安徽省铜陵市高中数学第一章常用逻辑用语简单的逻辑联结词学案无答案新人教A版选修2_120180906111
- 格式:pdf
- 大小:242.97 KB
- 文档页数:3
学习资料1.3 简单的逻辑联结词1.3.1且(and)1。
3。
2或(or)1。
3。
3非(not)内容标准学科素养1。
了解“或”“且”“非”的含义.2.掌握含逻辑联结词的命题真假的判断.3。
掌握根据命题真假求参数取值范围的方法。
利用直观想象发展数学抽象提高逻辑推理授课提示:对应学生用书第10页[基础认识]知识点一“且”错误!观察下列三个命题:(1)2是6的约数;(2)2是8的约数;(3)2是6的约数且是8的约数.它们之间有什么关系?它们的真假情况怎样?提示:可以看到,命题(3)是由命题(1)(2)使用联结词“且"联结得到的新命题.它们均为真命题.知识梳理(1)定义一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作p∧q,读作“p且q”.(2)真假判断当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p ∧q是假命题.知识点二“或”错误!观察下列三个命题:(1)27是7的倍数;(2)27是3的倍数;(3)27是7的倍数或是3的倍数.它们之间有什么关系?它们的真假怎样?提示:命题(3)是由命题(1)(2)用联结词“或”联结得到的新命题.命题(1)是假命题,命题(2)是真命题,命题(3)也是真命题.知识梳理(1)定义一般地,用逻辑联结词“或"把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”.(2)真假判断当p,q两个命题有一个命题是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题.知识点三“非”预习教材P16-17思考并完成以下问题观察下列两个命题:(1)4是16的算术平方根;(2)4不是16的算术平方根.它们之间有什么关系?它们的真假怎样?提示:可以看到,命题(2)是命题(1)的否定.命题(1)是真命题,命题(2)是假命题.知识梳理(1)定义一般地,对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.(2)真假判断若p是真命题,则綈p必是假命题;若p是假命题,则綈p必是真命题.[自我检测]1.命题“矩形的对角线相等且互相平分”是()A.“p∧q”形式的命题B.“p∨q”形式的命题C.“綈p”形式的命题D.以上说法都不对答案:A2.已知命题p,q,若p为真命题,则()A.p∧q必为真B.p∧q必为假C.p∨q必为真D.p∨q必为假答案:C授课提示:对应学生用书第11页探究一含有逻辑联结词的命题构成及真假[阅读教材P15-17例1、例2、例4]例1:将下列命题用“且"联结成新命题:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数.例2:用逻辑联结词“且”改写下列命题:(1)1既是奇数,又是素数;(2)2和3都是素数.例4:写出下列命题的否定.(1)p:y=sin x是周期函数;(2)p:3<2;(3)p:空集是集合A的子集.题型:用逻辑联结词“且”“或”“非”改写命题.方法步骤:①确定两个简单命题p、q的条件和结论.②分别用“且”“或"“非”将p和q联结起来.有时在不引起歧义的前提下,将p与q中的条件和结论合并.[例1]指出下列命题的构成形式,以及构成它的简单命题:(1)1是质数或合数;(2)他是运动员兼教练;(3)不等式|x-2|≤0没有实数解;(4)要么周长相等的两个三角形全等,要么面积相等的两个三角形全等;(5)这部作品不仅艺术上有缺点,而且政治上也有错误.[解析](1)这个命题是p∨q形式,其中p:1是质数,q:1是合数.(2)这个命题是p∧q形式,其中p:他是运动员,q:他是教练.(3)这个命题是綈p形式,其中p:不等式|x-2|≤0有实数解.(4)这个命题是p∨q形式,其中p:周长相等的两个三角形全等,q:面积相等的两个三角形全等.(5)这个命题是p∧q形式,其中p:这部作品艺术上有缺点,q:这部作品政治上有错误.[例2]分别写出下列命题的“p且q”“p或q”形式的命题:(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.[解析](1)p或q:梯形有一组对边平行或有一组对边相等.p且q:梯形有一组对边平行且有一组对边相等.(2)p或q:-1或-3是方程x2+4x+3=0的解.p且q:-1和-3是方程x2+4x+3=0的解.方法技巧1。
1。
3。
1 “且”与“或”自主预习·探新知情景引入要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你能运用“或”“且”的方法解决吗?新知导学1.逻辑联结词“或”“非"构成新命题记作读作用联结词“且”把命题p和命题q联结起来,就__p∧q____p且q__得到一个新命题用联结词“或”把命题p和命题q联结起来,__p∨q____p或q__就得到一个新命题p q p∧q p∨q真真__真____真__真假__假____真__假真__假____真__假假__假____假__预习自测1.“xy≠0"是指( A )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0 D.不都是0[解析]xy≠0当且仅当x≠0且y≠0.2.p:点P在直线y=2x-3上;q:点P在曲线y=-x2上,则使“p∧q"为真命题的一个点P(x,y)是( C )A.(0,-3)B.(1,2)C.(1,-1)D.(-1,1)[解析]点P(x,y)满足错误!,解得P(1,-1)或P(-3,-9),故选C.3.下列判断正确的是( B )A.命题p为真命题,命题“p或q”不一定是真命题B.命题“p且q”是真命题时,命题p一定是真命题C.命题“p且q”是假命题,命题p一定是假命题D.命题p是假命题,命题“p且q”不一定是假命题[解析] 因为p、q都为真命题时,“p且q”为真命题.4.由下列各组命题构成的新命题“p或q"“p且q”都为真命题的是( B )A.p:4+4=9,q:7〉4B.p:a∈{a,b,c},q:{a}{a,b,c}C.p:15是质数,q:8是12的约数D.p:2是偶数,q:2不是质数[解析] “p或q"“p且q”都为真,则p真q真,故选B.5.给出下列条件:(1)“p成立,q不成立”;(2)“p不成立,q成立”;(3)“p与q都成立”;(4)“p与q都不成立”.其中能使“p或q"成立的条件是__(1)(2)(3)__(填序号).互动探究·攻重难互动探究解疑命题方向❶命题的构成形式典例1 分别指出下列命题的构成形式及构成它的简单命题.(1)小李是老师,小赵也是老师;(2)1是合数或质数;(3)他是运动员兼教练员;(4)这些文学作品不仅艺术上有缺点,而且政治上有错误;(5)要么周长相等的两个三角形全等,要么面积相等的两个三角形全等.[规范解答](1)这个命题是“p∧q"的形式,其中,p:小李是老师;q:小赵是老师.(2)这个命题是“p∨q”的形式,其中,p:1是合数;q:1是质数.(3)这个命题是“p∧q”的形式,其中,p:他是运动员;q:他是教练员.(4)这个命题是“p∧q"的形式,其中,p:这些文学作品艺术上有缺点;q:这些文学作品政治上有错误.(5)这个命题是p∨q形式,其中p:周长相等的两个三角形全等,q:面积相等的两个三角形全等.『规律总结』1。
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)学习目标:1.了解逻辑联结词“且”“或”“非”的意义.(重点)2.能够判断命题“p且q”“p或q”“非p”的真假.(难点)3.会使用联结词“且”“或”“非”联结并改写成某些数学命题,会判断命题的真假.(易错点)[自主预习·探新知]1.“且”(1)定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“p且q”.(2)真假判断当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题.2.“或”(1)定义一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q.读作“p或q”.(2)真假判断当p,q两个命题有一个命题是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题.思考1:(1)p∨q是真命题,则p∧q是真命题吗?(2)若p∨q与p∧q一个是真命题,一个是假命题,那么谁是真命题?[提示](1)不一定,p∨q是真命题,p与q可能一真一假,此时p∧q是假命题.(2)p∨q是真命题,p∧q是假命题.3.“非”(1)定义一般地,对一个命题p全盘否定,就得到一个新命题,记作﹁p,读作“非p”或“p的否定”.(2)真假判断若p是真命题,则﹁p必是假命题;若p是假命题,则﹁p必是真命题.思考2:命题的否定与否命题的区别是什么?[提示](1)命题的否定是直接对命题的结论进行否定,而否命题则是对原命题的条件和结论分别否定.(2)命题的否定(非p)的真假与原命题(p)的真假总是相对的,即一真一假,而否命题的真假与原命题的真假无必然的联系.4.复合命题:用逻辑联结词“且”;“或”;“非”把命题p和命题q联结来的命题称为复合命题.复合命题的真假判断1.思考辨析(1)若p∧q为真,则p,q中有一个为真即可.( )(2)若命题p为假,则p∧q一定为假.( )(3)“p∨q为假命题”是“p为假命题”的充要条件.( )(4)“梯形的对角线相等且互相平分”是“p∨q”形式的命题.( )[答案](1)×(2)√(3)×(4)×2.“xy≠0”是指( )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0A[xy≠0⇔x≠0且y≠0,故选A.]3.已知p,q是两个命题,若“(﹁p)∨q”是假命题,则( )【导学号:46342023】A.p,q都是假命题B.p,q都是真命题C.p是假命题,q是真命题D.p是真命题,q是假命题D[若(﹁p)∨q为假命题,则﹁p,q都是假命题,即p真q假,故选D.][合作探究·攻重难](1)方程x2-3=0没有有理根;(2)有两个内角是45°的三角形是等腰直角三角形;(3)±1是方程x3+x2-x-1=0的根.[解] (1)这个命题是“非p”形式的命题,其中p:方程x2-3=0有有理根.(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.(3)这个命题是“p 或q ”形式的命题,其中p :1是方程x 3+x 2-x -1=0的根,q :-1是方程x 3+x 2-x -1=0的根.1.分别写出由下列命题构成的“p ∨q ”、“p ∧q ”、“﹁p ”形式的命题. (1)p :梯形有一组对边平行,q :梯形有一组对边相等;(2)p :-1是方程x 2+4x +3=0的解,q :-3是方程x 2+4x +3=0的解.【导学号:46342024】[解] (1)p ∧q :梯形有一组对边平行且有一组对边相等.p ∨q :梯形有一组对边平行或有一组对边相等.﹁p :梯形没有一组对边平行.(2)p ∧q :-1与-3是方程x 2+4x +3=0的解.p ∨q :-1或-3是方程x 2+4x +3=0的解.﹁p :-1不是方程x 2+4x +3=0的解.已知命题p :方程x 2-2ax -1=0有两个实数根;命题q :函数f (x )=x +x的最小值为4.给出下列命题:①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨(﹁q ). 则其中真命题的个数为( ) A .1 B .2 C .3 D .4[思路探究] 判断p ,q 的真假→判断﹁p ,﹁q 的真假→判断所给命题的真假[解析] 由于Δ=(-2a )2-4×1×(-1)=4a 2+4>0,所以方程x 2-2ax -1=0有两个实数根,所以命题p 是真命题;当x <0时,f (x )=x +4x<0,所以命题q 为假命题,所以p ∨q ,p ∧(﹁q ),(﹁p )∨(﹁q )是真命题,故选C .[答案] C2.(1)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(﹁q);④(﹁p)∨q中,真命题是( )A.①③ B.①④ C.②③ D.②④C[由不等式的性质可知,命题p为真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③﹁q为真命题,则p∧(﹁q)为真命题,④﹁p为假命题,则(﹁p)∨q为假命题.](2)分别指出由下列命题构成的“p∨q”“p∧q”“﹁p”形式的命题的真假.【导学号:46342025】(1)p:1∈{2,3},q:2∈{2,3};(2)p:2是奇数,q:2是合数;(3)p:4≥4,q:23不是偶数;(4)p:不等式x2-3x-10<0的解集是{x|-2<x<5},q:不等式x2-3x-10<0的解集是{x|x>5或x<-2}.[解] (1)∵p是假命题,q是真命题,∴p∨q是真命题,p∧q是假命题,﹁p是真命题.(2)∵p是假命题,q是假命题,∴p∨q是假命题,p∧q是假命题,﹁p是真命题.(3)∵p是真命题,q是真命题,∴p∨q是真命题,p∧q是真命题,﹁p是假命题.(4)∵p是真命题,q是假命题,∴p∨q是真命题,p∧q是假命题,﹁p是假命题.[探究问题1.设集合A是p为真命题时参数的取值范围,则p为假命题时,参数的取值范围是什么?提示:p为假命题时,参数的取值范围是∁R A.2.设集合M、N分别是p,q分别为真命题时参数的取值范围,则p∨q与p∧q分别为真命题时参数的取值范围分别是什么?提示:当p∨q为真命题时,参数的取值范围是A∪B.当p∧q为真命题时,参数的取值范围是A∩B.已知p:关于x的方程x2+mx+1=0有两个不相等的负根,q:关于x的方程4x2+4(m-2)x+1=0无实根.若p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.[思路探究] 分别求当p 、q 为真时m 的范围→根据p ∨q ,p ∧q的真假分析p 、q 的真假→得出m的范围[解] 当x 2+mx +1=0有两个不相等的负根为真时,⎩⎪⎨⎪⎧m 2-4>0,-m <0,解之得m >2,当4x 2+4(m -2)x +1=0无实根为真时,16(m -2)2-16<0,解之得1<m <3. 因为p ∧q 为假命题,p ∨q 为真命题,所以p 与q 一真一假. 若p 真q 假,则⎩⎪⎨⎪⎧m >2,m ≥3或m ≤1,所以m ≥3.若p 假q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3,所以1<m ≤2.所以m 的取值范围为1<m ≤2或m ≥3.母题探究:1.本例题条件不变,试求p ∨q 与p ∧q 分别为真命题时m 的取值范围. [解] 由例题知,当p 为真时, m >2,当q 为真时1<m <3,则当p ∨q 为真命题时,m >1, 当p ∧q 为真命题时,2<m <3.2.(变条件)本例题中,若命题p 改为“关于x 的不等式a x>1(a >0,且a ≠1)的解集是{x |x <0},命题q 改为“函数y =lg(ax 2-x +a )的定义域为R ”.其他不变,试求a 的取值范围.[解] 根据关于x 的不等式a x >1(a >0,且a ≠1)的解集为{x |x <0}知0<a <1,由函数y =lg(ax 2-x +a )的定义域为R ,知不等式ax 2-x +a >0的解集为R ,则⎩⎪⎨⎪⎧a >01-4a 2<0解得a >12.因为p ∨q 为真命题,p ∧q 为假命题.所以p 和q 一真一假,即“p 假q 真”或“p 真q 假”.故⎩⎪⎨⎪⎧a >1,a >12或⎩⎪⎨⎪⎧0<a <1,a ≤12.解得0<a ≤12或a >1.所以,a 的取值范围是⎝ ⎛⎦⎥⎤0,12∪(1,+∞).[当 堂 达 标·固 双 基]1.若命题“p ∧q ”为假,且﹁p 为假,则( ) A .p ∨q 为假 B .q 假 C .q 真D .p 假B [由﹁p 为假知,p 为真,又p ∧q 为假,则q 假,故选B.] 2.给出下列命题: ①2>1或1>3;②方程x 2-2x -4=0的判别式大于或等于0; ③25是6或5的倍数;④集合A ∩B 是A 的子集,且是A ∪B 的子集. 其中真命题的个数为( )A .1B .2C .3D .4D [对于①,是“或”命题,且2>1是真命题,故①是真命题.对于②,是“或”命题,且Δ=(-2)2+16=20>0,故②是真命题.对于③,是“或”命题,且25是5的倍数,故③是真命题.对于④,是“且”命题,且集合A ∩B 是A 的子集,也是A ∪B 的子集.故④是真命题,故选D.]3.已知命题:p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .﹁p ∧﹁q C .﹁p ∧qD .p ∧﹁qD [因为指数函数的值域为(0,+∞),所以对任意x ∈R ,y =2x>0恒成立,故p 为真命题;因为当x >1时,x >2不一定成立,反之当x >2时,一定有x >1成立,故“x >1”是“x >2”的必要不充分条件,故q 为假命题,则p ∧q 、﹁p 为假命题,﹁q 为真命题,﹁p ∧﹁q 、﹁p ∧q 为假命题,p ∧﹁q 为真命题,故选D.]4.已知命题p :函数f (x )=(2a -1)x +b 在R 上是减函数;命题q :函数g (x )=x 2+ax 在[1,2]上是增函数,若p ∧q 为真,则实数a 的取值范围是________.【导学号:46342026】⎣⎢⎡⎭⎪⎫-2,12 [p 为真时,2a -1<0,即a <12, q 为真时,-a2≤1,即a ≥-2,则p ∧q 为真时,-2≤a <12.]5.分别指出由下列各组命题构成的“p ∧q ”“p ∨q ”“﹁p ”形式的命题的真假: (1)p :点P (1,1)在直线2x +y -1=0上,q :直线y =x 过圆x 2+y 2=4的圆心; (2)p :4∈{2,3,4},q :不等式x 2-x -2>0的解集为{x |-2<x <1}; (3)p :若a >b ,则2a>2b,q :若a >b ,则a 3>b 3.[解] (1)∵p是假命题,q是真命题,∴p∧q为假命题,p∨q为真命题,﹁p为真命题.(2)∵p是真命题,q是假命题,∴p∧q为假命题,p∨q为真命题,﹁p为假命题.(3)∵p是真命题,q是真命题,∴p∧q为真命题,p∨q为真命题,﹁p为假命题.。
简单的逻辑联结词
考查内容:简单的逻辑联结词
考查主题:强化题型,体会“且”“或”“非”,会判断复合命题的真假性;
考查形式:封闭式训练,导师不指导、不讨论、不抄袭. 温馨提示:本次训练时间约为40分钟,请同学们认真审题,仔细答题,安静
一、选择题
1.
(2011·高考北京卷)若p是真命题,q是假命题,则( )
A.p∧q是真命题 B.p∨q是假命题
C.¬p是真命题D.¬q是真命题
2.
命题“平行四边形的对角线相等且互相平分”是( )
A.“p或q”形式的命题 B.“p且q”形式的命题
C.“非p”形式的命题 D.以上均不正确
3、“x不大于y”是指( )
A.x≠y B.x<y或x=y
C.x<y D.x<y且x=y
4、若命题p:x∈A∩B,则¬p为( )
A.x∈A且x∉B B.x∉A或x∉B
C.x∉A且x∉B D.x∈A∪B
5、若命题“p或q”与命题“p且q”都是真命题,则下列结论中正确的个数是( )
①命题q一定是真命题;②命题q不一定是真命题;
③命题p不一定是真命题;④命题p与q的真值相同.
A.1 B.2
C.3 D.4
6.
分别指出由下列命题构成的“p∨q”“p∧q”“¬p”形式的命题的真假.
(1)p:1∈{2,3},q:2∈{2,3};
(2)p:2是奇数,q:2是合数;
(3)p:4≥4,q:23不是偶数;
(4)p:不等式x2-3x-10<0的解集是{x|-2<x<5},q:不等式x2-3x-10<0的解集是{x|x>5或
x<-2}.
7.
“p∨q为假命题”是“¬p为真命题”的( )
A.充分不必要条件B.必要不充分条件
C .充要条件
D .既不充分也不必要条件 (2012·邢台质检)给出两个命题:p :函数y =x 2-x -1有两个不同的零点;q :若<1,则8.1x x >1,那么在下列四个命题中,真命题是( )
A .(¬p )∨q
B .p ∧q
C .(¬p )∧(¬q )
D .(¬p )∨(¬q )
9.已知p :x2-1≥-1, q :4+2=7,则下列判断中,错误的是( )
A . p 为真命题,p 且q 为假命题
B .p 为假命题,q 为假命题
C .q 为假命题,p 或q 为真命题
D .p 且q 为假命题,p 或q 为真命题
10.如果命题“綈p ∨綈q”是假命题,则在下列各结论中,正确的为( )
①命题“p ∧q”是真命题; ②命题“p ∧q”是假命题;
③命题“p ∨q”是真命题; ④命题“p ∨q”是假命题.
A .①③
B .②④
C .②③
D .①④ 二、填空题
11、命题p :2∉{1,3},q :2∉{x |x 2-4=0},则命题p ∧q :2∉{1,3}且2∉{x |x 2-4=0}是__________命题,命题p ∨q :__________是__________命题.
12、设命题p :2x +y =3;q :x -y =6.若p ∧q 为真命题,则x =__________,y =__________. 13、(2012·长沙质检)下列命题中是“p 或q ”的形式且为真命题的是__________.
①3是9的约数或是21的约数;
②方程x 2+2x -1=0的两实根符号相同或绝对值相等;
③三角形的外角等于与它不相邻的两内角的和或大于与它不相邻的任意内角.
14、命题“若a <b ,则2a <2b ”的否命题为__________,命题的否定为__________.
三、简答题
15、写出下列命题的否定,并判断真假.
(1)若x ,y 是奇数,则x +y 是偶数;
(2)若一个数是质数,则这个数一定是奇数;
(3)若两个角相等,则这两个角是对顶角.
16、分别写出下列各组命题构成的“q p ∧”、“q p ∨”、“p ⌝”形式的命题并判断真假.
(1)p :6<6,q :6=6; (2)p :}0{=φ,q :φφ⊆.
17、已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若¬p 是¬q 的充分而不必要条件,求实数m 的取值范围.。