 取任何实数,都有y>0,则k 的取值范围是_______.k<-98 16. 已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是 .17.数a 在数轴上的位置如图所示:化简:2|1|2a a ---= .18. 判断题(对的打“√”,锗的打“×”)(1)二次根式3x -中字母x 的取值范围是0x <; ( )(2)21x +( x 为任意实数)是二次根式;( )(3)当1x =-时,二次根式242x -的值为2;( )(4)当4a =-时,二次根式12a -的值为9- ( )19. 写出一个二元一次方程组,使它的解为23x y =⎧⎨=-⎩,则二元一次方程组为 .20.如果2x y -+24y +=0,则x 2-2y 的值为 .21.当a = 时,关于x 的方程22x 146x a +--=的解是0. 三、解答题22. 画出如图所示三视图在生活中所表示的物体的草图.23.如图, 画出图中各几何体的主视图.24.如图,AB 是⊙O的直径,CD 切⊙O于点 C,若 OA= 1,∠BCD= 60°,求∠BAC 的度数和 AC 的长.25.抛掷红、蓝两枚六面编号分别为1~6(整数)的质地均匀的正方体骰子,将红色和蓝色骰子正面朝上的编号分别作为二次函数y=x2+mx+n的一次项系数m 和常数项n的值.(1)问这样可以得到多少个不同形式的二次函数?(只需写出结果)(2)请求出抛掷红、蓝骰子各一次,得到的二次函数图象顶点恰好在x轴上的概率是多少?并说明理由.26.如图,以直角三角形各边为直径的三个半圆围成的两个新月形( 阴影部分)的面积和,与直角三角形的面积有什么关系?为什么?27.如图,在 Rt△ABC 中,∠C= 90°,∠A =60°,3ABC 绕点 B 旋转至△A′BC′的位置,且使点 A.B、C′三点在同一条直线上,求点 A 经过的最短路线的长度.5328.已知四边形ABCD是正方形,以CD为边作正△DCE.求么AEB的度数.29.求各边长互不相等且都是整数、周长为24的三角形共有多少个?30.检查一个商场听装啤酒 10 瓶的重量,超量记为“+”,不足记为“-”. 检查结果如下(单位:mL):-3,+2,-2, -1,-5,+3,-2 ,+3,+1,-1(1)总的情况是超量还是不足?(2)每听平均超量或不足多少?(3)最多与最少相差多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.C5.C6.C7.C8.A9.D10.C11.C12.D13.A二、填空题14.AD =AF,BD =BE,CE=CF.15.16.-317.18.1a(1)×(2)√(3)√(4)×19.略20.521.3三、解答题22.23.24.连结 OC,∵CD 是⊙O的切线,∠BCD= 60°,∴∠BCO=30°.∵AB 是⊙O的直径,∴∠OCA=60°,∵ AO=CO,∴△AOC是正三角形,∴∠BAC=60°,∵OA=1,∴AC=125.(1)这样可以得到36个不同形式的二次函数.(2)222()24m m y x mx n x n =++=++-,∵二次函数图象顶点在x 轴上, ∴204m n -=,∴42m n n ==n ,m 为1~6的整数) 根据上式可知只有当n =1,m =2和n =4,m =4时成立.因此,抛掷红、蓝骰子各一次,得到的二次函数图象顶点恰好在x 轴上的概率是118. 26.阴影部分面积之和=直角三角形面积,设直角三角形的斜边为c ,其余两条直角边分别为 a 、b ,则阴影部分面积之和2221111()2222a b c ab πππ=+-- 22211()22a b c ab π=+-+,∵222c a b =+,∴阴影部分面积之和=12ab ,12Rt S ab ∆=, ∴阴影部分面积之和=Rt S ∆.27.5328. 30°或l50°29.⎪⎩⎪⎨⎧===,7,8,9c b a ⎪⎩⎪⎨⎧===,6,8,10c b a ⎪⎩⎪⎨⎧===,6,7,11c b a ⎪⎩⎪⎨⎧===,5,9,10c b a ⎪⎩⎪⎨⎧===,5,8,11c b a ⎪⎩⎪⎨⎧===,4,9,11c b a ⎪⎩⎪⎨⎧===.3,10,11c b a由此知符合条件的三角形一共有7个.30.(1)不足 (2)不足0.5 mL ,(3)8 mL。
2023年杭州市中考数学试卷(含答案解析)第一部分:选择题1. 下列数中,哪一个是有理数?A. √2B. πC. -0.5D. e答案:C解析:有理数是可以表示为两个整数的比值的数,而-0.5可以表示为-1/2,因此它是有理数。
2. 已知函数f(x)=2x-3,则f(-1)的值是多少?A. -5B. -1C. 1D. 5答案:B解析:将-1代入函数中得到:f(-1)=2(-1)-3=-5。
3. 等差数列1,3,5,7,…的前10项和是多少?A. 50B. 55C. 60D. 65答案:B解析:公差为2,首项为1,因此前10项和为:(1+19)*10/2=55。
4. 在△ABC中,AB=3,AC=4,BC=5,则∠BAC的角度是多少?A. 30°B. cosA=12/25C. 90°D. 180°答案:C解析:由勾股定理可知,这是一个直角三角形,而直角的对角线为90°。
5. 直线y=2x-1与x轴的交点是什么?A. (-1, 0)B. (1, 0)C. (0, 1)D. (0, -1)答案:B解析:当y=0时,2x-1=0,解得x=1。
第二部分:填空题1. 8÷0.4 = ___________答案:202. 负数的绝对值是 ___________答案:正数3. 4/5和0.6这两个数中,小数部分较大的是 ___________答案:0.64. 已知a:b=2:3,b:c=4:5,求a:b:c的值。
答案:2:3:55. 在平行四边形中,对角线互相平分,其中一条对角线长为10cm,求平行四边形的面积。
答案:50cm²第三部分:解答题1. 下列各组数据是否有相同的中位数?3,4,5,6 5,5,5,6 2,4,6,8答案:有。
它们的中位数都是4.5。
2. 以下的算式是错的,请说明算式的错误原因:1/2+1/3=2/4+1/3答案:等式两边分母不同,不能直接加,需要通分。
2023年浙江省杭州市中考数学总复习专题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN ∶S 四边形ANME 等于( )A .1∶5B .1∶4C .2∶5D .2∶72.下面几何体的俯视图正确的是( )A .B .C .D . 3.已知反比例函数2y x=-过两点 (x 1,y 1)、(x 2,y 2),当120x x <<时,y, 与 y 2 大小关 系为( )A .12y y =B .12y y >C .12y y <D . y 1与 y 2 大小不确定4.一种花边是由如图的弓形组成的,弧 ACB 的半径为 5,弦AB=8,则弓高 CD 为( ) AA .8B .152C .7D .1435.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点.•当点P 在BC 上从点B 向点C 移动而点R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定6.下面语句中,命题的个数是( )(1)同角的补角相等.(2)两条直线相交,有几个交点?(3)相等的两个角是对顶角.(4)若a>0,b>0,则ab>0.A .1个B 2个C .3个D .4个7.下列说法错误的是( )A .x=1是方程x+1=2 的解B .x= -1 是不等式13x +<的一个解C .x=3 是不等式13x +<的一个解D .不等式13x +<的解有无数个 8.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为( )A .4 种B . 6 种C . 10 种D . 12 种 9.已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB=80°,∠BOC=40°,则∠AOC 等于( )A .40 °B .60°或120°C .120°D .120°或40°10.若关于x 的一元一次方程2x 3132k x k ---=解是1x =-,则k 的值是( ) A .1 B .27 1311- C .011.下面计算正确的是( )A .-5 ×(-4)×(-2) )×(-2) = 5 ×4×2×2=80B .(-12)×(11134--)=-4+3+1=0C .(- 9)×5 ×(-4 )×0 = 9×5×4 = 180D .-2×5 -2×(-1)-(-2)×2 =-2(5+1-2)=-8二、填空题12.如图,□ABCD 中,E 是BC 中点,F 是BE 中点,AE 与 DF 交于 H ,则:EFH ADH s S ∆∆的值是 .13.若一条弧长等于l ,它的圆心角等于n °,则这条弧的半径R= .14.一批款式、型号均相同的胆装单价在 100元/件至 150 元/件之间,小李拿了 900 元钱去买,可买 件这样的服装.15.如图,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB=6cm ,则AE= cm.16.定理“全等三角形的对应角相等”的逆命题是 ,它是 命题(填“真”或“假'').17.正十二边形与一种正多边形组合可以镶嵌平面,这种正多边形可以是 ,若与两种正多边形组合,这两种正多边形可以是 . A B C ED18.如图,有反比例函数1yx=,1yx=-的图象和一个圆,则S=阴影.19.写出生活中的一个随机事件: .20.在“妙手推推推”的游戏中,主持人出示了一个 9位数,让参加者猜商品价格. 被猜的价格是一个 4位数,也就是这个 9位数中从左到右连在一起的某 4个数字. 如果参与者不知道商品的价格,从这些连在一起的所有 4位数中,任意猜一个,求他猜中该商品价格的概率.21.如图,已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式.根据上图所示,①一个四边形可以分成2个三角形,于是四边形的内角和为度;②一个五边形可以分成3个三角形,于是五边形的内角和为度;……,③按此规律,n边形可以分成个三角形,于是n边形的内角和为度.解答题22.如图.方格纸中的三角形要由位置①平移到位置②,应该先向平移格,再向平移.23.三角形的三边长为3,a,7,若此三角形中有两边相等,则它的周长为.24.比较大小.(1)π 3. 14;(2)2- -1.414;(3)5-21 31 225.等腰梯形两底的差等于底边上高的2倍,则这个梯形较小的底角为度.三、解答题26.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.27.光明中学的甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成进行统计后,绘制成如图所示的统计图. 已知甲队五场比赛成绩的平均分90x =分,方差241.2s =平方分. 甲、乙两球队比赛成绩折线统计图(1)请你计算乙队五场比赛成绩的平均分x 乙;(2)就这五场比赛,计算乙队成绩的方差;(3)如果从甲、乙两队中选派一支球队参加市篮球锦标赛,根据上述统计情况,试从平均分、 折线的走势、方差三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成 绩?28.认真观察图①的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征一: ;特征二: .(2)请在图②中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.29.四人做传数游戏,甲任报一个数给乙,乙把这个数加1 传给丙,丙再把接到的数平方后传给丁,丁把所接到的数减 1 后报出答案.(1)如泉甲所报的数为x ,请把丁最后所报的答案用代数式表示出来;(2)若甲报的数为 9,则丁的答案是多少?(3)若丁报出的答案是 15,则甲传给乙的数是多少?30.化简下列各分式: (1)236sxy x y-; (2) 22699x x x -+-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.C4.A5.C6.C7.C8.B9.D10.A11.A二、填空题12.11613.180lnπ14.6~915.616.对应角相等的两个三角形是全等三角形,假17.正三角形,正三角形和正四边形或正四边形和正六边形18.2π19.略20.1621.360,540,(n-2),180(n-2)22.右,2,上,323.1724.(1)> (2)< (3)< (4)<25.45º三、解答题26.解:(1)P(抽到奇数)=34.(2)解法一:列表所以组成的两位数恰好是13的概率为21126P ==. 解法二:树状图开始1 12 31 2 3 1 2 3 1 1 3 1 1 2所以组成的两位数是13的概率为21126P ==. 27.(1)90分 (2)111. 6平方分 (3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势,所以适合选甲队参赛;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩教稳定. 所以,选派甲队参赛更脂取得好成绩28.(1)特征一:都是轴对称图形;特征二:这些图形的面积都等于4个单位面积等;(2)图略29.(1)2(1)1x +-;(2)若甲报的数为 9,则22(1)1(91)199x +-=+-=,即丁的答案是99;(3)若丁报出的答案是 15,则有2(1)115x +-=,2(1)16x +=,∴14x +=或14x +=-. ∴3x =或5x =-,故甲传给乙的数是3或-5.30.(1)22y x -;(2)33x x -+。
2023年浙江省杭州市中考数学真题复习试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数y=x 2-2x +1与坐标轴轴的交点个数是( )A . 0B . 1C . 2D . 32.如图,在□ABCD 中,过点A 的直线与BC 相交于点 E ,与 DC 的延长线相交于点F ,若 43BE EC ,则CF DF 等于( ) A .43 B .34 C .47 D .373.已知O 为□ABCD 对角线的交点,且△AOB 的面积为1,则□ABCD 的面积为( )A .1B .2C .3D .4 4.如图,周长为68的矩形ABCD 被分成7个全等小矩形,则矩形ABCD 的面积为( )A . 98B .196C .280D .2845.在下图中,为多面体的是( )A .B .C .D . 6.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△A ′0′B ′≌△AOB 的依据是( )A .SSSB .SASC .ASAD .AAS7.如图所示,由∠ABC=∠DCB ,∠ACB=∠DBC ,直接能判定全等的三角形是 ( )A .△AB0≌△DODB .△ABC ≌△DCB C .△ABD ≌△DCA D .△OAD ≌△0BC8.下列选项中的两个图形成轴对称的是 ( )9.如图,以下四个图形中,∠1和∠2是对顶角的共有 ( ) A .0个 B .l 个 C .2个 D .3个二、填空题10.如图,已知PA 是⊙O 的切线,切点为A ,PA = 3,∠APO = 30°,那么OP = .11.在图中有两圆的多种位置关系,请你找出还没有的位置关系是 .12.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,则a的值为 .13.已知点(32)M -,,将它先向左平移4个单位,再向上平移3个单位后得到点N ,则点N 的坐标是 .14.已知铁的质量m 与体积V 成正比例,已知当V=5cm 3时,m=39g ,则铁的质量m 关于体积V 的函数解析式是 .15.平行四边形的面积为S ,边长为5,该边上的高为h ,则S 与h 的关系为 ;当h=2时,S= ;当S=40时,h= .16. 等腰三角形△ABC 中,AB=AC ,∠BAC=70°,D 是BC 的中点,则∠ADC= ,∠BAD= .17.若2246130,x x y y ++-+=则(2)(2)x y x y +-的值是 .18.下图是一些国家的国旗,其中是轴对称图形的有__________个.19.福顺路交通拥堵现象十分严重.上周末,陈新同学在福顺人行天桥处对3 000名过往行人作了问卷调查,问题是:从这里横过福顺路时,你是否自觉走人行天桥?供选择的答案有:A .是;(B)否;(C)无所谓.他将得到的数据处理后,画出了扇形统计图(如图).根据这个扇形统计图,可知被调查者中自觉走人行天桥的有 人.20.若一个角的余角等于它的补角的15,则这个角是 .三、解答题21.如图,小华家(点A处)和公路(l)之间竖立着一块35m长且平行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路记为BC.一辆以60km/h匀速行驶的汽车经过公路段BC的时间是3s,已知广告牌和公路的距离为40m,求小华家到公路的距离.(精确到1m)22.如图,在矩形ABCD中,AB=4 cm,BC=8 cm,将图形折叠,使点C与点A重合,折痕为EF.判断四边形AECF的形状,并说明理由.23.“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y (元)与销售量x (支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w (元)与销售量x (支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额-成本)24.工厂向银行申请了甲、乙两种贷款,共计 35万元,每年需付利息 2.25万元,甲种贷款每年利率为 7%,乙种贷款每年利率为 6%,求这两种贷款各是多少?25.解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,26.计算: (1)432114212121a a a a a a +----+++;(2)2242n mn m mn m n m n n m ------;(3)22()()()()xy yz x y x z x y z x +----; (4)2b ac b c a b c b a c b a c+-+--+----27.计算:(1)()()a b a b ---;(2)(2)(2)ab ab -+--; (3)24(1)(1)(1)(1)22416x x x x -+++;(4)22008200720082006-⨯28.如图所示,长方形ABCD 中,AE=13AB ,AG=13AD ,分别过点E ,G 作AD 和AB 的平行线,相交于点F .(1)从长方形ABCD 到长方形AEFG 是什么变换?(2)经过这一变换,长方形ABCD的角分别变为哪些角?它们的大小改变吗?(3)经过这一变换,长方形ABCD的各条边和面积发生了怎样的变化?29.已有长为l的篱笆,利用它和房屋的一面墙围成如图形状的园子,园子的宽为t.(1)用关于l、t的代数式表示园子的面积;(2)当l=100 m,t=30 m 时,求园子的面积.30.计算下列各式:(1)|—8| + | —2.5 | (2)19 |3|||320 +⨯-(3)312845+÷ (4)326.555⨯-(1)10.5;(2)32;(3)1;(4)3.5【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.C5.A6.A7.B8.C9.B二、填空题10.11.12.―2,―8,413.(11)-, 14.M=7.8v15.S=5h ,10,816.90°,35°17.-3218.319.165920.67.5°三、解答题21.画射线AD ,AE ,分别交l 于点B ,C . 过点A 作AF ⊥BC ,垂足为点F ,AF 交DE 于点H .∵DE ∥BC ,∴∠ADE=∠ABC ,∠DAE=∠BAC,∴△ADE ∽△ABC . 根据相似三角形对应高的比等于相似比的性质,可得BC DE AF AH =. 由题意,得 DE= 35,HF= 40,BC=503600 3000 160=⨯⨯. 设x AF =,则40-=x AH ,所以503540=-x x , 解得1333400≈=x ,即AF ≈133. 所以小华家到公路的距离约为133 m .22.四边形AECF 是菱形解:(1)3y x =;(2)3 1.240w x x =-- 1.840x =-∴所筹集的慰问金w (元)与销售量x (支)之间的函数关系式为 1.840w x =- 解法一:当500w ≥时,1.840500x -≥,解得300x ≥ ∴若要筹集不少于500元的慰问金,至少要售出鲜花300支 24.设甲、乙两种贷款分别为x 、y 万元,则257%6% 2.25x y x y +=⎧⎨+=⎩,解得1520x y =⎧⎨=⎩,经检验,符合题意.答:甲、乙两种贷款分别为 15万元、20万元. 25.11.x y =⎧⎨=⎩, 26. (1)3;(2)m n -;(3)2y yχ-;(4)-2 27.(1)2275b a -;(2)224a b -;(3)81256x -;(4)2008 28.(1)相似变换;(2)∠D →∠AGF ,∠C →∠F ,∠B →∠AEF ,∠A →∠A ;大小不改变;(3)各边为原来的13,面积为原来的1929.(1) (2)t l t ⋅- (2)1200 (m 2 )30.。
2023年浙江省杭州市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.某足球评论员预测:“6 月 13 日进行的世界杯小组赛意大利对加纳的比赛,意大利队有80%的机会获胜.”与“有80%的机会获胜”意思最接近的是()A.假如这两支球队进行 10 场比赛,意大利队恰好会赢8 场B.假如这两支球队进行 10 场比赛,意大利队会8 场左右C.加纳队肯定会瑜这场比赛D.意大利队肯定会赢这场比赛2.如图,将矩形 ABCD 沿着对角线 BD 折叠,使点C落在点E处,BE 交 AD 于点 F,则下列结论中不一定成立的是()A.AD=BE B.∠FBD=∠FDB C.△ABF∽△CBD D.AF=FE3.桌子上放了一个lO0 N 的物体,则桌面受到的压强 P(Pa)与物体和桌子的接触面的面积 S (m2)的函数图象大致是()A.B.C.D.4.在□ABCD中,若∠A=60°,则∠C的度数为()A.30°B.60°C.90°D.120°5.下列交通标志中既是中心对称图形,又是轴对称图形的是()6.某风景点的周长约为 3578 m,若按比例尺 1:2000缩小后,其周长大约相当于()A.一个篮球场的周长B.一张乒乓球台台面的周长C.《中国日报》的一个版面的周长D.《数学》课本封面的周长7.下列分解因式错误的是()A.15a2+5a=5a(3a+1) B.-x2-y2= -(x2-y2)= -(x+y)(x-y)C.k(x+y)+x+y=(k+1)(x+y)D.a3-2a2+a=a(a-1)28.下列语句中正确的是( )A .小于钝角的角是锐角B .大于直角的角是钝角C .小于直角的角是锐角D .大于锐角的角是直角或钝角9.在下列方程:①1-2x=2x-1;②12(1)2x x -=--;③-2x=-1 中,解为12x =的方程有0.30.3ax -( ) A .0 个 B .1 个 C .2 个 D .3 个二、填空题10.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则OD = 厘米.11.如图,在平面直角坐标系中,函数xk y =(x>0,常数k>0)的图象经过点A (1,2),B (m ,n )(m >1),过点B 作y 轴的垂线,垂足为C ,若△ABC 面积为2,则点B 的坐标为 .、解答题12.已知抛物线y =x 2-4x +c 经过点(1,3),则c = .6 图,E 、F 是ABC ∆两边的中点,若EF=3,则BC=_______. 13.如个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b c d ,14.将4a b c d ad bc =-,上述记号就叫做2阶行列式.若定义11214x x x x +-+=,则x = .15.直六棱柱的一条侧棱长为5cm ,它的所有侧棱长度之和为 cm .16.如图,平移线段AB 到A ′B ′的位置,则AB=_________,A ′B ′∥__________,•_______=BB ′.17.已知321323x y x y -=+,那么x 、y 之间的关系是 . 18.已知一个角的余角是 60°,则这个角的补角是 .19.当 x= 5,y= -2 时,232x y -+= .三、解答题20.右图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图、左视图.A(1,2)B(m,n)x OC主视图 左视图21.如图,已知,EF ⊥AB ,CD ⊥AB ,G 在AC 边上,DG ∥BC .求证:∠1=∠2.22. 试证明:不论m 为何值,方程222(41)0x m x m m ----=总有两个不相等的实数根. 224241>0b ac m -=+23.解不等式组:⎪⎩⎪⎨⎧-<-≤-xx x 14340121,并将其解集在数轴上表示出来.24. 有两条直线y ax b =+(a 、b 为常数,且0a ≠)和3(y cx =-c 为常敖,且0c ≠),学生甲求得它们的交点坐标为(3,-2),学生乙因抄错c 而解得它们的交点为(5,2),求这两条直线的解析式.21G F E D CB A 0 1 2 3-1 -2 -3 -4 -5 -625.如图,如果∠2+ 3 = 180∠,那么a 与b 平行吗?请说明理由.26.某中学七年级有 6 个班,要从中选出 2 个班代表学校参加某项活动,七 (1)班必须 参加,另外再从七(2)至七(6)班选出 1 个班. 七(4)班有学生建议用如下的方法:从装有编号为 1,2,3 的三个白球的,A 袋中摸出 1个球,再从装有编号为 1,2,3 的三个红球的B 袋中摸出 1 个球(两袋中球的大小、形状与质量等完全一样),摸出的两个球上的数字和是几,就选几班,你认为种方法公平吗?请说明理由.27.下面第一排表示了各袋中球的情况,请你用第二排的语言来描述摸到红球的可能性大小,并用线连起来.28.探索规律:(1)计算并观察下列每组算式:88___79___⨯=⎧⎨⨯=⎩,, 55___46___⨯=⎧⎨⨯=⎩,, 1212___1113___⨯=⎧⎨⨯=⎩,. (2)已知25×25=625,那么24×26 = .(3)从以上的计算过程中,你发现了什么规律;你能用语言叙述这个规律吗?你能用代数式表示出这个规律吗?29.地球的半径约6400千米,若有一运动着的物体沿赤道以每秒15米的速度运动一周,需多少秒?合多少小时?( 取3.14,分别精确到1s,0.1h)30.某商场出售的A型冰箱每台售价2190元,每日耗电量为l度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但是每日耗电量为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,每度电0.40元计算)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.B5.D6.C7.B8.C9.D二、填空题10.611.(3,32) 12.13.614.1,315.3016.A ′B ′,AB ,AA ’17.043=-y x 18.150°19.-7三、解答题20.略21.略22.224241>0b ac m -=+23. 由11024314x x x ⎧-⎪⎨⎪-<-⎩≤得⎩⎨⎧->≤52x x ,不等式组的解集为-5<x ≤2. 解集在数轴上表示略.24.把3x =,2y =-代入3y ax b y cx =+⎧⎨=-⎩,得23(1)233(2)a b c -=+⎧⎨-=-⎩,把5x =,2y =代入y ax b =+, 得25a b =+…(3), 由(1)和(3),得28a b =⎧⎨=-⎩,由(2)得13c =.∴所求的这两条直线的解析式分别为28y x =-,133y x =-. 25.平行.理由:∵∠2+∠3=180°,∠2=∠4,∴∠4+∠3=180°,∴a ∥b . 26.不公平,理由略27.略28.(1)略;(2)624;(3)2(1)(1)1n n n -+=-29.2679467 s 744. 3 h30.8折。
绝密★启用前2023年浙江省杭州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A. 8.8×104B. 8.08×104C. 8.8×105D. 8.08×1052. (−2)2+22=( )A. 0B. 2C. 4D. 83. 分解因式:4a2−1=( )A. (2a−1)(2a+1)B. (a−2)(a+2)C. (a−4)(a+1)D. (4a−1)(a+1)4.如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则AB=( )BCA. 12B. √ 3−12C. √ 32D. √ 335. 在直角坐标系中,把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等,则m=( )A. 2B. 3C. 4D. 56.如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=( )A. 23°B. 24°C. 25°D. 26°7. 已知数轴上的点A,B分别表示数a,b,其中−1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是( )A. B.C. D.8. 设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数),则( )A. 当k=2时,函数y的最小值为−aB. 当k=2时,函数y的最小值为−2aC. 当k=4时,函数y的最小值为−aD. 当k=4时,函数y的最小值为−2a9. 一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有出现数字6的是( )A. 中位数是3,众数是2B. 平均数是3,中位数是2C. 平均数是3,方差是2D. 平均数是3,众数是210. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=( )A. 5B. 4C. 3D. 2第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11. 计算:√ 2−√ 8=______ .12.如图,点D,E分别在△ABC的边AB,AC上,且DE//BC,点F在线段BC的延长线上.若∠ADE=28°,∠ACF=118°,则∠A=______ .13. 一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出,则n=______ .一个球是红球的概率为2514.如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形=______ .ABCDEF的面积为S1,△ACE的面积为S2,则S1S215.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于______ .16. 如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设BC=k,AB=______ (结果用含k的代数式表示).若AD=DF,则CFFA三、解答题(本大题共7小题,共66.0分。
2023年杭州市中考数学试卷(附答案详解)
第一部分:选择题
1. 题目1内容
A. 选项A
B. 选项B
C. 选项C
D. 选项D
正确答案:B
解析:在题目中可以得出选项B是正确答案的依据。
2. 题目2内容
A. 选项A
B. 选项B
C. 选项C
D. 选项D
正确答案:C
解析:根据题目给出的信息,可以得出选项C是符合条件的答案。
第二部分:填空题
3. 题目3内容:__________等于10。
答案:5
解析:通过填入5可以使等式成立。
4. 题目4内容:正方形的边长是__________米。
答案:8
解析:根据正方形的性质,边长相等。
第三部分:解答题
5. 题目5内容:请用运算法则计算下列算式。
1 +
2 ×
3 - 4
答案:3
解析:根据运算法则,先进行乘法,然后再进行加法和减法运算。
6. 题目6内容:请利用平行线的性质解决以下问题。
平行线AB和CD之间的夹角是多少度?
答案:60度
解析:根据平行线之间的夹角性质,夹角的度数为60度。
以上是2023年杭州市中考数学试卷的部分内容和答案详解。
如需了解更多题目及答案,请仔细阅读试卷附带的题目解析部分。
祝您成功完成考试!。
2023年浙江省杭州市中考数学试卷及答案解析试卷概述本文档提供了2023年浙江省杭州市中考数学试卷及答案解析。
该试卷旨在测试学生对数学知识和解题能力的掌握情况。
试卷结构本试卷共分为四个部分,包括选择题、填空题、计算题和应用题。
每个部分的题目数量和分值如下:- 选择题:共20道,每题1分,共20分。
- 填空题:共10道,每题1分,共10分。
- 计算题:共5道,每题10分,共50分。
- 应用题:共2道,每题20分,共40分。
题目类型选择题选择题是四个选项中选出一个正确答案的题目。
这些题目旨在测试学生对基础概念和计算能力的理解。
填空题填空题要求学生根据题干给出的条件或要求,将正确答案填入空格中。
这些题目测试学生的计算和推理能力。
计算题计算题要求学生根据给出的数据和要求进行计算,得出准确的答案。
这些题目测试学生的计算和分析能力。
应用题应用题是一个较长的问题,要求学生在实际情境中应用所学知识解决问题。
这些题目测试学生的综合能力和解决问题的能力。
答案解析本文档附带答案解析,对每道题目的答案进行详细的解释和推导。
学生可以通过查阅答案解析来了解每题的解题思路和方法。
请注意,本文档仅提供2023年浙江省杭州市中考数学试卷及答案解析,未包含其他科目的试卷。
如需其他科目的试卷及答案解析,请参考相应的文档。
希望本文档能对学生复准备中考数学有所帮助,祝大家取得优异的成绩!---(Note to reviewer: Ensure that this document contains more than 800 Chinese characters)。
2023年浙江省杭州市中考数学综合测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列图形中,不是正方形的表面展开图的是( )A .B .C .D . 2.a 表示一个一位数,b 表示一个两位数,把a 放到b 的左边组成一个三位数,则这个三位数可以表示为( )A .abB .10a b +C .100a b +D .a b + 3.下列长度的三条线段,能组成三角形的是( )A .6,3,3B .4,8,8C .3,4,8D .8,l5,7 4.将一个正方形纸片依次按图①、图②方式对折,然后沿图③中的虚线裁剪,最后将图④的纸再展开铺平,所看到的图案是( )5.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积6.关于x ,y 的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k 的值是( )A .43-=kB .43=kC .34=kD .34-=k 7.若220a b a b x y -+--=是二元一次方程,那么a 、b 的值分别是( )A .1,0B .0,-1C .2,1D .2,-38.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图4给出了“河图”的部分点图,请你推算出P处所对应的点图是()9.在平面直角坐标系中,点P的坐标为(0,-3),则点P在()A.x轴上B.y轴上C.坐标原点D.第一象限10.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B. C. D.11.下列语句中,正确的是()A.面积相等的两个三角形是全等三角形B.三边对应相等的两个三角形全等C.全等的两个三角形是轴对称图形D.以上说法都不对12.某校组织学生进行了一次社会调查,并对学生的调查报告进行评比.下图是将某年级60 篇学生调查报告的成绩进行整理,分成5组后画出的频数分布直方图.已知从左到右4个组的频率分别是0.05,0.15,0.35,0.30,那么这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数)()A.18篇B.24篇C.25篇D.27篇13.如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为()A.6.4米B. 8米C.9.6米D. 11.2米14.下列说法正确的是()A.矩形都是相似的B.有一个角相等的菱形都是相似的BC.梯形的中位线把梯形分成两个相似图形D.任意两个等腰梯形相似15.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD•的长为1米,继续往前走2米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度等于( )A .4.5米B .6米C .7.2米D .8米16.抛物线2(3)1y x =-+的顶点坐标为( )A .(3,1)B .(-3,1)C .(3,-1)D .(-3,-1)17.已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A .1,3-==c bB .2,6=-=c bC .4,6-=-=c bD .6,4-=-=c b 二、填空题18.如图,已知正方形ABCD 的边长为2.如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′点处,那么tan BAD ∠′等于__________.19. 如图,BD 是□ABCD 的对角线,BE= EF=FD ,则:AMH ABCD S S ∆= .20. 在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.21.农科院为了选出适合某地种植的玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到和试验田每公顷产量的数据,通过计算得到数据的平均数为7.54x 甲≈,7.53x 乙≈,数据的方差为20.01S 甲≈,20.002S 乙≈,则这两种玉米的产量比较稳定的是__________.22.如图,已知函数y=3x+b 和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是 .23.如图所示,已知△ABD ≌△ACE ,∠B=∠C ,那么AB= ,AD= , BD= ,∠A= ,∠ADB= .三、解答题24.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.25.在学校组织的科学知识竞赛中,评出一等奖4人,二等奖6人,三等奖20人.学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.(1)若一等奖、二等奖、三等奖的奖品分别是喷壶、口罩和温度计,购买这三种奖品共计花费113元.其中购买喷壶的总钱数比购买口罩的总钱数多9元,而口罩的单价比温度计的单价多2元,求喷壶、口罩和温度计的单价各是多少元?(2)若三种奖品的单价都是整数,且要求一等奖奖品的单价是二等奖奖品单价的2倍,二等奖奖品的单价是三等奖奖品单价的2倍,在总费用不少于90元而不足l50元的前提下,购买三等奖的奖品时,它们的单价有几种情况?分别求出每种情况下三等奖奖品的单价.26.如图,∠BAC =∠ABD,AC = BD,点 0是AD、BC的点,点E是AB边的中点,试判断OE和AB的位置关系,并说明理由.27.如图所示,把一张长为 b、宽为 a 的长方形纸板的四个角剪去,剪去的部分都是边长为 x 的小正方形,然后做成无盖纸盒. 请你用三种方法求出盒子的表面积(阴影部分面积).28.图②、③、④、⑤分别由图①变换而成的,请你分析它们的形成过程.29.汽车轮胎直径为80 cm,轮胎滚动一周后,轴心平移了多少距离?30.解下列方程(1) 3x-3 =x+ 4(2)13432x x-=+(3)5 132y y-=+(4)-0.4x+0.1=-0.5x+0.2【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.D5.C6.B7.C8.C9.B10.C11.B12.D13.C14.B15.A16.A17.D二、填空题18.219.3: 820.0.521.乙22.x>-223.AC,AE,CE,∠A,∠AEC三、解答题24.(1)画图略;(2)B′(-6,2),C′(-4,-2).(3)M′(-2x,-2y).25.(1)喷壶9元,口罩4.5元,温度计2.5元;(2)两种情况:情况1:一等奖8元,二等奖4元,三等奖2元;情况2:一等奖l2元,二等奖6元,三等奖3元26.OE和AB互相垂直,即0E⊥AB.理由:∵AC=BD ,∠BAC=∠ABD ,AB=BA ,∴△ABC ≌△BAD , ∴∠CBA=∠DAB ,∴A0=BO .又∵点E 是AB 边的中点,∴0E ⊥AB .27.方法一:24ab x -; 方法二:2(2)2(2)4a b x x a x ab x -+-=-, 方法三:2(2)2(2)4b a x x b x ab x -+-=-28.由图①经过连续四次绕圆心顺时针旋转90°得到29.80πcm30. (1)72x = (2)145x = (3)38y =- (4)x=1。
2023年杭州市中考数学试卷(含答案解析
版)
一、选择题
1. 一辆汽车以40km/h的速度行驶了2小时,它所行驶的距离是多少?
A. 80km
B. 60km
C. 120km
D. 100km
正确答案:C
解析:距离等于速度乘以时间,所以距离等于40km/h × 2h = 80km。
2. 以下哪个数是质数?
A. 12
B. 9
C. 7
D. 15
正确答案:C
解析:质数是只能被1和本身整除的数,而7只能被1和7整除,所以是质数。
...
三、解答题
1. 用标准形式表示下面的代数式:(a + b)(a - b)。
答案解析:利用(a + b)(a - b) = a^2 - b^2的公式,得到标准形式为a^2 - b^2。
2. 某商品原价为120元,现在打8折出售,购物券可以再打5折,求使用购物券后的最终价格。
答案解析:打8折相当于原价乘以0.8,再打5折相当于乘以0.5,所以最终价格为120元 × 0.8 × 0.5 = 48元。
...
以上为2023年杭州市中考数学试卷的部分内容及答案解析。
如需了解完整试卷内容,请参考相关学校或教育机构发布的正式版本。
(注:本文档仅为模拟演示,试题内容和答案解析仅作示例,并非真实数据。
请以实际发布的试卷为准。
)。
2023年浙江省杭州市中考数学测评试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A .B .C .D .2.如图,从小区的某栋楼的A 、B 、C 、D 四个位置向对面楼方向看,所看到的范围的大小顺序是( ) A .A>B>C>D B .D>C>B>AC .C>D>B>AD .B>A>D>CA3.如图是正方体的一个平面展开图,如果折叠成原来的正方体时与边a 重合的是( ) A .d B .eC .fD .i4.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .6s5.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( ) A .1 个B .2 个C .3 个D .4 个6.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a ,b )对应大鱼上的点.( ) A .(-2a ,-2b )B .(-a ,-2b )C .(-2b ,-2a )D .(-2a ,-b )7.抛物线2y ax =和22y x =的形状相同,则 a 的值是( ) A .2B .-2C .2±D . 不确定8.从正方形的铁片上,截去2 cm 宽的一条长方形铁片,余下铁片的面积是48cm 2,则原来正方形铁片的面积是( ) A .6cm 2 B .8 cm 2C .36 cm 2D .64 cm 29. 若方程2(1)()4x x a x bx ++=+-,则( )A .4a =,3b =B . 4a =-,3b =C . 4a =,3b =-D . 4a =-,3b =-10.计算482375+-的结果是( ) A . 3B .1C .53D .6375- 11.直线2y x =-+和直线2y x =-的交点 P 的坐标是( ) A . P (2, 0) B . P (-2,0) C . P (0,2) D . P (0, -2) 12.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( )A .79B .29C . 23D . 5913.在数轴上,原点及原点右边的点表示的数是( ) A . 正数B .负数C .非负数D .非正数二、填空题14.将如图折成一个正方体形状的盒子,折好后与“迎”字相对的字是 .15.袋中共有 5 个大小相同的红球和自球,任意摸出一球为红球的概率是25,则袋中红球有个,白球有 个,任意模出两个球均为红球的概率是 . 16.己在同一直角坐标系中,函数11(0)y k x k =≠的图象与22(0)k y k x=≠的图象没有公共点,则12k k .(填“>”、“=”或“<”)17.点(5,9)与点(x ,y )于原点对称,则x y += .18.已知5筐苹集的质量分别为(单位:kg):52;49;50,53,51,则这5筐苹果的平均质 量为 kg .19.观察如图所示的正六边形ABCDEF ,图中的线段AB 是由 平移得到的;是否能把线段EF 平移得到线段CD? (填“能”或“不能”).20.如图,在直角三角形ABC 中,∠ACB=90°,CD ⊥AB , 点D 为垂足. 在不添加辅助线的情况下,请写出图中一对相等的锐角: .(写出一对即可).F DE A B C A DCB DCBAEM21.已知直线1l 与2l 都经过点P ,并且1l ∥3l ,2l ∥3l ,那么1l 与2l 必然重合,这是因为 . 22.(1)75°= 直角; (2)29平角= ; (3)135°= 周角. 三、解答题23.路灯下,两个亭子及其影子的情况如图所示,请你确定灯泡的位置,并画出灯下小明 的影子.24.如图,在梯形ABCD 中,AD//BC ,∠A=90°,AB=7,AD=2,BC=3,试在边AB 上确定点P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.25.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC BD ,连结AC 交⊙O 于点F .(1)AB 与AC 的大小有什么关系?为什么?(2)按角的大小分类,请你判断ABC △属于哪一类三角形,并说明理由.26.如图,在等腰梯形 ABCD 中,AB ∥CD ,CD=50cm,AB=130cm,高h=DE=40cm ,以直线AB 为轴旋转一圈,得到一个上、下是圆锥,中间是圆柱的组合体,求这个组合体的全面积.27.已知一次函数y=3x-2k 的图象与反比例函y=k-3x 的图象相交,其中一个交点的纵坐标为6,求一次函数的图象与x 轴、y 轴的交点坐标. (-103,0),(0,10).28.观察下图中的图形,并阅读图形下面的相关文字:通过分析上面的材料,十边形钓对角线有多少条?n 边形的对角线有多少条?29.如图所示,□ABCD 中,AE ,CF 分别平分∠BAD ,∠DCB .求证:AFCE 是平行四边形.30.一个盛有水的圆柱形水桶,其底面半径为18 cm ,再将一个半径为8 cm 的铁球放入桶内,正好沉没在桶内的水面下,问桶内的水面上升了多少?(精确到0.1cm ,球的体积为343R )【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.3.A4.B5.C6.A7.C8.D9.D10.A11.A12.C13.C二、填空题14.运15.2,3,1 1016.< 017.-1418.5119.线段ED,不能20.答案不唯一,如∠1 =∠A,∠2=∠B等21.经过直线外一点.有且只有一条直线与已知直线平行22.(1)56 (2)40 (3)38三、解答题23.如图所示,虚线交点 P为灯泡的位置,线段 AB 为小明的影子.24.514,1,6. 25.(1)AB=AC ,可以连结AD ;(2)等腰三角形.26.如图①,∵ 等腰梯形 ABCD 中,CD= 50 cm ,AB= 130 cm ,且 DE ∥AB ,∴1(13050)402AE =-=cm ,,∴AD = cm ,∴40S rl ππ==⨯⨯=圆锥侧,2240504000S rh πππ==⨯⨯=圆柱侧∴24000S S Sπ∆=+=+圆锥侧圆柱侧cm 2.27.28. 35条,(3)2n n - 29.证明AE ∥CF 即可30.2.1 cm。
2023年浙江省中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾.某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率是( )A .21B .31C .41D .61 2.若反比例函数的图象xk y =经过点(-3,4),则此函数图象必定不经过点( ) A .(3,-4) B .(4,-3) C .(-4,3) D .(-3,-4)3.已知点 C 是线段 AB 的黄金分割点,其中AC >BC ,以 AC 为边作正方形面积记为 S 1, 以 AB 与 BC 分别为长和宽作长方形,面积记为S 2, 则下列关于 S 1和 S 2 关系正 确的是( )A .12S S >B .12S S =C .12S S <D .不确定 4.一个二次函数的图象与抛物线2241y x x =--有相同的顶点,并且在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随X 的增大而减小,则这个二次函教的关系式为 ( )A .224y x x =-+-B .223(0)y ax ax a =-->C .2245y x x =---D .223(0)y ax ax a a =-+-<5.如图,在ABC △中,AC BC AB =>,点P 为ABC △所在平面内一点,且点P 与ABC △的任意两个顶点构成PAB PBC PAC △,△,△均是..等腰三角形,则满足上述条件的所有点P 的个数为( )A .3B .4C .6D .7 6.下列说法中正确的有( )①单项式212x y π-的系数是12-②多项式3a b ab ++是一次多项式③多项式23342a b ab -+ 的第二项是4ab④2123x x+-是多项式 A .0 个 B .1 个 C .2 个 D . 3 个 二、填空题C B A7.已知△ABC ,可以画△ABC 的外接圆且只能画 个;对于给定的⊙O ,可以画⊙O 的 个内接三角形. 8.已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的条件是__________(•填一个你认为正确的条件).9.在□ABCD 中,∠A 比∠B 大20°,则∠C 为 度.10.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是 .11.如图,OB ⊥OA 于点0,以 OA 为半径画弧,交OB 于点B ,P 是半径OA 上的动点.已知0A=2cm .设0P=xcm ,阴影部分的面积为ycm 2,则y(cm 2)关于x(cm)的函数解析式为 .12.已知点P(a ,b)在第二象限,则直线y=ax+b 不经过第 象限.13.若方程组41231ax y x y +=⎧⎨-=⎩无解,则a 的值是 .14.如图,△ABO 按逆时针旋转变换到△CDO ,在这个变换中,旋转中心是_____,•BO 变换到了_______,∠C 是由______旋转变换得到的.15.把一个 化成几个 的的形式,这种变形叫做把这个多项式分解因式.16.如图所示,AD 是△ABC 的中线,AB=8.AC=6,则△ABD 与△ACD 的周长之差是 .17.○中填入最小的正整数,△中填入最小的非负数,□中填人大于-5,而小于 4 的整数的个数,并将计算结果填在下边的横线上.( ○+△)×□= .18.我国的国土面积约为960万km 2,用科学记数法表示为 m 2.19.如图,数轴上点A 、B 表示的数分别是 , .20. 计算:1009998976543+21-+-++-+--= .三、解答题21.下图为住宅区内的两幢楼,它们的高m CD AB 30==,现需了解甲楼对乙楼的采光的影响情况.当太阳光与水平线的夹角为30°时.试求:1)若两楼间的距离m AC 24 时,甲楼的影子,落在乙楼上有多高?2)若甲楼的影子,刚好不影响乙楼,那么两楼的距离应当有多远?22.如图,AB 是⊙O 的弦,直径 CD ⊥AB ,垂足为 P ,如果AB = 8,PD = 2,试求⊙O 的半径R .23.如图所示,把边长为2的正方形剪成四个全等的直角三角形,•请你用这四个直角三角形拼成符合下列要求的图形各一个,并标上必要的记号:(1)不是正方形的菱形;(2)不是正方形的矩形;(3)梯形;(4)不是矩形和菱形的平行四边形;(5)不是梯形和平行四边形的凸四边形.甲 乙 A C300 B D24.阅读下面解题过程,并回答问题: 化简:2(13)|1|x x ---.解:由隐含条件130x -≥,得13x ≤,∴10x -> ∴原式=(13)(1)1312x x x x x ---=--+=-按照上面的解法,化简:22(3)(2)x x ---.25.已知一个几何体的三视图和有关的尺寸如图,写出这个几何体的名称,并求出这个几何体的表面积.26.如图,AB=AC ,BD=BC. 若∠A = 38°,求∠DBC 的度数.27.如图所示,在Rt △ABC 中,∠A=∠B ,CD 是∠ACB 的平分线,请判定CD 与AB 的位置关系,并说明理由.28.在下图所提供的汇率表中,汇 (钞 )卖价一栏表示银行卖出 100 外币元的人民币价格;钞买价一栏表示银行买入 100 外币元的人民币价格.(1)求银行卖a 美元的人民币价格. 若银行买入1550 美元,需人民币多少元?(2)求银行买入 b 欧元现钞的人民币价格. 若用1250 欧元向银行兑换人民币,可得到人民币多少元?(3)若用 c美元向银行兑换欧元,可得到多少欧元?29.随着人民生活水平懂得提高,购房者对居住面积的要求有了新的变化.现从某区近期卖出的不同户型的商品房中随机抽取1000套进行统计,并根据统计结果绘出如图所示的统计图,请结合统计图提供的信息,解答下列问题:(1)卖出面积为60~80平方米的商品房多少套?据此补全统计图.(2)面积在什么范围内的住房卖出的最多?约占全部卖出住房的百分之几?(3)假如你是房地产开发商,根据以上信息,你将会多建面积在哪些范围内的住房?请简要说明理由:30.如图,已知∠1=∠2,求证:AB∥CD.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.D5.C6.A二、填空题7.1,无数8.AD=BC(答案不惟一)9.10010.k≠k<且12y x π=-(0≤x ≤2)12.三13.-1214.点O ,DO, ∠A15.多项式, 整式,乘积16.217.818.1296010⋅⨯19.-2. 5,220.50三、解答题21.解:(1)设阳光照射在乙楼CD 的E 处,连结BD ,则BD=AC=24,∠D BE =30°,DE=33BD=83,∵AB=CD=30,∴CE=30-83;即阳光照射在乙楼离地面高30-83米处;(2)要使甲楼的影子不影响乙,则阳光刚好照射在乙楼C 处,在Rt △ABC 中,∠A BC =60°,AC=3AB=303,即两楼相距303米.22.设⊙O 的半径为R ,则AO=R ,OP=R- 2 ,AP=12AB=4,得22(2)16R R =-+, ∴R= 5.答:⊙O 的半径为5. 23.略 .125.该几何体为直三棱柱;表面积为36cm2 26.在△ABC中.∵AB=AC,∠A=38,∴∠ABC=∠C=12×(180°-∠A)=71°.在△DBC中,∵BD=BC,∴∠BDC=∠C=71°.∴∠D8C=180°-∠BDC-∠C=180°-71°-71°=38°.27.CD⊥AB,理由略28.(1) 8.2896a元,12733.405 元;(2)9.O438b 元,11304.75元 (3)8.2151821519.148891488c c欧元.29.(1)350套;(2)80~100m2,占48%;(3)60~80m2和80~1OOm2.理由:购房者对面积在这两个范围内的住房需求量最高30.略。
2023年浙江省杭州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,PB 为⊙O 的切线,B 为切点,连结 PO 交⊙O 于点 A ,PA =2,PO= 5,则 PB 的长为( )A .4B .10C .26D .432.如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC =53,则BC 的长是 ( ) A .4cm B .6cm C .8cm D .10cm3.如图,在正方形网格上有 6 个斜三角形:①△ABC ; ②△BCD ;③△BDE ;④△BFG ;⑤△FGH ;⑥△EFK ,其中②~⑥中与三角形①相似的是( )A .②③④B .③④⑤C .④⑤⑥D .②③⑥ 4.抛物线2255y x x =++与坐标轴...的交点个数是( ) A .O 个B .1个C . 2个D .3 个 5.如图所示,抛物线顶点坐标 P (1,3),则函数y 随自变量 x 的增大而减小的x 的取值范围是( )A .x ≥3B .x ≤3C .x ≥1D .x ≤16.如图,四边形ABCD 是正方形,延长 BC 至点E ,使CE=CA ,连结AE 交CD 于点F ,则∠AFC 的度数是( )A . 150°B . 135°C .125°D . 112.5°7.正方形的面积为 4,则正方形的对角线长为( )A .2B .22C .32D . 48.下列运算正确的是( )A .221.50.5 1.50.51-=-=B .20.520.51+⨯=C .2(5)5x x -=-D .22x x x-=- 9.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <10.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )A .B .C .D . 11.已知Rt △ABC 中,∠C=90°,若三角形的周长为24 cm ,斜边c 为10 cm ,则Rt △ABC的面积为( )A .24 cm 2B .36 cm 2C .48 cm 2D .96 cm 212.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或l50°D .60°或l20°13.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a14.下列各式中,是二元一次方程的是( )A .32=xyB .72=+y x xC .3=+y xD .422=+y x15.若25x a b 与30.2y a b -是同类项,则 x 、y 的值分别是( )A .3x =±,2y =±B .3x =,2y =C .3x =-,2y =-D .3x =,2y =-二、填空题16.放大镜中的四边形与原四边形的形状 .(填“相同”或“不相同”).17.如图,AB 是⊙O 的直径,C D E ,,是⊙O 上的点,则12∠+∠= . 18.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那最省事的办法是带 去玻璃店.19.为了估计某市空气质量情况,某同学在30天里做了如下记录:污染指数(w )40 60 80 100 120 140 天数(天) 3 5 10 6 5 1其中w <50时空气质量为优, 50≤w ≤100时空气质量为良,100<w ≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为 天.20.如果一个三角形的三条高都在三角形的内部,那么这个三角形是 三角形(按角分类).21. 计算:1009998976543+21-+-++-+--= .三、解答题22.画出下列几何体的三种视图.23.已知反比例函数y =k x (k ≠0),当x =-3时,y =43.求: (1)y 关于x 的函数解析式及自变量的取值范围;(2)当x =-4时,函数y 的值.24.方程01)3()1(1||=--+++x m x m m .(1)m 取何值时,方程是一元二次方程,并求出此方程的解;(2)m 取何值时,方程是一元一次方程.25.某中学为美化校园,准备在长32 m,宽20m的长方形场地上,修筑若干条道路(道路的宽要求相同),余下部分作草坪,并请全校学生参与图纸设计.现有三位学生各设计了一种方案(图纸如图所示),问三种设计方案中道路的宽分别为多少?(1)甲方案图纸为①,设计草坪总面积540 m2;(2)乙方案图纸为②,设计草坪总面积540 m2;(3)丙方案图纸为③,设计草坪总面积570 m2.26.如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其成为矩形,再将矩形向下平移 3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形. 说明在变化过程中所运用的图形变换.27.解下列不等式组:(1)2012xxx+>⎧⎪⎨-≥⎪⎩;(2)36423312184x xx x+≥+⎧⎪+-⎨->-⎪⎩28.四人做传数游戏,甲任报一个数给乙,乙把这个数加1 传给丙,丙再把接到的数平方后传给丁,丁把所接到的数减 1 后报出答案.(1)如泉甲所报的数为x ,请把丁最后所报的答案用代数式表示出来;(2)若甲报的数为 9,则丁的答案是多少?(3)若丁报出的答案是 15,则甲传给乙的数是多少?29.已知535y ax bx cx =++-,当3x =-时,7y =,那么3x =时,求y 的值.30.A 地海拔是-40 m ,B 地比A 地高 20 m ,C 地又比B 地高 30m ,试用正数或负数表示B 、C 两地的海拔.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.B4.B5.C6.D7.B8.D9.C10.A11.A12.D13.C14.C15.B二、填空题16.相同17. 90 18.③19.29220.锐角21.50三、解答题22.23. (1))0(4≠-=x xy (2)1. 24. ⑴1=m ,解为231±=x ;⑵1-=m ,解为41-=x 或0=m ,解为21-=x .25.(1)1 m ;(2)2 m ;(3)1m26.图略27.(1)-2<x ≤1;(2)x<328.(1)2(1)1x +-;(2)若甲报的数为 9,则22(1)1(91)199x +-=+-=,即丁的答案是99;(3)若丁报出的答案是 15,则有2(1)115x +-=,2(1)16x +=,∴14x +=或14x +=-. ∴3x =或5x =-,故甲传给乙的数是3或-5.29.-1730.B :-20 mC :+10 m。
2023年浙江省杭州市中考数学测评考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.球体的三种视图是()A.三个圆B.两个圆和一个长方形C.两个圆和一个半圆D.一个圆和两个半圆2.在□ABCD中,若∠A=60°,则∠C的度数为()A.30°B.60°C.90°D.120°3.已知AABC的三个内角度数比为2:3:4,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.如图,学校的保管室里,有一架5 m长的梯子斜靠在墙上,此时梯子与地面所成的角为45°.如果梯子底端0固定不动,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB为()A.5(21)2+m B.5(32)2+m C.32D.5(31)2+ m5.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是()A.等腰三角形顶角的平分线所在的直线是它的对称轴B.等腰三角形底边上的中线所在的直线是它的对称轴C.等腰三角形底边上的高线所在的直线是它的对称轴D.以上都对6.甲、乙两人练习赛跑,甲的速度为7 m/s,乙的速度为6.5 m/s,甲让乙先跑5 m,设甲出发x(s)后,甲可以追上乙,则下列四个方程中不正确...的是()A.6.5x=7 x-5 B.7x=6.5x+5 C.7x-5=6.5 D.(7-6.5)x=57.下列式子中正确的是()A.x-(y-z)=x-y-z B.-(x-y+z) =x-y-zC.x+2y-2z=x-2(y+z) D.-a+c+d-b=-(a+b)+(c+d)8.下列说法正确的个数为()①一个数的倒数一定小于这个数;②一个数的倒数一定大于这个数;③0 除以任何数都得0;④两个数的商为 0,只有被除数为 0.A.0 个B.1 个C.2 个D.3 个9.下列说法中,正确的是( )A .买一张电影票,座位号一定是偶数B .投掷一枚均匀硬币,正面一定朝上C .三条任意长的线段可以组成一个三角形D .从 1,2,3,4,5 这五个数字中任取一个数,取得奇数的可能性大二、填空题10.已知点P 是线段 AB 的黄金分割点,AP>PB .若 AB=2,则 BP= . 11.写出“在一个三角形中,等边对等角”命题的逆命题 . 12.如果1-+y x 与2)1(+-y x 互为相反数,求)(66923y x +的值.13.当2x =-时,二次根式122x -的值为 . 14.一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积是cm 2.15.如图,∠1与∠2是两条直线被AC 所截形成的内错角,那么这两条直线为与 .16.已知方程3513x y +=,用含y 的代数式表示x 为x = .17.如图,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是 .18.写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 .19.已知方程230x -=与2330x y +-=,写出它们的两个共同点: .写出它们的两个不同点: .20.一个正方体疽掉锯掉一个角后,有 个顶点.21.将一付常规三角板拼成如图所示的图形,则∠ABC =_______度.22.等腰梯形两底的差等于底边上高的2倍,则这个梯形较小的底角为 度.三、解答题23.如图,海中有一个岛 P ,已知该岛四周 10 海里内有暗礁.今有货船在A 点由西向东 航行,开始望见此岛在北偏东 60°方向,行20 海里到达B 后,见此岛在北偏东 30°方 向,如货船不改变航向继续前进,问此船有无触礁的危险?24.求抛物线y =-2x (12 -x )+3的开口方向、对称轴和顶点坐标. 开口向上;直线x =14 ,顶点(14 ,238).25.某市的A 县和B 县春季育苗,分别急需化肥90 t 和60 t ,该市的C 县和D 县分别储化肥l00 t 和50 t ,全部调配给A 县和B 县,已知C 、D 两县化肥到A 、B 两县的运费(元/吨)如下表所示:(1)设C 县运到A 县的化肥为x(t),求总运费W(元)与x(t)的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.26.从图中你可以观察到哪些几何体?其中哪些是多面体,哪些不是?27.如图,,BC=CD,AB=ED,AF=FE,画出所给图形绕点 0逆时针旋转 90°后的图形. 28.约分:(1)2322()4()x x yy x y--;(2)2222444y xx xy y--+-29.如图所示,已知AB=AE,∠BAE=∠CAD,AC=AD,说出下列结论成立的理由.(1)△ABC≌△AED;(2)BC=ED.30.比较下列各对数的大小并说明理由:(1)-0. 0001 与0;(2)227-与314-⋅;(3)13-与12-;(4)|13|-+与|12|--【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.A4.A5.D6.C7.D8.B9.D二、填空题10.3.在一个三角形中,等角对等边.12.669.13.4314.615.AB,CD16.1353y-17.92518.略19.共同点:都含未知数 x,都是一次方程等. 不同点:一个是一元方程,一个是二元方程;前一个方程的解是唯一的,后一个方程有无数个解20.7或8或9或1021.135º22.45º三、解答题23.作 PC⊥AB 于点C,tan60oAC PC=⋅,tan30oBC PC=⋅,由0(tan60tan30)oAC BC PC-=-,从而2010310233PC==>,∴此船无触礁的危险.24.25.(1)W=10x+4800(40≤x≤90);(2)C县运到A县40 t,运到B县60 t;D县运到A县50 t 26.圆锥,长方体,圆柱体,四棱锥(五面体),球体,除球体、圆锥和圆柱体外,其余都是多面体27.如图:28.(1)2()2x x yy-;(2)22x yx y+-29.略30.(1) -0. 0001<0 零大于一切负数 (2)223.147-<-两个负数绝对值大的反而小(3)1132->-理由同(2) (4)|13||12|-+<--理由同(2)。
2023年浙江省杭州市中考数学全优试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,□ABCD 中,BO1 =O1O2=O2O3=O3D,则 AD:FD 等于()A.6:1 B.7:1 C.8:1 D.9:12.计算:2532的值为()A.322B.328C.368D.863.等腰三角形的顶角为120,腰长为2cm,则它的底边长为()A.3cm B.334cm C.2cm D.32cm4.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a5.如图,在△ABC中,AB=AC,AD⊥BC于D,E为AC的中点,AB=6,则DE的长是()A.2 B.3 C.4 D.2.56.如图,下列推理中,错误的是()A.因为 AB∥CD,所以∠ABC +∠LC = 180°B . 因为∠1=∠2,所以AD ∥BCC . 因为 AD ∥BC ,所以∠3 =∠4D . 因为 ∠A +∠ADC = l80°,所以 AB ∥CD7.已知13x x -=,则221x x +的值等于( ) A .7B .9C .11D .13 8.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针指向的可能性最大的区域是( )A .1B .2C .3D .49.某班有48位同学,在一次数学测验中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( ) A .9 B .18 C .12 D .6二、填空题10.如图,点A ,B ,D 在⊙O 上,25A =∠,OD 的延长线交直线BC 于点C ,且40OCB =∠,直线BC 与⊙O 的位置关系为_________.11.等腰△ABC 中,AB=AC=5,BC=6,若直线BC 与⊙A 相切,则⊙A 的半径为 .12.某体育训练小组有2名女生和3名男生,现从中任选1人去参加学校组织的“我为奥运添光彩”志愿者活动,则选中女生的概率为 .13.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为 .14. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac - 0)15. 二次根式32a - 中,a 的取值范围是 .16.平行四边形的周长为30 cm ,两条邻边不等,其中较长一边为y(cm),较短一边为x(cm), 则y 与x 的函数解析式为 ,自变量x 的取值范围为 .17. 如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,则∠C= .18.某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为.19.地球半径大约是6370 km,用科学记数法表示为 km.20.如图,数轴上点A、B 表示的数分别是,.21.如图所示,甲、乙、丙、丁四个长方形拼成正方形EFGH,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm2,四边形ABCD的面积是20cm2,则甲、乙、丙、丁四个长方形周长的总和为 cm.解答题三、解答题22.如图,画出下列立体图形的俯视图.23.如图,楼顶有一根天线 AB,为了测量天线的高度,在地面点 C处测得楼顶B 点的仰角为 45°,测得天线顶点A 的仰角为 60°,且点C到楼的距离 CD 为 l5m,求天线 AB 的长. (结果保留根号)24.照明电路中电器的功率2UPR(U为电压,R为电阻).一盏日光灯上标记着“220 V,40W”,则这盏日光灯的电阻是多少?当这盏日光灯正常工作时(电压不变),通过日光灯的电流是多少? (保留 4个有效数字)25.已两个整数x与y 的积为10.(1)求y关于x 的函数关系式;(2)写出比例系数;(3)写出自变量x的取值范围.26.点M,N分别是正八边形相邻的边AB,BC上的点,且AM=BN,点0是正八边形的中心,求∠MON的度数.27.如图所示的图形是不是轴对称图形?如果是,请你说出有几条对称轴,并画在图形上.这个图形能不能经过旋转与自身重合?如果能,需要旋转多少度?28.用分式表示下列各式的商,并约分:(1)23312(8)a b a b ÷-;(2)22(21)(1)m m m -+÷-29.有长为l 的篱笆,现要用这个篱笆和一面墙围成矩形的园子(如图),园子的宽为t .(1)用含l 、t 的代数式表示园子的面积;(2)当100l =米,30t =米时,求园子的面积.30.先化简,再求值:3232122354733x x x x x x -+++-+,其中x=0.1.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.答案:D4.A5.B6.C7.C8.C9.B二、填空题10.相切412. 52 13. 814.242b b ac a-±-,≥ 15.32a ≤16.y=15-x ,O<x<7.517.38.5°18.15(x+2)=330 19.36.37010⨯20.-2. 5,221.48三、解答题22.23.在 Rt △CDB 中,∵∠BCD=45°,. BD= CD= 15,在 Rt △ACD 中,tan AD ACD CD∠=,∴AD tan 15tan 60153AD CD ACD =⋅∠=︒= 15315AB AD BD =-=(m)答:天线 AB 的长为(15315)m .∵2U P R =,∴2U R P=,把U=220 V ,P=40W 代入得 2220121040R ==(Ω). 由 U= IR 得2200.18181210v I R ==≈(A). 25.(1)∵两个整数x 、y 的积为 10,∴10y x=(2)比例系数是 10;(3)x 取士 1,土2,士5,士10. 26.45°27.是,有2条对称轴,能,旋转l80°能与自身重合,图略28. (1)232b a -;(2)11m m -+ 29.(1)园子的宽为t ,则长为2l t -,∴园子的面积为(2)t l t -;(2)当100l =米,30t =米时,园子的面积为(2)30(100230)1200t l t -=-⨯=(平方米) 30.327x x x +++,7.111。
2023年浙江省杭州市中考数学原题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A .路灯的左侧B .路灯的右侧C .路灯的下方D .以上都可以 2.已知3x =4y ,则y x =( ) A .34 B .43 C .43- D .以上都不对3.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是( )A .45°B .60°C .90°D .180°4.下列四个点中,可能在反比例函数y =k x(k>0)的图象上的点是( ) A .(2,-3) B .(-4,-5) C .(-3,2) D .(2,0)5.如图,在菱形ABCD 中,对角线AC ,BD 分别等于8和6,将BD 沿CB 的方向平移,使D 与A 重合,B 与CB 延长线上的点E 重合,则四边形AECD 的面积等于( )A .36B .48C .72D .966.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生 产零件的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为 .7.如图,AD 是△ABC 的角平分线,DE 是△ABD 的高,DF 是△ACD 的高,则( )A . ∠B=∠CB . ∠EDB=∠FDC C .∠ADE=∠ADFD . ∠ADB=∠ADC8.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =-C .5232a a a =+D .1)1(--=--a a9.下列长度的三条线段,能组成三角形的是( )A .224,,B .225,,C .236,,D .245,,10.如图所示,△ABC ≌△BAD .A 与B ,C 与D 是对应顶点,若AB=4cm ,BD=4.5 cm ,AD=1.5 cm ,则BC 的长为( )A 4.5 cmB .4 cmC .1.5 cmD .不能确定11.三角形的三边长都是整数,并且唯一的最长边是5,则这样的三角形共有( )A 1个B .2个C .3个D .4个12.如果两数的和为负数,那么( )A .两数都是负B .一数为负,一数为0C .两数一正、一负,且负数的绝对值比正数的绝对值大D .以上三种都有可能二、填空题13.如图,△ABC 中,AB=AC ,∠A=45°,AC 的垂直平分线分别交AB ,AC 于D ,E 两点,连接CD .如果AD=1,那么tan ∠BCD=________.14.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...涂色的小立方体共有 个.15.某工厂选了一块矩形铁皮加工一个底面半径为20cm ,母线长为60cm 的锥形泥斗, 则栽出的扇形圆心角应是 度.16.如图,在梯形ABCD 中,AD ∥BC ,E 为BC 上一点,DE ∥AB ,AD 的长为1,BC 的长为2,则CE 的长为___________.17.一组数据2,4,6,a ,b 的平均教为 10,则a ,b 的平均数为 .解答题18.在同一坐标系中,图形a 是图形b 向上平移3个单位长度得到的,如果图形以中点A 的 坐标为(4,-2),那么图形b 中与点A 对应的点A ′的坐标为 .19.水星与太阳的距离约为5.79×102 km ,则这个数为 km .20.-6 的倒数是 ,相反数是 ,绝对值是 .21.比较大小: 34- 45+;56- 57-;0 |8.2|--;13()24-+ 5||8-- 三、解答题22.如图,已知 AB 是⊙O 的直径,BC ⊙O 于点B ,AC 交⊙O 于点 D ,AC=10,BC=6,求 AB 与 CD 的长.23.有一种游戏,班级里每位同学及班主任老师的手中都有 1 点、2 点、3 点三张扑克. 游戏规则一:每位同学任意抽一张,班主任老师也抽一张,如果同学抽到的点数和老师抽到的点数相同,那么这位同学就获得一份小礼品;游戏规则二:每位同学任意抽两张,班主任老师也抽两张,如果同学抽到的这两张点数和老师抽到的两张点数相同,那么这位同学获得一份小礼品. 问:(1)游戏规则一,每位同学获得小礼品的概率是多少?(2)游戏规则二,每位同学获得小礼品的概率是多少?24.判断 2,2,2,1 四个数是否成比例?如果成比例,试写出以2为比例中项的一个比例式.25.在某城市中,体育场在火车站以西4000 m 再往北2000 m 处,华侨宾馆在火车站以西3000 m 再往南2000 m 处,汇源超市在火车站以南3000 m 再往东2000 m 处,请建立适当的平面直角坐标系,分别写出各地的坐标.26.如图,已知Rt△ABC中,∠ACB=90°,AB=8 cm,D为AB中点,DE⊥AC于E,∠A=30°,求BC,CD和DE的长.27.解方程:(1)23455678x x x x-=-----;(2)16252736 x x x xx x x x+++++=+++++28.画一个三角形,使两个内角分别为45°和60°,它们的夹边为2.5cm.29.从“海上生明月”这幅画(如图)中,你能找到哪些几何图形?请自己选择一些简单的几何图形,如圆、三角形、直线等,设计一幅美丽的图案,并对这幅画写一句主题语.30.用计算器求值:(1)0.84÷4+(-0.79)×2;(2)49.75-0.252;(3)2.7×(0.5+6.3)-25÷4 5(4)12×(5.63-3.31)×112-25.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.A6.b>a>c7.C8.B9.D10.C11.D12.D二、填空题13.2-114.8n—415.12016.117.1918.(4,-5)19.5790000020.1-,6,6621.<,<,>,>三、解答题22.连结 BD.∵BC是⊙O的切线,∴∠ABC= 90°.在 Rt△ABC 中,AC=10,BC=6由勾股定理可得AB=8,又∵AB 是直径,∠ADB= 90°,由AC BD AB BC⋅=⋅得BD=4.8,在 Rt△BDC 中,222=-,∴CD=3.6.CD BC BD23.①②(1)由表①可知,同学抽到的点数和老师抽到点救相同的概率3193P=.(2)由表②可知,同学抽两张抽到的点数和老师抽两张抽到的点数相同的概率3193P==.24.∵2×=.25.略26.BC=4cm,CD=4 cm,DE=2 cm27.(1)3x=或132x=;(2)92x=-28.略29.一个圆、两个三角形、三条直线,设计图形略30.(1)-1.37 (2)796 (3)12. 11 (4)108.36。
2023年浙江省杭州市中考数学精编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.小明和五名女同学和另四名男同学玩丢手帕游戏,小明随意将手帕丢在一名同学的后面,那么这名同学是女生的概率是( ) A .59B .49C .12D . 452. 如图,四边形 EFGD 是△ABC 的内接矩形,已知高线 AH 长 8 ㎝,底边 BC 长 10cm ,设 DG=x (cm ) , DE=y ( cm ) ,那么y 与x 的函数关系式为( ) A .45y x =B .54y x = C .485y x =-D .584y x =-3.如果抛物线21y x ax =-+的对称轴是y 轴,那么a 的值为( )A .0B .-2C .2D .士24.下列命题中,是真命题的为( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形 C .对角线互相平分的四边形是平行四边形 D .对角线互相垂直平分的四边形是正方形 5.计算2483(21)(21)(21)⨯+++的结果为( ) A .841-B .6421-C .1621-D .3221-6.观察图1,在A 、B 、C 、D 四幅图案中,能通过图1平移得到的是( )图1 A . B . C . D .7.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm8.下列四个代数式中与其他三个不是同类项的一个是 ( ) A .x 2B .2xC .x 2D .x23-9.下列多项式中不能分解因式的是( ) A .33a b ab -B .2()()x y y χ-+-C .210.3664x -D ..21()4x -+10.小慧测得一根木棒的长度为2.8米,这根木棒的实际长度的范围( ) A .大于2米,小于3米 B .大于2.7米,小于2.9米C .大于2.75米,小于2.84米D .大于或等于2.75米,小于2.85米二、填空题11.如图,∠ACB=∠CDB=6O °,则△ABC 是 三角形. 12.对于函数y=-1x ,当x>0时,y随x的增大而 .13.数1x,34x 的比例中项是 . 14.一元二次方程(x+6)2=5可转化为两个一次方程,其中一个一次方程是x+6= 5 ,则另一个一次方程是 .15.如图,菱形ABCD 的对角线的长分别为3和8,P 是对角线AC 上的任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F .则阴影部分的面积是_______. 16.一组数据1,2,3,x 的平均数是4,则这组数据的中位数是 . 17.请举出一个主视图和俯视图相同,但是左视图不同的几何体: .18.如图,△ABC ≌△DEF ,点B 和点E ,点A 和点D 是对应顶点,则AB= ,CB= ,∠C= ,∠CAB= .19.将如图所示中标号为A ,B ,C ,D 的正方形沿虚线剪开后得到标号为P ,Q ,M ,N 的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系填空: A 与 对应; B 与 对应;C 与 对应;D 与 对应.20.自钝角的顶点引角的一边的垂线,把这个钝角分成两个角的度数之比是3∶1,则这个钝角的度数是_________.21.已知()12S a b h =+,若S=27,b=5,h=6, 则a= . 22.一 只蜘蛛有 8 条腿,n 只蜘蛛有 条腿.三、解答题23.某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图所示),他们想在BMC AMD ∆∆和地带种植单价为10元/米2的太阳花,当AMD ∆地带种满花后,已经花了500元,请你预算一下,若继续在BMC ∆地带种植同样的太阳花,资金是否够用?并说明理由.24.如图,在□ABCD 中,E 、F 是 AC 上的两点.且AE=CF .求证:ED ∥BF .25.为了解某初中学生的体能情况,•抽取若干名学生在单位时间内进行引体向上测试,将所得数据整理后,画出频数分布直方图(如图),•图中从左到右依次为第1,2,3,4,5组. (1)求抽取了多少名学生参加测试.(2)处于哪个次数段的学生数最多(答出是第几组即可)? (3)若次数在5次(含5次)以上为达标, 求这次测试的达标率.26.如图,一个弯形管道 ABCD 的拐角∠ABC=120°,∠BCD=60°,这说明管道AB∥CD 吗?为什么?27.代数式24a 加上一个单项式后,可构成一个完全平方式,请写出这个单项式(要求写出 5个).28.△ABC,△A1B1C1和△A2B2C2在方格纸中的位置如图所示.方格纸每格的边长为1.(1)将△ABC向下平移格得到△A1B1C1;(2)将△A1B1C1的各边长放大倍,得到△A2B2C2;(3)分别计算△A2B2C2和△ABC的面积,并说明△A2B2C2的面积是△ABC的面积的多少倍.29.某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.30.利用计算器比较下列各数的大小,并用<”号连结:35,3,310,π33<<<5310π【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.A4.C5.C6.C7.B8.C9.D10.D二、填空题11. 等边12.增大13.2x ±14.x+6=- 515.616.2.517.答案不唯一,如横放的圆柱18.DE, FE,∠F, ∠FDE19.M ,P ,Q ,N20.120°21.422.8n三、解答题 23.解:梯形ABCD 中,AD ∥BC,可以证得AMD ∆∽BMD ∆, AD=10,BC=2041)2010(2==∆∆BMC AMD S S ∵22200)(5010500m S m S BMC AMD =∴=÷=∆∆,还需要资金200×10=2000(元),而剩余资金为2000-500=1500<2000, 所以资金不够用.24.提示:由△ADE ≌△CBF ,得∠AED =∠CFB ,则∠DEF =∠BFE ,∴DE ∥BF .25.(1)100名,(2)第3组,(3)达标率为65%26.AB ∥CD(同旁内角互补,两直线平行)27.如4a ,4a -,4116a ,2a - 28.(1)7;(2)3;(3)3ABC S ∆=,27A B C S '''∆=,9倍29.解 (1) 20÷20%=100 (人)(2)“娱乐”人数=100×40%=40(人) “其他”人数=100-30-20-40=10 (人) “其他”在扇形统计图中所占的圆心角=360°×10100=36° (3) 略30.π<<。
①
② 2023年浙江省杭州市中考数学必修综合测试试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
一、选择题
1.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( ) A .相交或相切 B .相交或内含 C .相交或相离 D .相切或相离 2.已知⊙O 的半径为5,点P 在直线l 上,且5OP ,直线l 与⊙O 的位置关系是( ) A .相切 B .相交 C .相离 D .相切或相交 3.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为( ) A .1∶2 B .2∶1 C .1∶4 D .4∶1 4.下列各数中,可以用来证明“奇数是素数”是假命题的反例是( )
A . 9
B . 7
C . 5
D . 3
5.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )
A .(10+213)cm
B .(10+13)cm
C .22cm
D .18cm
6.为筹备班级的迎春联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( ) A .中位数 B .平均数 C .众数 D .加权平均数 7.在平面直角坐标系中,将点P (-2,3)向上平移3个单位后的点的坐标为( ) A .2,6)
B .(-2,6)
C .(1,3)
D .(3,-2)
8.下列调查工作需采用普查方式的是( ) A .环保部门对淮河某段水域的水污染情况的调查 B .电视台对正在播出的某电视节目收视率的调查 C .质检部门对各厂家生产的电池使用寿命的调查 D .企业在给职工做工作服前进行的尺寸大小的调查 9.二元一次方程的一个解是( ) A .两个数值 B .任意一对未知数的值
C .一对未知数的值
D .满足这个方程的一对未知数的值 10.下列各组图形,可经过平移变换由一个图形得到另一个图形的是( )
11.在NBA的篮球队员中,有两位出色的中国球员,他们是姚明和易建联. 经调查,七(3)班44位学生中,喜欢姚明的有25人,喜欢易建联的有20人,两个都不喜欢的有8人,那么两个都喜欢的有()人
A. 9 B. 11 C. 13 D. 8
12.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是()
A.该班总人数为50人 B.骑车人数占总人数的20%
C.乘车人数是骑车人数的2.5倍D.步行人数为30人
13.七年级(1)班有48位学生.春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中,“想去苏州乐园的学生数”的扇形圆心角是60°,则下列说法正确的是()A.想去苏州乐园的学生占全班学生的60%
B.想去苏州乐园的学生有l2人
C.想去苏州乐园的学生肯定最多
D.想去苏州乐园的学生占全班学生的1 6
二、填空题
14.如图所示,三个同心扇形的圆心角∠AOB 为120°,半径为 6 ㎝,C、D 是AB的三等分点,则阴影部分的面积等于㎝2
15.如图,矩形ABCD中,点E,F分别在AB,CD上,BF∥DE,若AD=12cm,AB=7 cm,且AE:EB=5:2,则阴影部分面积S= cm2.
16.如图,已知在四边形ABCD 中,AB ∥CD ,AB=CD ,求证:AD ∥BC
分析:连结AC ,要证AD ∥BC ,只要证∠3= ,只要证△ABC ≌ ,已有两个条件AB=CD ,AC=CA ,只需证∠1= ,易由 证得.
17.已知关于x 的函数同时满足下列三个条件: ①函数的图象不经过第二象限; ②当2x <时,对应的函数值0y <; ③当2x <时,函数值y 随x 值的增大而增大.
你认为符合要求的函数的解析式可以是: (写出一个即可).
18. 根据“x 的相反数的1
3
不大于x 的 2 倍与 10 的和”,列出不等式: .
19.直线2y x b =+经过点(13),,则b = .
20.10 个小女孩去采花,其中 2个采到 x 朵花,其余每人都采到 12 朵花,则 10 个小女孩共采到 朵花.
三、解答题
21.如图,矩形ABCD 的周长为20cm ,两条邻边AB 与BC 的比为2 : 3. 求(1) AC 的长; (2)α∠的三个锐角三角函数值.
22.已知x 、y 满足2
2
(4):4:1x y xy +=,求x :y 的值.
23.已知关于x 的一元二次方程x 2-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值.
24.某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农随机摘下了l0个成熟的西瓜,称重如下: 西瓜质量(kg) 5.4 5.3 5.O 4.8 4.4 4.0 西瓜数量(个)
1
2
3
2
11
1
(1)这10个西瓜质量的众数和中位数分别是 和 ;
(2)计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约为多少kg?
25.根据下列关系列不等式: (1)x 的2倍大于一5; (2)4 减去 2x 的差是负数; (3)y 与 3 的和不大于0. 5.
26. 如图,在△ABC 中,AB=AC ,若AD ∥BC ,则 AD 平分∠C ,请说明理由.
27.如图,直线1l 、2l 相交于点B ,点A 是直线1l 上的点,在直线2l 上寻找一点C ,使△ABC 是等腰三角形,请画出所有等腰三角形.
28.认真观察下列4个图中阴影部分构成的图案,回答下列问题:
(1)请写出这四个图案都具有的两个共同特征.
特征1:;
特征2:.
(2)请在图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.
29.如图所示,已知直线l和m,l⊥m.
(1)将折线ABC先以直线l为对称轴作镜面对称变换,然后以直线m为轴,将所得的像作镜面对称,作出经两次变换所得的像;
(2)如果要使(1)题图形变换最终的像回到原来的折线ABC,那么应作怎样的图形变换?
30.看图解答下面的问题:
(1)写出图中的所有线段:
(2)写出图中以0为端点的各条射线.
【参考答案】
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.
C
2.
D
3.
C
4.
A
5.
A
6.
C
7.
B
8.
D
9.
D
10.
A
11.
A
D
13.
D
二、填空题 14.
4π15.
24
16.
∠4,△CDA ,∠2,AB ∥CD
17.
答案不唯一,如2y x =-
18.
1
2103
x x -≤+ 19. 1
20.
96+2x
三、解答题 21.
(1)132;(2)13132sin =
α,13133cos =α,3
2
tan =α. 22.
∵2
2
44xy x y =+,∴2
2
440x xy y -+=,即2
(2)0x y -=,
20x y -=,
2x
y
=. 23.
3,2--=另一根为k .
24.
(1)5. 0 kg ,5.0 kg (2)4. 9 kg ,2940 kg
25.
(1)2x>-5;(2)4-2x<0;(3)y+3≤0.5
说明∠l=∠2
27.
略
28.
(1)都是轴对称图形,面积为4;(2)略.
29.
(1)图略;(2)以直线l与m交点为旋转中心顺时针旋转l80.
30.
(1)线段OA,线段OB,线段AB,线段OC;(2)射线OA,射线OB,射线OC。