第10章 相关分析与线性回归分析
- 格式:doc
- 大小:39.00 KB
- 文档页数:4
回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
一元线性回归分析1.理论回归分析是通过试验和观测来寻找变量之间关系的一种统计分析方法。
主要目的在于了解自变量与因变量之间的数量关系。
采用普通最小二乘法进行回归系数的探索,对于一元线性回归模型,设(X1,Y1),(X2,Y2),…,(X n,Y n)是取至总体(X,Y)的一组样本。
对于平面中的这n个点,可以使用无数条曲线来拟合。
要求样本回归函数尽可能好地拟合这组值。
综合起来看,这条直线处于样本数据的中心位置最合理。
由此得回归方程:y=β0+β1x+ε其中Y为因变量,X为解释变量(即自变量),ε为随机扰动项,β0,β1为标准化的偏斜率系数,也叫做回归系数。
ε需要满足以下4个条件:1.数据满足近似正态性:服从正态分布的随机变量。
2.无偏态性:∑(εi)=03.同方差齐性:所有的εi 的方差相同,同时也说明εi与自变量、因变量之间都是相互独立的。
4.独立性:εi 之间相互独立,且满足COV(εi,εj)=0(i≠j)。
最小二乘法的原则是以“残差平方和最小”确定直线位置。
用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。
最常用的是普通最小二乘法(OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。
线性回归分析根据已有样本的观测值,寻求β0,β1的合理估计值^β0,^β1,对样本中的每个x i,由一元线性回归方程可以确定一个关于y i的估计值^y i=^β0+^β1x i,称为Y关于x的线性回归方程或者经验回归公式。
^β0=y-x^β1,^β1=L xy/L xx,其中L xx=J12−x2,L xy=J1−xy,x=1J1 ,y=1J1 。
再通过回归方程的检验:首先计算SST=SSR+SSE=J1^y−y 2+J1−^y2。
其中SST为总体平方和,代表原始数据所反映的总偏差大小;SSR为回归平方和(可解释误差),由自变量引起的偏差,放映X的重要程度;SSE为剩余平方和(不可解释误差),由试验误差以及其他未加控制因子引起的偏差,放映了试验误差及其他随机因素对试验结果的影响。
简单线性回归分析思考与练习参考答案第10章简单线性回归分析思考与练习参考答案⼀、最佳选择题1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。
A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错2.如果相关系数r =1,则⼀定有( C )。
A .总SS =残差SSB .残差SS =回归SSC .总SS =回归SSD .总SS >回归SS E.回归MS =残差MS3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。
A .ρ=0时,r =0B .|r |>0时,b >0C .r >0时,b <0D .r <0时,b <0 E. |r |=1时,b =14.如果相关系数r =0,则⼀定有( D )。
A .简单线性回归的截距等于0B .简单线性回归的截距等于Y 或XC .简单线性回归的残差SS 等于0D .简单线性回归的残差SS 等于SS 总E .简单线性回归的总SS 等于05.⽤最⼩⼆乘法确定直线回归⽅程的含义是( B )。
A .各观测点距直线的纵向距离相等B .各观测点距直线的纵向距离平⽅和最⼩C .各观测点距直线的垂直距离相等D .各观测点距直线的垂直距离平⽅和最⼩E .各观测点距直线的纵向距离等于零⼆、思考题1.简述简单线性回归分析的基本步骤。
答:①绘制散点图,考察是否有线性趋势及可疑的异常点;②估计回归系数;③对总体回归系数或回归⽅程进⾏假设检验;④列出回归⽅程,绘制回归直线;⑤统计应⽤。
2.简述线性回归分析与线性相关的区别与联系。
答:区别:(1)资料要求上,进⾏直线回归分析的两变量,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。
直线相关分析只适⽤于双变量正态分布资料。
,,,本科学生实验报告学号: ########## 姓名:¥学院:生命科学学院专业、班级:11级应用生物教育A班实验课程名称:生物统计学实验教师:孟丽华(教授)开课学期: 2021 至 2021 学年下学期填报时间: 2021 年 5 月 22 日云南师范大学教务处编印→“线性(L)…”,将“5月上旬50株棉蚜虫数(Y)”移到因变量列表(D)中,将“4月下旬平均气温(X)”移入自变量列表(I)中进行分析;1)、点“统计量(S)”,回归系数:在“估计(E)”、“置信区间水平(%)95”前打钩,“模型拟合性(M)”、“描述性”前打钩,残差:个案诊断(C)前打钩,点“所有个案”,点“继续”;2)、点“绘制(T)…”,将“DEPENDNP”移入“Y(Y)”列表中,将“ZPRED”移入“X2(X)”中,标准化残差图:在“直方图(H)”、“正太概率图(R)”前打钩,点“继续”;3)、点“保存(S)…”,所有的默认,点“继续”;4)、点“选项(O)…”,所有的都默认,点“继续”,然后点击“确定”便出结果;统计量(S)…选项(O)…(默认)绘制(T)…保存(S)…(默认)(二)、习题1、启动spss软件:开始→所有程序→SPSS→spss for windows→spss for windows,直接进入SPSS数据编辑窗口进行相关操作;2、定义变量,输入数据。
点击“变量视图”定义变量工作表,用“name”命令定义变量“维生素C的含量”(小数点两位);变量“受冻情况”(小数点零位),“未受冻”赋值为“1”,“受冻”赋值为“2” ,点击“变量视图工作表”,一一对应将不同“未受冻”与“受冻”的维生素C的含量数据依次输入到单元格中;3、设置分析变量。
数据输入完后,点菜单栏:“分析(A)”→“相关(C)”→“双变量(B)…”,将“维生素C含量”、“受冻情况”变量(V)列表中,相关系数:“Pearson”前打钩,显著性检验:双侧检验(T)前打钩,“标记显著性相关(F)前打钩”,点“选项(O)…”,统计量:在“均值和标准差(M)”前打钩,缺失值:在“按对排除个案(P)”前打钩,点“继续”,然后点击“确定”便出结果。
第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。
事物之间的依存关系,能够分为函数关系和相关关系。
相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。
2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。
相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。
3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。
用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。
4.应用相关与回归分析应注意的问题。
相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。
相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。
二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。
为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。
初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。
若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。
三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。
2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。
第10章相关分析与线性回归分析
10-1相关分析基本原理
一、相关分析的概念
1、函数关系:确定性关系
2、统计关系:非确定性关系
相关分析就是测度变量之间统计关系强弱的一种工具与手段
二、相关分析的图形分析法
1、SPSS中散点图的种类
(1)Simple 简单散点图:一对变量
(2)Overlay 重叠散点图:多对变量
(3)Matrix 矩阵散点图:多个坐标系显示多对变量之间的关系(4)3-D 三维散点图:以立体图显示多对变量之间的关系
2、基本操作
(1)菜单选项:Graphs->Scatter
(2)选择散点图的类型
(3)按牛对不同的三点图进行定义
☆对于简单散点图:
三、相关系数分析法
1、基本思想
依据变量之间变动方向的关系定义相关系数
变动方向相同:正向相关关系
变动方向相反:负向相关关系
0<r<1, 存在一定程度正向线性相关关系;r=1,存在完全正向线性相关关系
-1<r<0, 存在一定程度正向线性相关关系;r=-1,存在完全负向线性
相关关系
r=0, 不存在线性相关关系
r 的绝对值大于0.8,存在较强线性相关关系
r 的绝对值小于0.8,存在较弱线性相关关系
如果是根据样本计算出的相关系数,总体中变量有无相关性,要进行相应的假设检验。
H 0为总体中两变量无显著的相关性。
2、Pearson 简单相关系数
(1)计算公式:
()()n
i i
x x y y r --=∑(2)假设检验
~(2)t t n =-
3、Spearman 等级相关系数
(1)计算公式:
2
1
261(1)n i
i s D r n n ==--∑
(2)假设检验
n≥30
~(2)t t n =
-
或
0~(0,1)1
s r z N -=
4、Kendall tua-b 等级相关系数
(省略)
四、偏相关系数分析法
1、偏相关分析
2、偏相关系数
1,2y r r r r -=
r y1,2 表示y 与x1之间的偏相关系数;x2 为控制变量,ry1为y 与x1的简单相关系数; ry2为 y 与 x2之间的简单相关系数; r12为x1与x2之间的简单相关系数
10-2相关分析的基本操作与案例分析
一、简单相关分析
1、基本操作
(1)菜单:Statistics->Correlation->Bivariate
(2)选择变量进入Variables 框
(3)在Correlation Coefficents 框中,选择计算的相关系数
(4)在Test of Significance 框中,确定单尾还是双尾检验
(5)Flag of Significance 选项,确定显示方式是伴随概率还是星号
2、Option 选项
(1)Statistics 选项
(2)Missing Values 选项
3、案例分析
二、偏相关相关分析
1、基本操作
(1)菜单:Statistics->Correlation->Partial
(2)选择变量进入Variables框
(3)选择变量作为控制变量进入Controlling for框
(4)在Test of Significance框中,确定单尾还是双尾检验
(5)Display actual Significance Level选项,确定显示方式是伴随概率还是星号
2、Option选项
(1)Statistics选项
Means and standard deviation:均值与标准差
Cross-product deviation and convariance:交叉离积与协方差,前者为相关系数的分子部分,后者等于交叉离积/(n-1)
(2)Missing Values选项
(3)Zero-order correlation选项,表示在输出偏相关系数的同时也输出简单相关系数。
3、案例分析。