9-1 有源滤波器
- 格式:ppt
- 大小:2.47 MB
- 文档页数:41
目录实验一整流、滤波、稳压电路 (1)实验二单级交流放大器(一) (5)实验三单级交流放大器(二) (7)实验四两级阻容耦合放大电路 (9)实验五负反馈放大电路 (11)实验六射极输出器的测试 (14)实验七 OCL功率放大电路 (16)实验八差动放大器 (18)实验九运算放大器的基本运算电路(一) (20)实验十集成运算放大器的基本运算电路(二) (22)实验十一比较器、方波—三角波发生器 (24)实验十二集成555电路的应用实验 (26)实验十三 RC正弦波振荡器 (30)实验十四集成功率放大器 (32)实验十五函数信号发生器(综合性实验) (34)实验十六积分与微分电路(设计性实验) (36)实验十七有源滤波器(设计性实验) (38)实验十八电压/频率转换电路(设计性实验) (40)实验十九电流/电压转换电路(设计性实验) (41)实验一整流、滤波、稳压电路一、实验目的1、比较半波整流与桥式整流的特点。
2、了解稳压电路的组成和稳压作用。
3、熟悉集成三端可调稳压器的使用。
二、实验设备1、实验箱(台)2、示波器3、数字万用表三、预习要求1、二极管半波整流和全波整流的工作原理及整流输出波形。
2、整流电路分别接电容、稳压管及稳压电路时的工作原理及输出波形。
3、熟悉三端集成稳压器的工作原理。
四、实验内容与步骤首先校准示波器。
1、半波整流与桥式整流:●分别按图1-1和图1-2接线。
●在输入端接入交流14V电压,调节使I O=50mA时,用数字万用表测出V O,同时用示波器的DC档观察输出波形记入表1-1中。
图1-1图1-2Vi(V) V O(V) I O (A) V O波形半波桥式2、加电容滤波:上述实验电路不动,在桥式整流后面加电容滤波,如图1-3接线,比较并测量接C 与不接C两种情况下的输出电压V O及输出电流I O,并用示波器DC档观测输出波形,记入表1-2中。
图1-33上述电路不动,在电容后面加稳压二极管电路(510Ω、VDz),按图1-4接线。
长沙学院课程设计说明书题目有源高通滤波器电路设计系(部) 电子与通信工程系专业(班级) 电气工程及其自动化姓名学号指导教师起止日期模拟电子技术课程设计任务书系(部):电子与通信工程系专业:电气工程及其自动化指导教师:长沙学院课程设计鉴定表目录摘要 (5)1.电路设计 (6)1.1.电路元件及参数的选择 (6)1.2.电路原理图绘制 (6)2.电路的仿真 (7)2.1.使用Multisim9仿真波特图示仪 (7)2.2.使用Multisim9仿真示波器 (7)2.2.1.输入信号频率小于截止频率时的仿真 (7)2.2.2.输入信号频率等于截止频率时的仿真 (8)2.2.3.输入信号频率大于截止频率时的仿真 (8)参考文献 (9)设计总结 (9)摘要滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。
常用来进行信号处理、数据传输和抑制噪声等。
以往这种滤波电路主要采用无源R、L和C组成,20世纪60年代以来,集成运放获得了迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。
此外,由于集成运放的开环电压和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但是,集成运放的带宽有限,所以目前有源滤波电路的工作频率难以做的很高,以及难于对功率信号进行滤波,这是它的不足之处。
]1[在实际电子系统中,有源滤波器运用广泛,输入信号往往是含有多种频率成分的复杂信号,可能还会混入各种噪声、干扰及其它无用频率的信号,因此需要设法将有用频率信号挑选出来、将无用信号频率抑制掉。
完成此任务需要具有选频功能的电路。
本文主要内容是设计一个能阻挡低频信号、输出高频信号的有源高通滤波电路,以及利用Multisim9对电路进行仿真。
本电路所用到的运算放大器LM741EN,它的管脚1和5为调零端,管脚2为运放反相输入端,管脚3为同相输入端,管脚6为输出端,管脚7为正电源端,管脚4为负电源端,管脚8为空端。
有源滤波器实验报告(1)有源滤波器实验报告一、实验目的1.了解有源滤波器的基本工作原理。
2.掌握有源低通和有源高通滤波器的实现方法及其频率特性。
3.学习使用多用途运放进行有源滤波器的设计。
二、实验原理有源滤波器由运放放大器和RC电路构成。
有源滤波器的基本原理是利用运放的放大作用以及RC电路的滤波作用实现滤波的过程。
有源滤波器分为有源低通滤波器和有源高通滤波器两种类型,分别用于对信号的低频和高频进行滤波。
三、实验仪器1.多用途运放实验板2.数字存储示波器3.脉冲信号发生器4.电源四、实验内容1.设计并搭建有源低通滤波器电路。
2.设计并搭建有源高通滤波器电路。
3.对低频和高频信号分别进行滤波实验。
4.在不同频率下测量有源低通和有源高通滤波器的增益和相位延迟特性。
五、实验步骤和操作1.设计有源低通滤波器电路。
按照RC低通滤波器的原理,选择合适的电阻和电容组合来计算截止频率,然后根据运放的放大倍数设计电压跟随电路来实现放大和增益控制。
将设计好的电路搭建在实验板上,并连接信号输入和输出端口,将脉冲信号发生器输出的信号接入输入端口,使用数字示波器来观察滤波结果。
2.设计有源高通滤波器电路。
按照RC高通滤波器的原理,选择合适的电阻和电容组合来计算截止频率,然后根据运放的放大倍数设计电压跟随电路来实现放大和增益控制。
将设计好的电路搭建在实验板上,并连接信号输入和输出端口,将脉冲信号发生器输出的信号接入输入端口,使用数字示波器来观察滤波结果。
3.测量有源低通和有源高通滤波器的增益和相位延迟特性。
分别在不同频率下进行测量,利用示波器测量输出信号的幅度和相位,计算出滤波器的增益和相位延迟特性。
六、实验结果和分析1.有源低通滤波器实验结果:实验中选择的截止频率为1kHz,测量得到在1kHz处的增益为18dB,相位延迟为-40度。
通过实验观察到,低频信号经过滤波器处理后能够得到较好的效果,高频信号被滤除,滤波器具有很好的低通滤波特性。
有源滤波器工作原理有源滤波器是一种电子滤波器,它使用有源元件(如放大器)来增强和调节信号。
它可以实现对特定频率范围内的信号进行增益或衰减,以滤除其他频率范围的信号。
有源滤波器通常用于音频处理、通信系统和电子设备中。
有源滤波器的工作原理基于放大器的运算和反馈原理。
其基本构成包括放大器、电容器和电感器。
放大器负责对输入信号进行放大,而电容器和电感器则用于选择特定的频率范围。
有源滤波器可以分为两种类型:低通滤波器和高通滤波器。
1. 低通滤波器(Low Pass Filter,简称LPF):低通滤波器允许低频信号通过,而衰减高频信号。
它常被用于去除高频噪声或选择低频信号。
一个常见的低通滤波器是RC滤波器,它由一个电阻和一个电容器组成。
当输入信号的频率高于截止频率时,电容器会阻止信号通过,从而实现滤波效果。
2. 高通滤波器(High Pass Filter,简称HPF):高通滤波器允许高频信号通过,而衰减低频信号。
它常被用于去除低频噪声或选择高频信号。
一个常见的高通滤波器是RL滤波器,它由一个电阻和一个电感器组成。
当输入信号的频率低于截止频率时,电感器会阻止信号通过,从而实现滤波效果。
有源滤波器的工作原理可以通过以下步骤来说明:1. 输入信号经过放大器放大。
放大器可以是运算放大器或其他类型的放大器。
2. 放大后的信号进一步经过电容器和电感器。
根据滤波器的类型(低通滤波器或高通滤波器),电容器和电感器的连接方式不同。
3. 电容器和电感器的组合形成一个频率选择网络。
该网络通过选择特定的频率范围,将该范围内的信号放大或衰减。
4. 输出信号经过放大器再次放大,以达到所需的信号强度。
有源滤波器的优点包括:1. 增益可调节:有源滤波器可以通过调整放大器的增益来控制输出信号的强度。
2. 灵活性高:有源滤波器可以根据需要选择不同的滤波器类型和频率范围。
3. 低失真:有源滤波器由于使用放大器进行信号处理,可以实现较低的失真水平。
有源滤波器和无源滤波器的原理及区别?2010-01-09 11:28无源滤波器:这种电路主要有无源元件R、L和C组成。
有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。
集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。
无源滤波装置该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。
国际上广泛使用的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽颇带与三阶宽频带高通滤波器等。
1)单调谐滤波器:一阶单调谐滤波器的优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。
二阶单调谐滤波器当品质因数在50以下时,基波损耗可减少20~50%,属节能型,滤波效果等效。
三阶单调谐滤波器是损耗最小的滤波器,但组成复杂些,投资也高些,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。
2)高通(宽频带)滤波器,一般用于某次及以上次的谐波抑制。
当在电弧炉等非线性负荷系统中采用时,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波的低阻抗通路。
有源滤波器虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源滤波器(Active PowerFliter,缩写为APF)。
9数字锁相环提取同步信号实验9.1 电路的工作原理数字通信中,除了有载波同步的问题外,还有位同步的问题。
因为信息是一串相继的信号码元的序列,解调时常需知道每个码元的起止时刻。
因此,接收端必须产生一个用作抽样判决的定时脉冲序列,它和接收码元的终止时刻应对齐。
我们把在接收端产生与接收码元的重复频率和相位一致的定时脉冲序列的过程称为码元同步或位同步,而称这个定时脉冲序列为码元同步脉冲或位同步脉冲。
要使数字通信设备正常工作,离不开正确的位同步信号。
如果位同步脉冲发生严重抖动或缺位,则使数字通信产生误码;严重时使通信造成中断。
影响位同步恢复的主要原因:输入位同步电路的信号质量;信号的编码方式——码元中存在长连“0”或长连“1”。
位同步的主要技术指标有静态相差;相位抖动;同步建立时间和同步保持时间。
数字通信中位同步恢复的方法主要有两种,一种是发端专门发送导频信号,而另一种是直接从数字信号中提取位同步信号。
而直接从数字信号中提取位同步信号也有不止一种方法:滤波法,锁相法两种方法。
本实验采用的就是用数字锁相环提取位同步信号的方法,这种方法又称为数字锁相。
电路及其各分电路的工作原理图 9-1 数字锁相原理方框图图9-2 数字锁相提取同步信号实验电原理图电路由高稳定度振荡器、分频器、相位比较器和控制器所组成。
其中,控制器包括图中的扣除门、附加门和“或门”。
高稳定度振荡器产生的信号经整形电路变成周期性脉冲,然后经控制器再送入分频器,输出位同步脉冲序列。
若接收码元速率为F(波特),则要求位同步脉冲的重复速率也为F(赫)。
这里,晶振的振荡频率设计在nF(赫),由晶振输出经整形得到重复频率为nF(赫)的窄脉冲[图37-5(a)],经扣除门、或门并n次分频后,就可得重复速率为F(赫)的位同步信号。
如果接收端晶振输出经n次分频后,不能准确地和收到的码元同频同相,这时就要根据相位比较器输出的误差信号,通过控制器对分频器进行调整。
有源滤波器工作原理有源滤波器是一种电子滤波器,通过使用有源元件(如运算放大器)来增强滤波器的性能。
它可以滤除不需要的频率成份,只保留感兴趣的频率信号。
有源滤波器在许多电子设备中广泛应用,如音频设备、通信系统和电源管理等。
有源滤波器的工作原理基于运算放大器的放大和反馈原理。
运算放大器是一种高增益、差分输入、单端输出的电子设备,具有很好的线性性能。
它可以将输入信号放大到较高的增益,并通过反馈回路将输出信号与输入信号进行比较,从而实现滤波功能。
有源滤波器可以分为两种类型:主动滤波器和交叉耦合滤波器。
主动滤波器是指使用运算放大器和其他有源元件(如电容和电感)来构建滤波器。
它可以实现各种滤波器类型,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
主动滤波器的工作原理是通过调整运算放大器的增益和反馈网络的参数来选择所需的频率响应。
交叉耦合滤波器是一种特殊类型的有源滤波器,它使用多个运算放大器和被动元件(如电容和电感)构建。
交叉耦合滤波器可以实现更复杂的滤波器设计,如多级滤波器和带通滤波器。
它的工作原理是通过将多个运算放大器和被动元件进行耦合,形成一个复杂的滤波器网络,从而实现所需的频率响应。
有源滤波器的工作原理可以通过以下步骤来解释:1. 输入信号通过运算放大器的差分输入端进入滤波器电路。
2. 运算放大器将输入信号进行放大,并输出到反馈网络。
3. 反馈网络将运算放大器的输出信号与输入信号进行比较,并产生一个反馈信号。
4. 反馈信号通过运算放大器的反馈回路重新输入到运算放大器的输入端。
5. 反馈信号与输入信号的比较结果将决定运算放大器的输出信号。
6. 输出信号经过滤波器电路后,滤除不需要的频率成份,并保留感兴趣的频率信号。
7. 最终输出信号可以通过增益调节和滤波器参数调整来满足特定的应用需求。
有源滤波器具有许多优点,如高增益、灵便性和可调性。
它可以实现复杂的滤波器设计,并具有较低的失真和噪声。
然而,有源滤波器也存在一些限制,如较高的功耗和复杂的电路设计。