QTZ63塔吊天然基础计算书
- 格式:doc
- 大小:62.50 KB
- 文档页数:8
塔吊基础设计(单桩)计算书1.计算参数(1)基本参数采用2台QTZ63塔式起重机,1台45米、1台40米,塔身尺寸1.63m,承台面标高-12.20m。
(2)计算参数1)塔机基础受力情况基础荷载P(kN) M(kN.m)F k FhM MZ503.80 35.00 1500.00 200.00MkFM zkF =F =M =zM =基础顶面所受垂直力基础顶面所受水平力基础所受扭矩基础顶面所受倾覆力矩hF h塔吊基础受力示意图比较桩基础塔机的工作状态和非工作状态的受力情况,塔机基础按工作状态计算如图:F k =503.80kN,Fh=35.00kN,M=1500.00+35.0×1.10=1538.50kN.mF k ‘=503.80×1.35=680.13kN,Fh,=35.00×1.35=47.25kN,Mk=(1500.00+35.0×1.10)×1.35=2076.98kN.m2)桩顶以下岩土力学资料序号地层名称厚度 L(m)极限侧阻力标准值q sik(kPa ) 岩石饱和单轴抗压强度标准值f rk (kPa) q sik*ιi(kN/m) 抗拔系数λiλi q sik*ιi(kN/m)1 粘性土 1.9 55.00 100.00 104.50 0.7073.15 2 粉质粘土 0.9 95.00 150.00 85.50 0.70 59.85 3 强风化 6.2 120.00 245.00 148.00 0.70 103.88 4 中风化1.10 200.00420.00 174.40 0.70 121.8 桩长10.10∑q sik*ιi512.40∑λi q sik*ιi358.683)基础设计主要参数基础桩采用1根φ1400人工挖孔灌注桩,桩顶标高-12.20m ,桩端设扩大头,桩端入中风化 1.10m ;桩混凝土等级C30,f C =14.30N/mm 2 ,E C =3.00×104N/mm 2;f t =1.43N/mm 2,桩长10.10m ;钢筋HRB335,f y =300.00N/mm 2 ,E s =2.00×105N/mm 2;承台尺寸长(a)=3.50m 、宽(b)=3.50m 、高(h)=1.20m ;桩中心与承台中心重合,面标高-12.20m ;承台混凝土等级C30,f t =1.43N/mm 2,f C =14.30N/mm 2,γ砼=25kN/m 3。
塔吊基础设计计算书编制:____________________审核:_____________________审批:_____________________、1#塔吊设计:1、塔吊选择:本塔吊采用塔吊生产厂家提供的QTZ63型塔吊,塔吊基础长宽均为5m,高1m。
基础砼强度等级采用C35级,钢筋采用HRB400级。
QTZ63型塔式起重机主要性能及参数如下:2、技术参数:Fv=425(KN)M=630KN.m Fh=68KN3、确定基础尺寸:由地勘报告知,1#塔机基底所处位置地基承载力为160kpa,原厂家设计塔吊基础对地基承载力要求不小于200kpa,大于本工程的160kpa,故需在基础下部设一扩大的钢筋砼平台,以增大基底面积.暂定平台尺寸为5000X 5000X 1000,做地基承载力验算.4、力学演算天然基础尺寸为b x b x h=5n K5mx 1.3m砼基础的重力Fg=5X 5X 1 x 25=625KN地面容许压应力[P B]=160KPa2 2 2HRB400: f y 360N/mm ,C35: f c 16.7N/mm,f t 1.57N/mm4.1、地基承载力演算地基承载力为:f=25 m2x 160KPa/10=400吨塔吊结构自重:Fv=31吨塔吊基础自重:Fg=25x 1.35 x 2.5=84.37 吨f=216 吨〉F二Fv+Fg=31+84.37=115.37 吨所以,地基承载力能满足塔吊使用要求。
4. 2塔吊抗倾覆演算e=0.751m<b/3=5/3=1.67m 满足要求4.3、偏心荷载下地面压应力验算:P2F;Fg 2 31;84'7 87.95kN/m2<160kP 满足要求3l(b e) 3 5 (5 0.7512 21.2 M F h hF F g1.2 630 68 1.35310 84370.751kN/m24.4、抗剪强度验算:按GB50007-2002《建筑地基基础设计规范》公式(8.4.9 )1800刁3 3V S (310 843.7)/4 288.43KN 0.7 hs f t b w h o 0.7 0.946 1.57 10 2 1 2.080 10 KN满足要求。
QTZ63塔吊基础的计算书(天然地基)一. 基本参数塔吊型号:QTZ63, 自重F1=47.67kN,起重荷载F2=60.00kN,塔吊倾覆力距M=1796.00kN.m,塔吊起重高度H=74.89m,塔身宽度B=1.60m,混凝土强度等级:C30,钢筋强度等级:HRB335级基础埋深D=3.00m,基础厚度h=1.35m,基础宽度Bc=6.00m,荷载分项系数:1.2、1.4二. 最不利工况塔机固定在基础上,在塔机未采用附着装置以前,对基础产生的载荷值时,基础所受的荷载最大。
(非工作状态)P---基础所受的垂直力 513 KNH1、H2---基础所受的水平力 73.5 KNM1、M2---基础所受的倾覆力矩 1796 KN.m三. 塔吊基础地基承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力(包括塔吊自重,压重和最大起重荷载)F=1.2×513=615.6kN;G──基础自重与基础上面的土的自重G=1.2×(25.0×B c×B c×H c+20.0×B c×B c×D) =4050.00kN;B c──基础底面的宽度,取B c=6.00mW──基础底面的抵抗矩,W=B c×B c×B c/6=36.00m3M──倾覆力矩,包括风荷载产生的力距和最大起重力距M=1.4×1796.00=2514.40kN.ma──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=6.00/2-2514.40/(615.6+4050.00)=2.46m经过计算得到:无附着的最大压力设计值 P max=(615.6+4050.00)/6.002+2514.40/36.00=199.44kPa无附着的最小压力设计值 P min=(615.6+4050.00)/6.002-2514.40/36.00=59.76kPa有附着的压力设计值 P=(615.6+4050.00)/6.002=129.6kPa偏心距较大时压力设计值 P kmax=2×(615.6+4050.00)/(3×6.00×2.46)=210.73kPa 三. 地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。
塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=456kN2) 基础以及覆土自重标准值G k=5.5×5.5×1.35×25=1020.9375kN3) 起重荷载标准值F qk=60kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)=0.8×1.59×1.95×1.29×0.2=0.64kN/m2=1.2×0.64×0.35×1.6=0.43kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.43×40=17.20kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×17.20×40=344.03kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.45kN/m2)=0.8×1.65×1.95×1.29×0.45=1.49kN/m2=1.2×1.49×0.35×1.6=1.00kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=1.00×40=40.16kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×40.16×40=803.29kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=-206.55+0.9×(63+344.03)=159.78kN.m非工作状态下,标准组合的倾覆力矩标准值M k=-206.55+803.29=596.74kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。
QTZ63塔吊计算、主要技术参数、基础做法、基础计算书一)、工程地质情况根据XX 市勘测绘研究队提供的岩土工程勘察报告,Z11 孔工程地质情况如下表所示序号土层名称土层厚度(M) 桩周土磨擦力标准值(KPa)桩端土磨擦力标准层值(KPa)1 ①粘土 1.2 11 2 ②-1 淤泥14.3 5 3 ②-2 淤泥15.6 8 4 ②-3 淤泥质粘土10.2 12 5 ③-1 粘土1.8 22 800 6 ③-2 含砾粉质粘土4.1 30 1000二).主要技术参数型号:QTZ63数量:1 最大起重量:6T 额定起重力矩:65T??M 工作半径:55M 塔体总高自重:50T三)、基础做法塔吊基座塔吊基础预应力砼管桩塔吊基础采用 3.0×3.0×1.2 的砼承台基础,砼强度等级为C30,配筋为双向双层。
承台面标高-5.55m 基础下做100 厚C10 砼垫层和150 厚片石垫层,承台下采用4 根PC-A 600(100)有效桩长38 米的预应力砼管桩承重,桩心距1800mm,桩顶标高为-6.65(绝对高程-0.75)米,桩顶伸入承台100 mm,桩与承台锚固采用8Φ22 主筋及箍筋,伸入承台800 mm,伸入桩身3000 mm 采用C30 砼灌实。
四)、塔吊基础计算书1、塔吊基础力学指标验算计算简图如下所示:PC-A 600(100)预应力砼管桩有关技术参数:预应力筋12ΦD9.0,砼有效预压应力 3.92Mpa,抗裂弯矩164KN.m,极限弯矩形246KN.m,桩身竖向极限承载力标准值4190KN,理论重量3.93KN/m (一)塔吊基础自身荷载计算承台自重:G=3.0×3.0×1.2×25 = 270KN 1、预应力砼管桩单桩抗压力计算Qu=μp∑qsik Li +qkpAp 式中符号意义Qu:单桩竖向极限承载力标准值(KN)μp:桩身截面周长(M)qsik:单桩第i 层土的极限侧阻力标准值(Kpa)Li:第i 层土的厚度(M):单桩的极限端阻力标准值(Kpa)Ap:桩端横截面面积(㎡)Qu=μp∑qsik Li +qkpAp =(5×10.51+8×15.6+12×10.2+22×1.69)×1.884+800×3.14×0.3×0.3=634.776+226.08=860.856KN(二)承载力验算1、单桩承压计算塔吊工作时对基础桩产生的最大压力及拉力计算计算图:P M Ra Rb G 2550 P=300KN G=270KN M=650KN.m 风载引起的水平力F 取10KN2)最大压力计算:Rb=[(P+G) ×1.275+M]/2.55 =[(300+270)×1.275+650]/2.55=540KN Qu =860.856KN>1.2 Rb=648KN3)最大拉力计算:Ra=[M-(P+G) ×1.275]/2.55 =-30KN<0 不需验算4)抗倾覆验算不考虑土摩擦力,考虑风荷载(P+G)×1.8/2+3.93×38×2×1.8+860.856×2×1.8 =(300+270)×0.9+537.62+1721.7 =4149.7KN.m >(650+10×40/2) ×2=1700KN.m 满足要求事实上桩最不利工作力为压力,不存在倾覆问题。
中山市祈安苑二期及二期扩建工程 目录目录一、工程概况 (1)二、塔吊概况 (1)三、塔吊基础选择 (1)四、塔吊的使用与管理 (2)五、塔吊基础 (3)六、QTZ63塔吊天然基础的计算书 (4)中山市祈安苑二期及二期扩建工程1#塔吊基础施工方案一、工程概况项目概况:本项目二期工程拟建设三栋二十六层住宅楼(编号分别为2栋、3栋及4栋),层高2.9m,首层层高5.1m,建筑总高度77.9m,钢筋混凝土结构形式,地上二~二十六层为塔式住宅,首层部分为架空廊、住宅大堂、商铺等;共提供600套保障性住房,其中包括廉租房,租赁型经济适用房,公共租赁住房各一栋。
二期扩建工程拟建设一栋二十五层住宅楼(编号为5栋)、二栋三十一层住宅楼(编号分别为6栋和7栋。
6栋和7栋含地下室)及一座门楼。
一栋二十五层住宅楼,层高2.9m,首层层高5.1m,建筑总高度75.0m,钢筋混凝土结构形式,地上二~二十五层为塔式住宅,首层部分为架空廊、住宅大堂等;共提供192套保障性住房;二栋三十一层住宅楼,层高2.9m,首层层高5.1m,建筑总高度92.4m,钢筋混凝土结构形式,地上二~三十一层为塔式住宅,首层部分为架空廊、住宅大堂、商铺等;共提供480套保障性住房;地下一层为人防地下室兼停车库。
二、塔吊概况本工程施工时共设塔吊3台,布设位置和塔吊编号见平面布置图。
1#、2#、3#塔吊,采用广西建工集团建筑机械制造有限公司生产的QTZ63型塔吊,该塔吊独立式起升高度为35米,附着式起升高度达120米,工作臂长50米,最大起重量4吨,额定起重力矩为65T.m,最大起重力矩为73T.m。
综合现场实际情况,本方案针对1#塔吊进行编制,塔吊基础采用天然地基基础。
而2#、3#塔吊基础采用四桩台基础,另外编制。
三、塔吊基础选择根据厂家提供的说明书中要求,基础混凝土强度采用C35,QTZ63型塔吊基础底面为6000×6000的正方形。
塔吊安装位置详见下图铺设混凝土基础的地基应能承受0.2MPa的压力,本工程地质勘察报告及现场实际情况,1#塔吊基础位于3-1砾质粘性土层,该层土质的承载力达0.26MPa,满足塔吊基础对地基承载力的要求,且该土层也是建筑物基础所在土层,以该土层作塔吊基础的持力层,既能满足塔吊使用要求,也不会有基坑开挖时引起塔吊基础变形的问题。
QTZ63(ZJ5311)矩形板式基础计算书.预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制QTZ63 (ZJ5311)矩形板式基础计算书一、塔机属性塔机型号QTZ63 (ZJ5311)塔机独立状态的最大起吊高度H0(m) 40塔机独立状态的计算高度H(m) 43塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.6二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G0(kN) 251起重臂自重G1(kN) 37.4起重臂重心至塔身中心距离R G1(m) 222、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值倾覆力矩设计值M'(kN·m) 1.2×(37.4×22-19.8×6.3-89.4×11.8)+1.4×0.5×45.27×43=934.4 三、基础验算矩形板式基础布置图基础布置基础长l(m) 5.3 基础宽b(m) 5.3 基础高度h(m) 1.25基础参数基础混凝土强度等级C25 基础混凝土自重γc(kN/m3) 25 基础上部覆土厚度h’(m)0 基础上部覆土的重度γ’(kN/m3) 19 基础混凝土保护层厚度δ(mm)40地基参数地基承载力特征值f ak(kPa) 150 基础宽度的地基承载力修正系数ηb0.3基础及其上土的自重荷载标准值:G k=blhγc=5.3×5.3×1.25×25=877.81kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×877.81=1053.38kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=37.4×22+3.8×11.5-19.8×6.3-89.4×11.8+0.9×(690+0.5×19.02×43/1.2)=614.54kN·mF vk''=F vk/1.2=19.02/1.2=15.85kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×37.4×22+3.8×11.5-19.8×6.3-89.4×11.8)+1.4×0.9×(690+0.5×19.02×43/1.2)=922.98kN·mF v''=F v/1.2=26.63/1.2=22.19kN基础长宽比:l/b=5.3/5.3=1≤1.1,基础计算形式为方形基础。
TC5610(QTZ63)塔吊天然基础的计算书一、参数信息塔吊型号:QTZ63,塔吊起升高度H:120.00m,塔身宽度B:1.6m,基础埋深d:1.3m,基础承台厚度hc:1.30m,基础承台宽度Bc:5.00m,(KN) Mk (KN)Fk(KN) Fh工作状态下511.2 18.3 1335非工作状态下464.1 73.9 1552 地基承载力特征值f ak:270kPa,基础宽度修正系数ηb:0.15,基础埋深修正系数ηd:1.4,基础底面以下土重度γ:20kN/m3,基础底面以上土加权平均重度γm:20kN/m3。
一、工作状态下验算:(1)塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=(M k+F h×h)/(F k+G k)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离;M k──作用在基础上的弯矩;F k──作用在基础上的垂直载荷;G k──混凝土基础重力,G k=25×5×5×1.3=812.5kN;Bc──为基础的底面宽度;计算得:e=(1335+18.3*1.3)/(812.5+511.2)=1.026m < 5/3=1.6m;基础抗倾覆稳定性满足要求!(2)地基承载力验算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算:e=1.026m >B/6= 5/6=0.833m 为大偏心受压构件地基承载力应同时满足下式:P k=(F k+G k)/A≤ f aP kmax=2×(F k+G k)/(3×a×Bc)≤1.2 f a式中 F k──作用在基础上的垂直载荷;G k──混凝土基础重力;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=Bc/2-M k/(F k+G k)=5/2-1335/(511.2+812.5)=1.4914m。
天然基础计算书本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)等编制。
一、参数信息塔吊型号:QTZ63,塔吊起升高度H:35.00m,塔身宽度B:1.6m,基础埋深d:2.00m,自重G:450.8kN,基础承台厚度hc:1.20m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB335,基础底面配筋直径:20mm额定起重力矩Me:630kN·m,基础所受的水平力P:30kN,标准节长度b:2.8m,主弦杆材料:角钢/方钢, 宽度/直径c:12mm,所处城市:浙江杭州市,基本风压ω0:0.45kN/m2,地面粗糙度类别:A类近海或湖岸区,风荷载高度变化系数μz:1.92 。
地基承载力特征值f ak:110kPa,基础宽度修正系数εb:0.15,基础埋深修正系数εd:1.4,基础底面以下土重度γ:19.3kN/m3,基础底面以上土加权平均重度γm:19.3kN/m3。
二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=450.8kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:F k=G+Q=450.8+60=510.8kN;2、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数:地处浙江杭州市,基本风压为ω0=0.45kN/m2;查表得:风荷载高度变化系数μz=1.92;挡风系数计算:φ=[3B+2b+(4B2+b2)1/2]c/(Bb)=[(3×1.6+2×2.8+(4×1.62+2.82)0.5)×0.012]/(1.6×2.8)= 0.039;因为是角钢/方钢,体型系数μs=2.9;高度z处的风振系数取:βz=1.0;所以风荷载设计值为:ω=0.7×βz×μs×μz×ω0=0.7×1.00×2.9×1.92×0.45=1.754kN/m2;3、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mω=ω×φ×B×H×H×0.5=1.754×0.039×1.6×35×35×0.5=67.038kN·m;M kmax=Me+Mω+P×h c=630+67.038+30×1.2=733.04kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=M k/(F k+G k)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离;M k──作用在基础上的弯矩;F k──作用在基础上的垂直载荷;G k──混凝土基础重力,G k=25×5.5×5.5×1.2=907.5kN;Bc──为基础的底面宽度;计算得:e=733.04/(510.8+907.5)=0.517m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
QTZ63 塔吊天然基础的计算书 (一)参数信息 塔吊型号:QTZ63,自重(包括压重),最大KN F 5.5638.910)65.1140(31=⨯⨯++=起重荷载,塔吊额定力距M=710KN ·M ,塔吊起重高度H=15.00M ,塔身宽KN F 602=度B=1.5M ,基础宽度b=1.755m ,混凝土强度等级:C35,基础埋深D=0.5M ,基础最小厚度h=1.35m ,基础最小宽度。
M B C 5= (二)塔吊基础承载力计算 根据《塔式起重机混凝土基础工程技术规范》JGJ/T 187-2009,塔机在独立状态时,作用于基础的荷载应包括塔机作用于基础顶的竖向基础荷载值()、水平荷载标准值K F ()、倾覆力矩(包括塔机自重、起重荷载、风荷载引起的力矩)荷载标准值,扭矩VK F 荷载标准值()以及基础和其上覆盖土的自重荷载标准值(),见图 2。
K T K G 矩形基础地基承载力计算应符合以下规定: 1、基础底面压力应符合以下要求: 1)当轴心荷载作用时: (1)a K f P ≤ 式中:—荷载效应标准组合下,基底的平均竖向压力(KN )。
—荷载效应标准组合K P 下,基底的最大竖向压力(KN )。
—地基承载力。
a f 2)当偏心荷载作用时: (2)max k P 2.1≤a f —荷载效应标准组合下,基底的平均竖向压力(KN )。
max k P 、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。
在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。
管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。
线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。
QTZ63塔吊天然基础的计算书(一)参数信息塔吊型号:QTZ63,自重(包括压重)F1=450.80kN,最大起重荷载F2=60.00kN,塔吊倾覆力距M=630.00kN.m,塔吊起重高度=70.00m,塔身宽度B=1.50m,混凝土强度等级:C35,基础埋深D=5.00m,基础最小厚度h=1.35m,基础最小宽度Bc=5.00m。
(二)基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=5.00m(三)塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×510.8=612.96kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =4012.50kN;Bc──基础底面的宽度,取Bc=5.00m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-882.00/(612.96+4012.50)=2.31m。
经过计算得到:无附着的最大压力设计值 Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa 无附着的最小压力设计值 Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa 有附着的压力设计值 P=(612.96+4012.50)/5.002=185.02kPa偏心距较大时压力设计值 Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa(四)地基基础承载力验算地基承载力设计值为:fa=270.00kPa地基承载力特征值fa大于最大压力设计值Pmax=227.35kPa,满足要求!地基承载力特征值1.2×fa大于偏心距较大时的压力设计值Pkmax=267.06kPa,满足要求!据安徽省建设工程勘察设计院《岩土工程勘察报告》,Ⅰ#塔吊参227号孔,Ⅱ#塔吊参243号孔,Ⅲ#塔吊参212号孔,Ⅳ#塔吊参193号孔,Ⅵ#塔吊参118号孔,Ⅶ#塔吊参108号孔。
矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术标准》JGJ/T187-20192、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、桩顶作用效应计算基础布置图承台及其上土的自重荷载标准值:Gk =bl(hγc+h'γ')=5×5×(1.35×25+0×19)=843.75kN承台及其上土的自重荷载设计值:G=1.35Gk=1.35×843.75=1139.062kN桩对角线距离:L=(ab 2+al2)0.5=(3.42+3.42)0.5=4.808m1、荷载效应标准组合轴心竖向力作用下:Qk =(Fk'+Gk)/n=(423+843.75)/4=316.688kN荷载效应标准组合偏心竖向力作用下:Qkmax =(Fk'+Gk)/n+(Mk'+FVk'h)/L=(423+843.75)/4+(1770+74.6×1.35)/4.808=705.744kNQkmin =(Fk'+Gk)/n-(Mk'+FVk'h)/L=(423+843.75)/4-(1770+74.6×1.35)/4.808=-72.369kN 2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Qmax =(F'+G)/n+(M'+Fv'h)/L=(571.05+1139.062)/4+(2389.5+100.71×1.35)/4.808=952.754kNQmin =(F'+G)/n-(M'+Fv'h)/L=(571.05+1139.062)/4-(2389.5+100.71×1.35)/4.808=-97.698kN四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×1=3.142m桩端面积:A=πd2/4=3.14×12/4=0.785m2p承载力计算深度:min(b/2,5)=min(5/2,5)=2.5mfak=(2.5×90)/2.5=225/2.5=90kPa承台底净面积:Ac =(bl-n-3Ap)/n=(5×5-4-3×0.785)/4=4.661m2复合桩基竖向承载力特征值:Ra =ψuΣqsia·li+qpa·Ap+ηcfakAc=0.8×3.142×(2.8×10+3.2×70)+4000×0.785+0.1×90×4.661=3815.376kNQk =316.688kN≤Ra=3815.376kNQkmax =705.744kN≤1.2Ra=1.2×3815.376=4578.451kN满足要求!2、桩基竖向抗拔承载力计算Qkmin=-72.369kN<0按荷载效应标准组合计算的桩基拔力:Qk'=72.369kN桩身的重力标准值:Gp =((d1-d+hz)γz+(lt-(d1-d+hz))(γz-10))Ap=(((-2)-0+13)×25+(6-((-2)-0+13))×(25-10))×0.785=157kNRa '=ψuΣλiqsiali+Gp=0.8×3.142×(0.6×2.8×10+0.6×3.2×70)+157=537.007kNQk '=72.369kN≤Ra'=537.007kN满足要求!3、桩身承载力计算纵向普通钢筋截面面积:As=nπd2/4=14×3.142×142/4=2155mm2 (1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Qmax=952.754kNψc fcAp+0.9fy'As'=(0.75×19.1×0.785×106 + 0.9×(360×2155.133))×10-3=11943.388kNQ=952.754kN≤ψc fcAp+0.9fy'As'=11943.388kN满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Qmin=97.698kNfy As=(360×2155.133)×10-3=775.848kNQ'=97.698kN≤fy As=775.848kN满足要求!4、桩身构造配筋计算As /Ap×100%=(2155.133/(0.785×106))×100%=0.275%<0.65%满足要求!5、裂缝控制计算裂缝控制按三级裂缝控制等级计算。
塔吊桩基础的计算书1. 参数信息塔吊型号:QTZ63自重(包括压重)F1=750.8 kN最大起重荷载F2=60 kN塔吊倾覆力距M=630kN.m塔吊安装高度H=110m塔身宽度B=1.65m混凝土强度:C30承台长度Lc或宽度Bc=4.5m桩直径或方桩边长d=0.5m承台厚度Hc=1.5m2. 塔吊基础承台顶面的竖向力与弯矩计算1). 塔吊自重(包括压重)F1=750.8kN2). 塔吊最大起重荷载F2=60 kN作用于桩基承台顶面的竖向力F=F1+F2=510.8 kN塔吊的倾覆力矩M=630 kN.m3. 矩形承台弯矩的计算计算简图:图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。
1). 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第5.1.1条)其中n──单桩个数,n=4F──作用于桩基承台顶面的竖向力设计值,F=510.8 kN;G──桩基承台的自重,G=25.0×Bc×Bc×Hc=25.0×4.5×4.5×1.5=759.38kN;Mx,My──承台底面的弯矩设计值(kN.m),630 kN.m;xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni──单桩桩顶竖向力设计值(kN)。
经计算得到单桩桩顶竖向力设计值:最大压力:(M为塔吊的倾覆力矩,a为桩间距)2). 矩形承台弯矩的计算(依据《建筑桩技术规范》JGJ94-94的第5.6.1条)其中Mx1,My1──计算截面处XY方向的弯矩设计值(kN.m);xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni1──扣除承台自重的单桩桩顶竖向力设计值(kN),Ni1=Ni-G/n。
经过计算得到弯矩设计值:Mx1=My1= 2×(N-G/n) ×(a/1.414)MX1=My1= 2×(497.5-759.38/4)×(2.5÷1.414)=1089.1KN.m4、矩形承台截面主筋的计算依据《混凝土结构设计规范》(GB50010-2002)第7.5条受弯构件承载力计算。
万科红郡西岸工程塔吊基础施工方案浙江省海天建设集团有限公司万科红郡西岸项目部二0一三年八月塔吊基础施工方案一、编制依据1、建筑施工手册(第四版)2、施工图纸3、本工程地质勘察报告4、施工现场实际情况5、《建筑地基基础工程施工质量验收规范》(GBJ50202--2002)6、《建筑地基基础设计规范》GB50007-20027、浙江省建设机械有限公司提供的QTZ63(ZJ5510)、(5010)塔式起重机产品说明书及相关基础设计资料8、<<塔式起重机设计规范>>( GB/T13752-92)9、《建筑结构荷载规范》(GB50009-2001)10、《建筑安全检查标准》(JGJ59-99)11、《混凝土结构设计规范》(GB50010-2002)等编制12、《建筑桩基技术规范》(JGJ94-94)等编制二、场地土工程地质特征因施工场地为农田、河塘及高土堆,现就完成的部分勘察点可知,在勘探孔揭露深度范围内,按地层成因、时代及各土层物理力学性质特征,场地内土层大致可分为7层,3个亚层兹自上而下分述如下:①杂填土:黄褐色,杂色,松散~稍密,主要由粉质粘土及建筑垃圾组成,为新近回填土,堆积时间2年以下,分布不稳定,厚度变化较大;层厚0.40~3.70m。
②粉质粘土:灰色、黄灰色,软~可塑,为次生土,中等压缩性,干强度中等,韧性中等,无摇震反应,稍有光泽;分布不稳定,主要分布于坳沟部位,土质不均匀,层厚变化较大,局部粉粒含量较高;建议fak=110Kpa。
③-1粉质粘土夹粉土:灰色,软塑状,夹粉土局部夹砂,稍密,中压缩性,干强度中等,韧性中等,摇震反应慢,稍有光泽;透镜体状分布,主要分布于坳沟部位,土质不均匀,局部含有大量腐植质;建议fak=80Kpa。
③粉质粘土:灰色,流塑~软塑,高压缩性,干强度中等,韧性中等,摇震反应慢,稍有光泽;分布不稳定,主要分布于坳沟部位,土质不均匀,局部含有大量腐植质;建议fak=60Kpa。
天然基础计算书、参数信息塔吊型号:QTZ63,塔吊倾覆力矩M=630fkN.m最大起重荷载F2=60fkN ,基础承台宽度Bc=5m钢筋级别:I 级钢。
二、基础最小尺寸计算1.最小厚度计算依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。
根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算:(7.7.1-2)Fw (0 15 口pt 产)甲 pi/o其中:F ——塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。
n ——应按下列两个公式计算,并取其中较小值,取1.000 ; (7.7.1-2)=04 + — A(7.7.1-3)塔身宽度B=1.6fm , 基础以上土的厚度D:=Om自重 F1=450.8fkN , 基础承台厚度h=1.65m,塔吊起升高度H=i0im 混凝土强度等级:C35,n 2--临界截面周长与板截面有效高度之比的影响系数;P h--截面高度影响系数:当h< 800m时,取p h=1.0 ;当h> 2000m时,取ph=0.9 ,其间按线性内插法取用;ft-- 混凝土轴心抗拉强度设计值,取1.570M Pa(T Pc’m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值宜控制在1.0-3.5N/mm2范围内,取2500.000 ;U m--临界截面的周长:距离局部荷载或集中反力作用面积周边h o/2处板垂直截面的最不利周长;这里取(塔身宽度+h o)x 4=9.600m;h 。
--截面有效高度,取两个配筋方向的截面有效高度的平均值;P s--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,P S不宜大于4;当P s<2时,取P s=2;当面积为圆形时,取P s=2;这里取P s=2;a s--板柱结构中柱类型的影响系数:对中性,取a s=40;对边柱,取a s=30;对角柱,取a s=20o塔吊计算都按照中性柱取值,取as=40。
矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术标准》JGJ/T187-20192、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、桩顶作用效应计算基础布置图承台及其上土的自重荷载标准值:Gk =bl(hγc+h'γ')=5×5×(1.35×25+0×19)=843.75kN承台及其上土的自重荷载设计值:G=1.35Gk=1.35×843.75=1139.062kN桩对角线距离:L=(ab 2+al2)0.5=(3.42+3.42)0.5=4.808m1、荷载效应标准组合轴心竖向力作用下:Qk =(Fk'+Gk)/n=(423+843.75)/4=316.688kN荷载效应标准组合偏心竖向力作用下:Qkmax =(Fk'+Gk)/n+(Mk'+FVk'h)/L=(423+843.75)/4+(1770+74.6×1.35)/4.808=705.744kNQkmin =(Fk'+Gk)/n-(Mk'+FVk'h)/L=(423+843.75)/4-(1770+74.6×1.35)/4.808=-72.369kN 2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Qmax =(F'+G)/n+(M'+Fv'h)/L=(571.05+1139.062)/4+(2389.5+100.71×1.35)/4.808=952.754kNQmin =(F'+G)/n-(M'+Fv'h)/L=(571.05+1139.062)/4-(2389.5+100.71×1.35)/4.808=-97.698kN四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×1=3.142m桩端面积:A=πd2/4=3.14×12/4=0.785m2p承载力计算深度:min(b/2,5)=min(5/2,5)=2.5mfak=(2.5×90)/2.5=225/2.5=90kPa承台底净面积:Ac =(bl-n-3Ap)/n=(5×5-4-3×0.785)/4=4.661m2复合桩基竖向承载力特征值:Ra =ψuΣqsia·li+qpa·Ap+ηcfakAc=0.8×3.142×(2.8×10+3.2×70)+4000×0.785+0.1×90×4.661=3815.376kNQk =316.688kN≤Ra=3815.376kNQkmax =705.744kN≤1.2Ra=1.2×3815.376=4578.451kN满足要求!2、桩基竖向抗拔承载力计算Qkmin=-72.369kN<0按荷载效应标准组合计算的桩基拔力:Qk'=72.369kN桩身的重力标准值:Gp =((d1-d+hz)γz+(lt-(d1-d+hz))(γz-10))Ap=(((-2)-0+13)×25+(6-((-2)-0+13))×(25-10))×0.785=157kNRa '=ψuΣλiqsiali+Gp=0.8×3.142×(0.6×2.8×10+0.6×3.2×70)+157=537.007kNQk '=72.369kN≤Ra'=537.007kN满足要求!3、桩身承载力计算纵向普通钢筋截面面积:As=nπd2/4=14×3.142×142/4=2155mm2 (1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Qmax=952.754kNψc fcAp+0.9fy'As'=(0.75×19.1×0.785×106 + 0.9×(360×2155.133))×10-3=11943.388kNQ=952.754kN≤ψc fcAp+0.9fy'As'=11943.388kN满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Qmin=97.698kNfy As=(360×2155.133)×10-3=775.848kNQ'=97.698kN≤fy As=775.848kN满足要求!4、桩身构造配筋计算As /Ap×100%=(2155.133/(0.785×106))×100%=0.275%<0.65%满足要求!5、裂缝控制计算裂缝控制按三级裂缝控制等级计算。
QTZ63塔吊天然基础计算书新建厂房.办公楼工程;属于框架结构;地上7层;建筑高度:22.80m;标准层层高:3.20m ;总建筑面积:7289.65.平方米;总工期:300天;施工单位建设工程有限公司。
本工程由无锡房地产开发有限公司投资,无锡市研究院设计,无锡市地质勘察,工程监理公司监理,建设工程有限公司组织施工;由担任项目经理,担任技术负责人。
一、参数信息塔吊型号:QTZ63,塔吊起升高度H=110.00m,塔吊倾覆力矩M=630fkN.m,混凝土强度等级:C35,塔身宽度B=1.6fm,基础以上土的厚度D:=2.00m,自重F1=450.8fkN,基础承台厚度h=1.45m,最大起重荷载F2=60fkN,基础承台宽度Bc=5.75m,钢筋级别:II级钢。
二、基础最小尺寸计算1.最小厚度计算依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。
根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算:(7.7.1-2)其中: F──塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。
η──应按下列两个公式计算,并取其中较小值,取1.00;(7.7.1-2)(7.7.1-3)η1--局部荷载或集中反力作用面积形状的影响系数;η2--临界截面周长与板截面有效高度之比的影响系数;βh--截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm 时,取βh=0.9,其间按线性内插法取用;ft--混凝土轴心抗拉强度设计值,取16.70MPa;σpc,m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值宜控制在1.0-3.5N/mm2范围内,取2500.00;um --临界截面的周长:距离局部荷载或集中反力作用面积周边ho/2处板垂直截面的最不利周长;这里取(塔身宽度+ho)×4=9.60m;ho--截面有效高度,取两个配筋方向的截面有效高度的平均值;βs--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜大于4;当βs<2时,取βs=2;当面积为圆形时,取βs=2;这里取βs=2;αs--板柱结构中柱类型的影响系数:对中性,取αs=40;对边柱,取αs=30;对角柱,取αs=20. 塔吊计算都按照中性柱取值,取αs=40 。
计算方案:当F取塔吊基础对基脚的最大压力,将ho1从0.8m开始,每增加0.01m,至到满足上式,解出一个ho1;当F取塔吊基础对基脚的最大拔力时,同理,解出一个ho2,最后ho1与ho2相加,得到最小厚度hc。
经过计算得到:塔吊基础对基脚的最大压力F=200.00kN时,得ho1=0.80m;塔吊基础对基脚的最大拔力F=200.00kN时,得ho2=0.80m;解得最小厚度 Ho =ho1+ho2+0.05=1.65m;实际计算取厚度为:Ho=1.45m。
2.最小宽度计算建议保证基础的偏心矩小于Bc/4,则用下面的公式计算:其中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×(450.80+60.00)=612.96kN;G ──基础自重与基础上面的土的自重,G=1.2×(25×Bc×Bc×Hc+γm ×Bc×Bc×D)=1.2×(25.0×Bc×Bc×1.45+20.00×Bc×Bc×2.00);γm──土的加权平均重度,M ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1.4×630.00=882.00kN.m。
解得最小宽度 Bc=-1.00m,实际计算取宽度为 Bc=5.75m。
三、塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心矩较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=304.30kN;G──基础自重与基础上面的土的自重:G=1.2×(25.0×Bc×Bc×Hc+γm ×Bc×Bc×D) =3025.22kN;γm──土的加权平均重度Bc──基础底面的宽度,取Bc=5.750m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=31.685m3;M──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1.4×630.00=882.00kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a= Bc / 2 - M / (F +G)=5.750/2-882.000/(612.960+3025.219)=2.633m。
经过计算得到:无附着的最大压力设计值=(612.960+3025.219)/5.7502+882.000/31.685=137.876kPa;Pmax无附着的最小压力设计值=(612.960+3025.219)/5.7502-882.000/31.685=82.203kPa;Pmin有附着的压力设计值 P=(612.960+3025.219)/5.7502=110.039kPa;=2×(612.960+3025.219)/(3×5.750×偏心矩较大时压力设计值 Pkmax2.633)=160.230kPa。
四、地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。
计算公式如下:fa--修正后的地基承载力特征值(kN/m2);--地基承载力特征值,按本规范第5.2.3条的原则确定;取fak145.000kN/m2;ηb、ηd--基础宽度和埋深的地基承载力修正系数;γ--基础底面以上土的重度,地下水位以下取浮重度,取20.000kN/m3;b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值,取5.750m;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度,取20.000kN/m3;d--基础埋置深度(m) 取2.000m;解得地基承载力设计值:fa=195.250kPa;实际计算取的地基承载力设计值为:fa=170.000kPa;地基承载力特征值fa大于最大压力设计值Pmax=137.876kPa,满足要求!地基承载力特征值1.2×fa大于偏心矩较大时的压力设计值Pkmax=160.230kPa,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。
验算公式如下:式中βhp --- 受冲切承载力截面高度影响系数,当h不大于800mm时,βhp取1.0.当h大于等于2000mm时,βhp取0.9,其间按线性内插法取用;--- 混凝土轴心抗拉强度设计值;ft--- 基础冲切破坏锥体的有效高度;ho--- 冲切破坏锥体最不利一侧计算长度;am--- 冲切破坏锥体最不利一侧斜截面的上边长,当计算柱与基础交at接处的受冲切承载力时,取柱宽(即塔身宽度);当计算基础变阶处的受冲切承载力时,取上阶宽;ab--- 冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,当冲切破坏锥体的底面落在基础底面以内,计算柱与基础交接处的受冲切承载力时,取柱宽加两倍基础有效高度;当计算基础变阶处的受冲切承载力时,取上阶宽加两倍该处的基础有效高度。
pj--- 扣除基础自重及其上土重后相应于荷载效应基本组合时的地基土单位面积净反力,对偏心受压基础可取基础边缘处最大地基土单位面积净反力;Al--- 冲切验算时取用的部分基底面积Fl --- 相应于荷载效应基本组合时作用在Al上的地基土净反力设计值。
则,βhp --- 受冲切承载力截面高度影响系数,取βhp=0.95;ft --- 混凝土轴心抗拉强度设计值,取 ft=1.57MPa;am--- 冲切破坏锥体最不利一侧计算长度:am=[1.60+(1.60 +2×1.45)]/2=3.05m;ho --- 承台的有效高度,取 ho=1.40m;Pj --- 最大压力设计值,取 Pj=160.23KPa;Fl--- 实际冲切承载力:Fl=160.23×(5.75+4.50)×((5.75-4.50)/2)/2=513.24kN。
其中5.75为基础宽度,4.50=塔身宽度+2h;允许冲切力:0.7×0.95×1.57×3050.00×1400.00=4438540.46N=4438.54kN;实际冲切力不大于允许冲切力设计值,所以能满足要求!六、承台配筋计算1.抗弯计算依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。
计算公式如下:式中:MI--- 任意截面I-I处相应于荷载效应基本组合时的弯矩设计值;a1--- 任意截面I-I至基底边缘最大反力处的距离;当墙体材料为混凝土时,取a1=b即取a1=2.08m;Pmax--- 相应于荷载效应基本组合时的基础底面边缘最大地基反力设计值,取160.23kN/m2;P --- 相应于荷载效应基本组合时在任意截面I-I处基础底面地基反力设计值;P=160.23×(3×1.60-2.08)/(3×1.60)=90.96kPa;G---考虑荷载分项系数的基础自重及其上的土自重,取3025.22kN/m2;l --- 基础宽度,取l=5.75m;a --- 塔身宽度,取a=1.60m;a' --- 截面I - I在基底的投影长度, 取a'=1.60m。
经过计算得MI=2.082×[(2×5.75+1.60)×(160.23+90.96-2×3025.22/5.752)+(160.23-90.96)×5.75]/12=463.44kN.m。
2.配筋面积计算依据《建筑地基基础设计规范》GB 50007-2002第8.7.2条。
公式如下:式中,αl --- 当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,取为0.94,期间按线性内插法确定,取αl=1.00;fc --- 混凝土抗压强度设计值,查表得fc=16.70kN/m2;ho --- 承台的计算高度,ho=1.40m。
经过计算得:αs=463.44×106/(1.00×16.70×5.75×103×(1.40×103)2)=0.002;ξ=1-(1-2×0.002)0.5=0.002;γs=1-0.002/2=0.999;As=463.44×106/(0.999×1.40×300.00)=1104.79mm2。