安徽省亳州蒙城县联考2018-2019学年八上数学期末考试试题
- 格式:doc
- 大小:449.50 KB
- 文档页数:6
亳州谯城区2018-2019年初二上年末数学试卷含解析解析【一】选择题〔本大题共10小题,每题4分,共40分〕1、点A〔﹣3,﹣5〕向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为〔〕A、〔1,﹣8〕B、〔1,﹣2〕C、〔﹣6,﹣1〕D、〔0,﹣1〕2、假设三角形的三边长分别为3,4,x,那么x的值可能是〔〕A、1B、6C、7D、103、一个三角形的三个外角之比为3:4:5,那么这个三角形内角之比是〔〕A、5:4:3B、4:3:2C、3:2:1D、5:3:14、以下函数中,y是x的一次函数的是〔〕①y=x﹣6;②y=;③y=;④y=7﹣x、A、①②③B、①③④C、①②③④D、②③④5、假设直线y=mx+2m﹣3经过【二】【三】四象限,那么m的取值范围是〔〕A、m<B、m>0C、m>D、m<06、以下四个图形中,线段BE是△ABC的高的是〔〕A、B、C、D、7、如图,△ABC≌△AEF,AB=AE,∠B=∠E,那么对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是〔〕A、1个B、2个C、3个D、4个8、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地,以下函数图象能表达这一过程的是〔〕A、 B、C、D、9、如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,那么∠C的度数是〔〕A、30°B、45°C、55°D、60°10、如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA【二】填空题〔本大题共6小题,每题5分,共30分〕11、函数y=中,自变量x的取值范围是、12、直线y=kx+b与直线y=﹣2x+1平行,且经过点〔﹣2,3〕,那么kb=、13、如图,一次函数y=x+6的图象经过点P〔a,b〕和Q〔c,d〕,那么a〔c﹣d〕﹣b〔c﹣d〕的值为、14、y+2与x+1成正比例,且当x=1时,y=4,那么当x=2时,y=、15、如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,那么△BEF的面积:cm2、16、某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇、货车的速度为60千米/时,两车之间的距离y〔千米〕与货车行驶时间x〔小时〕之间的函数图象如下图,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为〔3,75〕;④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的选项是、【三】解答题17、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为〔1,2〕、〔1〕写出点A、B的坐标:A〔,〕、B〔,〕〔2〕将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,那么A′B′C′的三个顶点坐标分别是A′〔,〕、B′〔,〕、C′〔,〕、〔3〕△ABC的面积为、18、直线y=kx+b经过点A〔5,0〕,B〔1,4〕、〔1〕求直线AB的解析式;〔2〕假设直线y=2x﹣4与直线AB相交于点C,求点C的坐标;〔3〕根据图象,写出关于x的不等式2x﹣4>kx+b的解集、19、如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数、y元,求y关于x的函数解析式;〔2〕假设商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?21、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D、〔1〕求证:△ADC≌△CEB、〔2〕AD=5cm,DE=3cm,求BE的长度、22、:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答以下问题:〔1〕在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;〔2〕在图2中,假设∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB 分别相交于M、N,利用〔1〕的结论,试求∠P的度数;〔3〕如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?并说明理由、23、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1〔km〕,快车离乙地的距离为y2〔km〕,慢车行驶时间为x〔h〕,两车之间的距离为S〔km〕,y1,y2与x的函数关系图象如图〔1〕所示,S与x的函数关系图象如图〔2〕所示:〔1〕图中的a=,b=、〔2〕求S关于x的函数关系式、〔3〕甲、乙两地间依次有E、F两个加油站,相距200km,假设慢车进入E站加油时,快车恰好进入F站加油、求E加油站到甲地的距离、2018-2016学年安徽省亳州市谯城区八年级〔上〕期末数学试卷参考答案与试题解析【一】选择题〔本大题共10小题,每题4分,共40分〕1、点A〔﹣3,﹣5〕向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为〔〕A、〔1,﹣8〕B、〔1,﹣2〕C、〔﹣6,﹣1〕D、〔0,﹣1〕【考点】坐标与图形变化-平移、【专题】动点型、【分析】直接利用平移中点的变化规律求解即可、【解答】解:点A〔﹣3,﹣5〕向上平移4个单位,再向左平移3个单位得到点B,坐标变化为〔﹣3﹣3,﹣5+4〕;那么点B的坐标为〔﹣6,﹣1〕、应选C、【点评】此题考查点坐标的平移变换、关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变、平移中,对应点的对应坐标的差相等、2、假设三角形的三边长分别为3,4,x,那么x的值可能是〔〕A、1B、6C、7D、10【考点】三角形三边关系、【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边,分别求出x的最小值、最大值,进而判断出x的值可能是哪个即可、【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6、应选:B、【点评】此题主要考查了三角形的三边的关系,要熟练掌握,解答此题的关键是要明确:〔1〕三角形三边关系定理:三角形两边之和大于第三边、〔2〕三角形的两边差小于第三边、3、一个三角形的三个外角之比为3:4:5,那么这个三角形内角之比是〔〕A、5:4:3B、4:3:2C、3:2:1D、5:3:1【考点】三角形的外角性质、【分析】设三角形的三个外角的度数分别为3x、4x、5x,根据三角形的外角和等于360°列出方程,解方程得到答案、【解答】解:设三角形的三个外角的度数分别为3x、4x、5x,那么3x+4x+5x=360°,解得,x=30°,3x=90°,4x=120°,5x=150°,相应的外角分别为90°,60°,30°,那么这个三角形内角之比为:90°:60°:30°=3:2:1,应选:C、【点评】此题考查的是三角形外角和定理,掌握三角形的外角和等于360°是解题的关键、4、以下函数中,y是x的一次函数的是〔〕①y=x﹣6;②y=;③y=;④y=7﹣x、A、①②③B、①③④C、①②③④D、②③④【考点】一次函数的定义、【分析】根据一次函数的定义条件进行逐一分析即可、【解答】解:①y=x﹣6符合一次函数的定义,故本选项正确;②y=是反比例函数;故本选项错误;③y=,属于正比例函数,是一次函数的特殊形式,故本选项正确;④y=7﹣x符合一次函数的定义,故本选项正确;综上所述,符合题意的是①③④;应选B、【点评】此题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1、5、假设直线y=mx+2m﹣3经过【二】【三】四象限,那么m的取值范围是〔〕A、m<B、m>0C、m>D、m<0【考点】一次函数图象与系数的关系、【专题】计算题、【分析】根据一次函数图象的性质作答、【解答】解:∵直线y=mx+2m﹣3经过第二,三,四象限;∴m<0,2m﹣1<0,即m<0、应选D、【点评】此题考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第【一】【二】三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第【一】【三】四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第【一】【二】四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第【二】【三】四象限,y的值随x的值增大而减小、6、以下四个图形中,线段BE是△ABC的高的是〔〕A、B、C、D、【考点】三角形的角平分线、中线和高、【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断、【解答】解:线段BE是△ABC的高的图是选项D、应选D、【点评】此题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段、熟记定义是解题的关键、7、如图,△ABC≌△AEF,AB=AE,∠B=∠E,那么对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是〔〕A、1个B、2个C、3个D、4个【考点】全等三角形的性质、【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可、【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的选项是①③④共3个、应选C、【点评】此题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键、8、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地,以下函数图象能表达这一过程的是〔〕A、 B、C、D、【考点】函数的图象、【专题】函数及其图象、【分析】因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案、【解答】解:∵400×5=2000〔米〕=2〔千米〕,∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A与B又∵回到原出发地”表示终点的纵坐标为0,∴排除选项D,故:选C【点评】此题考查了函数的图象,解题的关键是理解函数图象的意义、9、如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,那么∠C的度数是〔〕A、30°B、45°C、55°D、60°【考点】三角形内角和定理;三角形的外角性质、【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式求出∠ABN,再根据角平分线的定义求出∠ABE和∠BAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解、【解答】解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=〔∠AOB+∠BAO〕﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°、应选〔B〕【点评】此题怎样考查了三角形外角的性质,以及角平分线的定义,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和、10、如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA【考点】全等三角形的判定、【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出、【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形、应选D、【点评】此题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键、【二】填空题〔本大题共6小题,每题5分,共30分〕11、函数y=中,自变量x的取值范围是x<3、【考点】函数自变量的取值范围、【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围、【解答】解:由题意得,3﹣x≥0且x﹣3≠0,解得,x≤3且x≠3,所以自变量x的取值范围是:x<3,故答案为:x<3、【点评】函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负、12、直线y=kx+b与直线y=﹣2x+1平行,且经过点〔﹣2,3〕,那么kb=2、【考点】两条直线相交或平行问题、【分析】由平行线的关系得出k=﹣2,再把点〔﹣2,3〕代入直线y=﹣2x+b,求出b,即可得出结果、【解答】解:∵直线y=kx+b与直线y=﹣2x+1平行,∴k=﹣2,∴直线y=﹣2x+b,把点〔﹣2,3〕代入得:4+b=3,∴b=﹣1,∴kb=2、故答案为:2、【点评】此题考查了两条直线平行的性质、直线解析式的求法;熟练掌握两条直线平行的性质,求出直线解析式是解决问题的关键、13、如图,一次函数y=x+6的图象经过点P〔a,b〕和Q〔c,d〕,那么a〔c﹣d〕﹣b〔c﹣d〕的值为36、【考点】一次函数图象上点的坐标特征、【专题】计算题、【分析】根据一次函数图象上点的坐标特征得到b=a+6,d=c+6,即a﹣b=﹣6,c﹣d=﹣6,再利用因式分解得到a〔c﹣d〕﹣b〔c﹣d〕=〔c﹣d〕〔a﹣b〕,然后利用整体代入的方法计算即可、【解答】解:∵一次函数y=﹣x+6的图象经过点P〔a,b〕和Q〔c,d〕,∴b=a+6,d=c+6,∴a﹣b=﹣6,c﹣d=﹣6,∴a〔c﹣d〕﹣b〔c﹣d〕=〔c﹣d〕〔a﹣b〕=〔﹣6〕×〔﹣6〕=36、故答案为36、【点评】此题考查了一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+B、解题时要注意因式分解与整体代入方法的运用、14、y+2与x+1成正比例,且当x=1时,y=4,那么当x=2时,y=7、【考点】待定系数法求一次函数解析式、【分析】由y+2与x+1成正比例,设y+2=k〔x+1〕,将x=1,y=4代入求出k的值,确定出y与x的函数关系式,将x=2代入即可求出对应y的值、【解答】解:根据题意设y+2=k〔x+1〕,将x=1,y=4代入得:6=2k,即k=3,∴y+2=3〔x+1〕,将x=2代入得:y+2=3×3,即y=7、故答案为:7,【点评】此题考查了利用待定系数法求正比例函数解析式,熟练掌握待定系数法是解此题的关键、15、如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,那么△BEF的面积:4cm2、【考点】三角形的面积、【分析】首先根据点E是线段AD的中点,三角形的中线将三角形分成面积相等的两部分,可得△BDE的面积等于三角形△ABE的面积,△CDE的面积△等于三角形ACE的面积,所以△BCE的面积等于△ABC的面积的一半;然后根据点F是线段CE的中点,可得△BEF的面积等于△BCE的面积的一半,据此用△BCE的面积除以2,求出△BEF的面积是多少即可、【解答】解:∵AE=DE,∴S△BDE =S△ABE,S△CDE=S△ACE,∴S△BDE =S△ABD,S△CDE=S△ACD,∴S△BCE =S△ABC==8〔cm2〕;∵EF=CF,∴SBEF =S△BCF,∴S△BEF =S△BCE==4〔cm2〕,即△BEF的面积是4cm2、故答案为:4、【点评】此题主要考查了三角形的面积的求法,以及三角形的中线的特征,要熟练掌握,解答此题的关键要明确:三角形的中线将三角形分成面积相等的两部分、16、某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇、货车的速度为60千米/时,两车之间的距离y〔千米〕与货车行驶时间x〔小时〕之间的函数图象如下图,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为〔3,75〕;④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的选项是①③④、【考点】一次函数的应用、【专题】压轴题、【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案、【解答】解:①设快递车从甲地到乙地的速度为x千米/时,那么3〔x﹣60〕=120,x=100、〔故①正确〕;②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,〔故②错误〕;③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=3,纵坐标为120﹣60×=75,〔故③正确〕;④设快递车从乙地返回时的速度为y千米/时,那么〔y+60〕〔4﹣3〕=75,y=90,〔故④正确〕、故答案为;①③④、【点评】此题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确、【三】解答题17、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为〔1,2〕、〔1〕写出点A、B的坐标:A〔2,﹣1〕、B〔4,3〕〔2〕将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,那么A′B′C′的三个顶点坐标分别是A′〔0,0〕、B′〔2,4〕、C′〔﹣1,3〕、〔3〕△ABC的面积为5、【考点】坐标与图形变化-平移、【专题】网格型、【分析】〔1〕A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;〔2〕让三个点的横坐标减2,纵坐标加1即为平移后的坐标;〔3〕△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解、【解答】解:〔1〕写出点A、B的坐标:A〔2,﹣1〕、B〔4,3〕〔2〕将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,那么A′B′C′的三个顶点坐标分别是A′〔0,0〕、B′〔2,4〕、C′〔﹣1,3〕、〔3〕△ABC的面积=3×4﹣2××1×3﹣×2×4=5、【点评】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去假设干直角三角形的面积表示、18、直线y=kx+b经过点A〔5,0〕,B〔1,4〕、〔1〕求直线AB的解析式;〔2〕假设直线y=2x﹣4与直线AB相交于点C,求点C的坐标;〔3〕根据图象,写出关于x的不等式2x﹣4>kx+b的解集、【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式;两条直线相交或平行问题、【分析】〔1〕利用待定系数法把点A〔5,0〕,B〔1,4〕代入y=kx+b可得关于k、b得方程组,再解方程组即可;〔2〕联立两个函数解析式,再解方程组即可;〔3〕根据C点坐标可直接得到答案、【解答】解:〔1〕∵直线y=kx+b经过点A〔5,0〕,B〔1,4〕,∴,解得,∴直线AB的解析式为:y=﹣x+5;〔2〕∵假设直线y=2x﹣4与直线AB相交于点C,∴、解得,∴点C〔3,2〕;〔3〕根据图象可得x>3、【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息、19、如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数、【考点】三角形内角和定理、【分析】首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角的平分线的定义求得∠BCE的度数,那么∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数、【解答】解:∵∠A=30°,∠B=62°,∴∠ACB=180°﹣〔∠A+∠B〕,=180°﹣〔30°+62°〕,=180°﹣92°,=88°,∵CE平分∠ACB,∴∠ECB=∠ACB=44°,∵CD⊥AB于D,∴∠CDB=90°,∴∠BCD=90°﹣∠B=90°﹣62°=28°,∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,∵DF⊥CE于F,∴∠CFD=90°,∴∠CDF=90°﹣∠ECD=90°﹣16°=74°、【点评】此题考查了三角形的内角和等于180°以及角平分线的定义,是基础题,准确识别图形是解题的关键、y元,求y关于x的函数解析式;〔2〕假设商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【考点】一次函数的应用、【分析】〔1〕根据题意列出方程即可;〔2〕根据一次函数的增减性求解即可、【解答】解:〔1〕y=〔45﹣30〕x+〔70﹣50〕〔100﹣x〕,=15x+2000﹣20x,=﹣5x+2000,〔2〕∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875〔元〕、【点评】此题主要考查了一次函数的应用,解题的关键是理解题意,正确列出方程、21、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D、〔1〕求证:△ADC≌△CEB、〔2〕AD=5cm,DE=3cm,求BE的长度、【考点】全等三角形的判定与性质、【专题】证明题、【分析】〔1〕根据全等三角形的判定定理AAS推知:△ADC≌△CEB;〔2〕利用〔1〕中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE、那么根据图中相关线段的和差关系得到BE=AD﹣DE、【解答】〔1〕证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD〔同角的余角相等〕、在△ADC与△CEB中,,∴△ADC≌△CEB〔AAS〕;〔2〕由〔1〕知,△ADC≌△CEB,那么AD=CE=5cm,CD=BE、如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2〔cm〕,即BE的长度是2cm、【点评】此题考查了全等三角形的判定与性质、全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具、在判定三角形全等时,关键是选择恰当的判定条件、22、:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答以下问题:〔1〕在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系∠A+∠D=∠C+∠B;;〔2〕在图2中,假设∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB 分别相交于M、N,利用〔1〕的结论,试求∠P的度数;〔3〕如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?并说明理由、【考点】三角形内角和定理;三角形的外角性质、【专题】阅读型、【分析】〔1〕∠A、∠B、∠C、∠D所在的两个三角形中,有一对对顶角相等,根据三角形的内角和定理得出数量关系;〔2〕先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数;〔3〕根据〔2〕中的方法,即可求得∠P与∠D、∠B之间存在的数量关系、【解答】解:〔1〕根据三角形内角和定理以及对顶角相等,可得结论:∠A+∠D=∠C+∠B;故答案为:∠A+∠D=∠C+∠B;〔2〕由〔1〕可知,∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B,又∵∠D=40°,∠B=36°,∴2∠P=40°+36°=76°,∴∠P=38°;〔3〕∠P与∠D、∠B之间存在的关系为2∠P=∠D+∠B、∵∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B、【点评】此题主要考查了三角形内角和定理,以及角平分线的定义,考核了学生的阅读理解与知识的迁移能力、解决问题的关键是根据三角形内角和定理得出“8字形”中的角的规律,以及直接运用“8字形”中的角的规律解题、23、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1〔km〕,快车离乙地的距离为y2〔km〕,慢车行驶时间为x〔h〕,两车之间的距离为S〔km〕,y1,y2与x的函数关系图象如图〔1〕所示,S与x的函数关系图象如图〔2〕所示:〔1〕图中的a=6,b=、〔2〕求S关于x的函数关系式、〔3〕甲、乙两地间依次有E、F两个加油站,相距200km,假设慢车进入E站加油时,快车恰好进入F站加油、求E加油站到甲地的距离、【考点】一次函数的应用、【专题】综合题、【分析】〔1〕根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;〔2〕根据函数的图象可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可、〔3〕分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值、【解答】解:〔1〕由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=6,∴快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,∴b=600÷〔100+60〕=;〔2〕∵从函数的图象上可以得到A、B、C、D点的坐标分别为:〔0,600〕、〔,0〕、〔6,360〕、〔10,600〕,∴设线段AB所在直线解析式为:S=kx+b,∴,解得:k=﹣160,b=600,设线段BC所在的直线的解析式为:S=kx+b,∴,解得:k=160,b=﹣600,设直线CD的解析式为:S=kx+b,∴,解得:k=60,b=0∴;〔3〕当两车相遇前分别进入两个不同的加油站,此时:S=﹣160x+600=200,解得:x=,当两车相遇后分别进入两个不同的加油站,此时:S=160x﹣600=200,解得:x=5,∴当或5时,此时E加油站到甲地的距离为450km或300km、【点评】此题考查了一次函数的综合知识,特别是此题中涉及到了分段函数的知识,解题时主要自变量的取值范围、。
βαD CB A PDCB A 2018-2019学年度上学期八年级数学期末试卷 (考试时间:120分钟,满分:150分)一、选择题:(本大题12个小题,每小题4分,共48分) 1.下列大学的校徽图案中,是轴对称图形的是( )A. B. C. D. 2.下列长度的三条线段,能组成三角形的是( ) A .3,4,8; B .5,6,11; C .12,5,6; D .3,4,5 .3.若分式1x x-有意义,则x 的取值范围是( )A .x ≠-1;B .x ≠1;C .x ≥-1;D .x ≥1. 4.下列运算正确的是( )A .3x2+2x3=5x5;B .0)14.3(0=-π; C .3-2=-6; D .(x3)2=x6.5.下列因式分解正确的是( ) A .x2-xy+x=x(x-y); B .a3+2a2b+ab2=a(a+b)2; C .x2-2x+4=(x-1)2+3; D .ax2-9=a(x+3)(x-3).6.化简:=+++1x x1x x 2( )A .1;B .0;C .x ;D .x2。
7.如图,一个等边三角形纸片,剪去一个角后得到一个 四边形,则图中∠α+∠β的度数是( )A .180°;B .220°;C .240°;D .300°.8如图,在△ABC 中,D 是BC 边上一点,且AB=AD=DC ,∠BAD=40°,则∠C 为( ). A .25°; B .35°; C .40°; D .50°。
9.如图,△ABC 的外角∠ACD 的平分线CP 与∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP 的度数是( ) A.30°; B.40°; C.50°; D.60°。
10.若分式 2y 1x 1=-,则分式y xy 3x y4xy 5x 4---+的值等于( )NM D C B A OFEC DBANM D CBA OD C B A yBA O2431A .53-; B .53; C .54-; D .54.11.关于x 的方程21x m1x 2x 3=+-+-无解,则m 的值为( )A.-8;B.-5;C.-2;D.5.12. 在△ABC 中,∠ACB=90°,AC=BC=4,点D 为AB 的中点,M ,N 分别在BC ,AC 上,且BM=CN 现有以下四个结论:①DN=DM ; ② ∠NDM=90°; ③ 四边形CMDN 的面积为4;④△CMN 的面积最大为2.其中正确的结论有( )A.①②④;B. ①②③;C. ②③④;D. ①②③④.二、填空题:(本大题6个小题,每小题4分,共24分)13.已知一个多边形的内角和等于1260°,则这个多边形是 边形. 14.因式分解:2a2-2= .15.解方程:13x 321x x -+=+,则x= .16.如图,∠ABF=∠DCE ,BE=CF ,请补充一个条件: ,能使用“AAS ”的方法得△ABF ≌△DCE.17.若3x 1x =+,则1x x x 2++的值是 .18.在锐角△ABC 中,BC=8,∠ABC=30°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN的最小值是 。
八年级数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 一、选择题:(每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.下列图标中,是轴对称图形的是A .B .C .D .2. 若x =1时,下列分式的值为0的是 A.11+x B . x x 1- C.1+x x D. 112-x3. 木工师傅准备钉一个三角形木架,已有两根长为2和5的木棒,木工师傅应该选择如下哪根木棒A.2B.3C. 6D. 74. 把分式(00)xx y x y≠≠+,中的分子、分母的x y ,同时扩大倍,那么分式的值 A. 扩大2倍 B. 缩小2倍 C. 改变原来的14D. 不改变5. 下列等式成立的是A .32396a b a b =() B .0.000028 2.810=⨯﹣4C .22434x x x +=D .22()()=a b a b b a +----6. 一个等腰三角形的两边长分别为2和3,则它的周长为A .7B .8C .7或8D .97. 如果2(1)(2)x x x px q -+=++,那么p ,q 的值为A. 1p =,2q =-B. 1p =-,2q =-C. 1p =,2q =D. 1p =-,2q = 8. 如图,将一张含有30°角的三角形纸片的 两个顶点叠放在矩形的两条对边上,若∠2=46°, 则∠1的大小为A .14°B .16°C .90°﹣αD .α﹣44°9. 如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑧个图形面积为A .42B .56C .72D .9010.如图,在△ABC 中,AB =AC ,△ADE 的顶点D ,E 分别在BC ,AC 上,且∠DAE =90°,AD =AE .若∠C +∠BAC =155°,则∠EDC 的度数为A .20°B .20.5°C .21°D .22°第10题图第8题图第9题图11. 在4×4的正方形网格中,网格线的交点成为 格点,如图,A 、B 分别在格点处,若C 也是图 中的格点,且使得 为等腰三角形,则符合 条件的点C 有( )个A. 2个B. 3个C.4个D. 5个12. 如果关于x 的不等式2()42a x x x -+≤⎧⎨>-⎩的解集为2x >-,且关于x 的分式方程2333a xx x-+=--有正整数解,则所有符合条件的整数a 的和是 A .0 B .-9 C .-8 D .-7二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
2018—2019学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列长度的四根木棒中,能与长5cm 、11cm 的两根木棒首尾相接,钉成一个三角形的是 A. 5cmB. 6cmC. 11cmD.16cm2.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为 A. ①②③④B. ①③④C. ①②④D.②③④3.在北大、清华、复旦和浙大的校标LOGO 中,是轴对称图形的是A.B.C. D .4.若一个三角形的三个内角的度数之比为1∶2∶3,那么相对应的三个外角的度数之比为 A. 3∶2∶1B. 1∶2∶3C. 3∶4∶5 D .5∶4∶35.下列运算正确的是 A.224a a a+= B.62322a a a-÷=-C.222233ab a b a b ⋅= D.224()a a -=6.已知分式242x x -+的值等于零,那么x 的值是A .2B .-2C .±2D .07.不改变分式的值,把0.0230.35x x -+的分子、分母中含x 项的系数化为整数为A.2335x x -+B.23305x x -++C. 230030500x x -+ D .230030500x x +-+ 8.与单项式23a b -的积是32222629a b a b a b -+的多项式是A.23ab --B.2233ab b -+-C.233b - D .2233ab b -+9.如图,已知AC =BD ,添加下列条件,不能使△ABC ≌△DCB 的是 A. ∠ACB =∠DBCB. AB =DCC.∠ABC =∠DCB D .∠A =∠D =90°10.如图,在△ABC 中,AB =AC ,∠A =36°,AB 垂直平分线交AC 于D ,交AB 于E ,给出下列结论:①∠C =72°;②BD 平分∠ABC ;③BC =AD ;④△BDC 是等腰三角形.其中正确结论的个数是 A.1 B.2C.3 D .4 11.若a -b =2,则a 2-b 2-4b 的值是 A.0 B.2C.4 D .6 12.若22(3)1t t --=,则t 可以取的值有 A. 4个B. 3个C. 2个D .1个第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点A (3,b )与点(a ,-2)关于y 轴对称,则a +b = . 14.因式分解:2228mx my -= . 15.一个多边形的外角和是内角和的27,则这个多边形的边数为 . (第9题图)(第10题图)16.如图,在四边形ABCD 中,∠A =50°,直线l 与边AB 、AD 分别相交于点M 、N , 则∠1+∠2= .17.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,AB =10,AC =8,△ABC 的面积为45,则DE 的长为 .18.如图,已知AB ∥CF ,E 是DF 的中点,若AB =9cm ,CF =6cm ,则BD = cm .19.已知,如图△ABC 为等边三角形,高AH =10cm ,D 为AB 的中点,点P 为AH 上的一个动点,则PD +PB 的最小值为 cm . 20.计算:2222()()x y xy --= (结果不含负指数幂).21.轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,则轮船在静水中的速度是 千米/时. 22.观察下列等式:1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52;…请利用你所发现的规律写出第n 个等式: . 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.计算:(1)234(1)(43)(2)2a a a a -++-÷; (2)2.BAC =α,∠B =β(α>β).(第16题图) (第17题图)(第18题图) (第19题图)(1)若α=70°,β=40°,求∠DCE 的度数;(2)用α、β的代数式表示∠DCE = (只写出结果,不用写演推过程); (3)如图②,若将条件中的CE 改为是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α-β=30°,则∠DCE = (只写出结果,不用写演推过程). 26.(1)解方程:21133x xx x =---; (2)列方程解应用题:某超市用2000元购进某种干果销售,由于销售状况良好,超市又拨6000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多200千克.求该种干果的第一次进价是每千克多少元? 27.如图,△ABC 是等边三角形,BD ⊥AC ,AE ⊥BC ,垂足分别为D 、E ,AE 、BD 相交于点O ,连接DE .(1)求证:△CDE 是等边三角形; (2)若AO =12,求OE 的长.28.如图,AB =AC ,AB ⊥AC ,AD =AE ,AE ⊥AD ,B ,C ,E 三点在同一条直线上. (1)求证:DC ⊥BE ;(2)探究∠CAE 与∠CDE 之间有怎样的数量关系?写出结论,并说明理由.(第28题图)(第27题图)2018—2019学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.-5 ; 14.2(2)(2)m x y x y +-; 15.9 ; 16.230°;17.5; 18.3; 19.10; 20. 261x y ;21.21; 22.2(2)1(1)n n n ++=+. 三、解答题:(共74分)23.解:(1)234(1)(43)(2)2a a a a -++-÷=4a 2﹣4a +3a ﹣3﹣4a 2 ………………………………………………4分 =﹣a ﹣3 ………………………………………………5分 (2)(2x ﹣y )2﹣4x (x ﹣y )=4x 2﹣4xy +y 2﹣4x 2+4xy ……………………………………………9分 =y 2 ……………………………………………10分24.(1)解:原式=[9(a +b )+5(a ﹣b )][9(a +b )﹣5(a ﹣b )] ……2分=(14a +4b )(4a +14b ) ………………………………3分 =4(7a +2b )(2a +7b ) ………………………………5分(2)解:÷(﹣x ﹣1)﹣=…………………………7分=………………………………9分=………………………………………………10分= ………………………………………………11分 =………………………………………………12分25. 解:(1)∵∠ACB =180°﹣(∠BAC +∠B )=180°﹣(70°+40°)=70°, ………………2分 又∵CE 是∠ACB 的平分线,∴1352ACE ACB ∠=∠=︒. ………………………………4分∵CD 是高线,∴∠ADC =90°, ………………………………6分 ∴∠ACD =90°﹣∠BAC =20°,……………………………7分 ∴∠DCE =∠ACE ﹣∠ACD=35°﹣20°=15°.………………………………8分(2)2DCE αβ-∠=; …………………………………………10分(3)∠DCE 的度数为75°.………………………………………12分26.(1)解:方程的两边同乘3(x ﹣1),得6x =3x ﹣3﹣x , ………………………2分解得34x =-. ………………………4分检验:把34x =-代入3(x ﹣1)≠0. ………………………5分故原方程的解为34x =-. ………………………6分(2)解:设第一次的进价为x 元,由题意得 200060002200(120%)x x ⨯+=+ ………………………9分 解得 x =5 ……………………11分经检验:x =5是原分式方程的解,且符合题意. …………12分 答:该种干果的第一次进价是每千克5元. ……………………13分27. 解:(1)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠C =60°,BC =AC , CE =BC ,CD =AC ; ………………………………4分∴CD =CE , ……………5分 又∠C =60°,∴△CDE 是等边三角形.……………………………………6分 (2)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠ABC =∠BAC =60°, …………………………………7分12D B C A B D A B C∠=∠=∠, 12B A E B AC ∠=∠, ……………………………………8分 ∴30ABD BAE ∠=∠=︒ ,30DBC ∠=︒, ……………………………………9分 ∴AO =BO , ……………………………………10分 ∵30DBC ∠=︒,AE ⊥BC ,∴BO =2OE , ……………………………………11分 ∴AO =2OE , ……………………………………12分 又AO =12,∴OE =6. ……………………………………13分28. (1)证明:∵AB ⊥AC ,AE ⊥AD ,AB =AC ,∴∠BAC =∠DAE =90°, ……………………………1分∠B =∠ACB =45°, ……………………………2分(第27题图)∴∠BAC +∠CAE =∠DAE +∠CAE ,∴∠BAE =∠CAD , ……………………………3分 在△BAE 与△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△ABE (SAS ), ……………………………5分∴∠ACD =∠B =45°, ……………………………6分 ∴∠BCD =∠ACD +∠ACB =90°,……………………7分 ∴DC ⊥BE . ……………………………8分(2)∠CAE =∠CDE . ……………………………10分理由:∵AD =AE ,AE ⊥AD ,∴∠AED =∠ADE =45°,……………………………11分 ∵由(1)知DC ⊥BE ,∴∠CDE +∠AEC +∠AED =90°,∴∠CDE +∠AEC =45°,……………………………12分 又∠CAE +∠AEC =∠ACB =45°,…………………13分 ∴∠CAE =∠CDE . ……………………………14分(第28题图)。
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图案分别是清华、北大、人大、复旦大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列一组数:,,-,,0.080080008…(相邻两个8之间依次增加一个0)其中无理数的个数是()A. 0B. 1C. 2D. 33.蓝鲸是世界上体积最大的动物,有一只蓝鲸的体重约为1.68×105kg,1.68×105这个近似数它精确到()A. 百位B. 百分位C. 千分位D. 千位4.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比()A. 向上平移3个单位B. 向下平移3个单位C. 向右平移3个单位D. 向左平移3个单位5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A. 7B. 6C. 5D. 46.一次函数y=(a2+1)x-a的图象上有两点A(-1,y1),B(-2,y2),则y1与y2的大小关系为()A. B. C. D. 不能确定7.在同一平面直角坐标系中,直线y=x-2与直线y=-x-b的交点一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A. 3B. 4C. 5D. 6二、填空题(本大题共10小题,共30.0分)9.分式、的最简公分母是______.10.在函数中,自变量x的取值范围是______.11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:______,使△AEH≌△CEB.12.若m为整数,且<m<,则m=______.13.若直角三角形的两直角边a,b满足+b2-12b+36=0,则斜边c上中线的长为______.14.一个正数a的平方根分别是2m-1和-3m+,则这个正数a为______.15.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为______.16.已知点O是△ABC的三条角平分线的交点,若△ABC的周长为12cm,面积为36cm2,则点O到AB的距离为______cm.17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,若AC=2,AE=1,则BC=______.18.已知点A(2m-1,4m+2015)、B(-n+,-n+2020)在直线y=kx+b上,则k+b值为______.三、计算题(本大题共3小题,共28.0分)19.解分式方程:(1)=+1(2)-=120.先化简代数式(-)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.21.甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的函数图象如图.(1)A地与B地相距______km,甲的速度为______km/分;(2)求甲、乙两人相遇时,乙行驶的路程;(3)当乙到达终点A时,甲还需多少分钟到达终点B?四、解答题(本大题共7小题,共68.0分)22.()-1-|2-|-(π-3.14)0+23.如图,在平面直角坐标系中,已知△ABC的顶点坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)将△ABC向右平移3个单位得到△A1B1C1,请画出平移后的△A1B1C1;(2)将△A1B1C1沿x轴翻折得到△A2B2C2,请画出翻折后的△A2B2C2;(3)若点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标______.24.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=62°,求∠BDC的度数.25.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.26.2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?27.在平面直角坐标系xOy中,有一点P(a,b),实数a,b,m满足以下两个等式:2a-6m+4=0,b+2m-8=0.(1)当a=1时,点P到x轴的距离为______;(2)若点P在第一三象限的角平分线上,求点P的坐标;(3)当a<b时,则m的取值范围是______.28.如图1,在平面直角坐标系中,△OAB是等边三角形,点B的坐标为(4,0),点C(a,0)是x轴上一动点,其中a≠0,将△AOC绕点A逆时针方向旋转60°得到△ABD,连接CD.(1)求证;△ACD是等边三角形;(2)如图2,当0<a<4时,△BCD周长是否存在最小值?若存在,求出a的值;若不存在,请说明理由.(3)如图3,当点C在x轴上运动时,是否存在以B、C、D为顶点的三角形是直角三角形?若存在,求出a的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,本选项错误;B、是轴对称图形,本选项正确;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:B.结合轴对称图形的概念进行求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:-,,0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:D.根据无理数的定义即可求出答案.本题考查无理数,解题的关键是正确理解无理数的定义,本题属于基础题型.3.【答案】D【解析】解:∵1.68×105=168000,∴近似数1.68×105是精确到千位.故选:D.把数还原后,再看首数1.68的最后一位数字8所在的位数是千位,即精确到千位.此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.【答案】C【解析】解:若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比向右平移3个单位,故选:C.根据把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度可直接得到答案.此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.5.【答案】C【解析】解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选:C.根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.6.【答案】A【解析】∵函数y=(a2+1)x-a是一次函数,∴a2+1=1,解得:a=0,即该函数的解析式为:y=x,∵函数y=x的图象上的点y随着x的增大而增大,又∵点A(-1,y1),B(-2,y2)在该函数图象上,且-1>-2,∴y1>y2,故选:A.根据“y=(a2+1)x-a是一次函数”,得到关于a的方程,解之,得到该函数的解析式,根据该函数图象的增减性,结合点A和点B横坐标的大小关系,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【答案】B【解析】解:∵直线y=x-2经过第一、三、四象限,直线y=-x-b,当b>0时,该直线经过第二、三、四象限,当b<0时,该直线经过第一、二、四象限,∴直线y=x-2与直线y=-x-b的交点一定不在第二象限,故选:B.根据题目中的函数解析式和一次函数的性质,可以判断直线y=x-2与直线y=-x-b的交点一定不在哪个象限,本题得以解决.本题考查两条直线相交或平行问题、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8.【答案】C【解析】解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=D5B,BD6=CD6∵△ABC是直角三角形,∴D3,D5重合,故能得到符合题意的等腰三角形5个.故选:C.首先根据勾股定理的逆定理判定△ABC是直角三角形,再根据等腰三角形的性质分别利用AC、BC为腰以及AB为底得出符合题意的图形即可.此题考查了勾股定理的逆定理,等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论是解题关键.9.【答案】12a3b3【解析】解:分式、的最简公分母是12a3b3;故答案为:12a3b3.根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母,求解即可.本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.10.【答案】x≥4【解析】解:根据题意,知,解得:x≥4,故答案为:x≥4.根据被开方数为非负数及分母不能为0列不等式组求解可得.本题主要考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.11.【答案】AH=CB等(只要符合要求即可)【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°-∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°-∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.【答案】3【解析】解:∵4<5<9<10<16,∴2<<3<<4,则整数m=3.故答案为:3.依据2<<3<<4,即可确定出m的值.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.13.【答案】5【解析】解:∵+b2-12b+36=0,∴a-8=0,b-6=0,∴a=8,b=6,∴c==10,∴斜边c上的中线长为5,故答案为:5根据非负数的性质得到两直角边的长,已知直角三角形的两直角边根据勾股定理计算斜边长,根据斜边中线长为斜边的一半计算斜边中线长.本题考查了直角三角形中勾股定理,考查了斜边中线为斜边长的一半的性质,本题中正确的运用非负数的性质是解题的关键.14.【答案】4【解析】解:根据题意,得:2m-1+(-3m+)=0,解得:m=,∴正数a=(2×-1)2=4,故答案为:4.直接利用平方根的定义得出2m-1+(-3m+)=0,进而求出m的值,即可得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.15.【答案】9【解析】解:∵点A(m-1,-5)和点B(2,m+1),直线AB∥x轴,∴m+1=-5,解得m=-6.∴2-(-6-1)=9,故答案为:9.根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.16.【答案】6【解析】解:连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,∵OB平分∠ABC,OD⊥AB,OE⊥BC,∴OD=OE,同理,OD=OE=OF,则AB•OD+AC•OF+CB•OE=36,即×(AB+AC+BC)×OD=36,∴OD=6(cm),故答案为:6.连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算,得到答案.本题考查的是角平分线的性质,角的平分线上的点到角的两边的距离相等.17.【答案】1.5【解析】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE,设BC=BE=x,∴AB=1+x,∵AC2+BC2=AB2,∴22+x2=(1+x)2,解得:x=1.5,故答案为:1.5.根据余角的性质得到∠BCD=∠A.根据角平分线的定义得到∠ACE=∠DCE.根据三角形的外角的性质得到∠BEC=∠BCE,求得BC=BE,设BC=BE=x,根据勾股定理列方程即可得到结论.本题考查了勾股定理,直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.18.【答案】2019【解析】解:把点A(2m-1,4m+2015)代入直线y=kx+b得:4m+2015=k(2m-1)+b ①,把点B(-,-n+2020)代入直线y=kx+b得:-n+2020=k(-+)+b ②,①-②得:4m+n-5=k(2m),k==2,把k=2代入①得:4m+2015=2(2m-1)+b,解得:b=2017,则k+b=2+2017=2019,故答案为:2019.把点A(2m-1,4m+2015)和点B(-,-n+2020)分别代入直线y=kx+b,经过整理变形,即可得到k的值,利用代入法,可求得b的值,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.19.【答案】解:(1)两边都乘以(x-1)(x+2),得:x(x-1)=2(x+2)+(x-1)(x+2),整理,得:4x+2=0,解得:x=-,经检验:x=-是原分式方程的解,所以原分式方程的解为x=-;(2)两边都乘以(x+1)(x-1),得:(x+1)2-4=(x+1)(x-1),整理,得:2x-2=0,解得:x=1,检验:当x=1时,(x+1)(x-1)=0,∴x=1是分式方程的增根,则原分式方程无解.【解析】(1)方程两边都乘以(x-1)(x+2)化分式方程为整式方程,解整式方程求得x的值,再检验即可得;(2)方程两边都乘以(x+1)(x-1)化分式方程为整式方程,解整式方程求得x的值,再检验即可得.本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.【答案】解:原式=[-]÷=•=,∵x≠±3且x≠1,∴在0≤x≤3可取x=0或x=2,当x=0时,原式=-1.当x=2时,原式=1.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.21.【答案】24【解析】解:(1)观察图象知A、B两地相距为24km,∵甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,∴甲的速度是千米/分钟;故答案为:24,.(2)由纵坐标看出AB两地的距离是24千米,设乙的速度是x千米/分钟,由题意,得,解得:x=千米/分钟,∴甲、乙相遇时,乙所行驶的路程:(千米/分钟).(3)相遇后乙到达A地还需:(分钟),相遇后甲到达B站还需:(分钟)当乙到达终点A时,甲还需54-4=50分钟到达终点B.(1)观察图象知A、B两地相距为24km,由纵坐标看出甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,则甲的速度是千米/分钟;(2)根据路程与时间的关系,可得乙的速度,再根据甲、乙相遇时,乙所行驶的路程=12×乙的速度,即可解答;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.22.【答案】解:原式=2-(2-)-1+2=2-2+-1+2=1+.【解析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.23.【答案】(m+3,-n)【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标:(m+3,-n).故答案为:(m+3,-n).(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(3)直接利用平移的性质以及轴对称的性质得出对应点坐标.此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.24.【答案】证明:(1)∵∠EAD=∠BAC∴∠BAE=∠CAD,且AB=AC,AD=AE,∴△ABE≌△ACD(SAS)∴∠ABD=∠ACD(2)∵AB=AC,∠ACB=62°∴∠ABC=∠ACB=62°,∴∠BAC=180°-62°-62°=56°∵∠BAO+∠ABO+∠AOB=180°,∠DCA+∠DOC+∠BDC=180°∴∠BAC=∠BDC=56°【解析】(1)由“SAS”可证△ABE≌△ACD,可得∠ABD=∠ACD;(2)由三角形内角和定理可求∠BDC的度数.本题考查了全等三角形的判定和性质,三角形内角和定理,熟练运用全等三角形的判定是本题的关键.25.【答案】解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=-6,即点A的坐标为:(-6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,-6-8=-14,-6+8=2,即点C的坐标为:(-14,0)或(2,0).【解析】(1)分别把x=0和y=0代入y=x+4,解之,得到点B和点A的坐标,根据三角形的面积公式,计算求值即可,(2)根据“过B点作直线BC与x轴相交于点C,若△ABC的面积是16”,结合点B的坐标,求出线段AC的距离,即可得到答案.本题考查了一次函数图象上点的坐标特征,解题的关键:(1)正确掌握代入法和三角形的面积公式,(2)正确掌握三角形的面积公式.26.【答案】解:设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据题意得:,解得:t=3.6,经检验,t=3.6是原分式方程的解,且符合题意,∴2.5t=9.答:A车行驶的时间为9小时,B车行驶的时间为3.6小时.【解析】设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据平均速度=路程÷时间结合A 车的平均速度比B车的平均速度慢150km/h,即可得出关于t的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.27.【答案】6 m<2【解析】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.28.【答案】(1)证明:由旋转变换的性质可知,AC=AD,∠CAD=60°,∴ACD是等边三角形;(2)解:存在,a=2,理由如下:∵△OAB和△ACD都是等边三角形,∴AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠OAB-∠CAB=∠CAD-∠CAB,即∠OAC=∠BAD,在△OAC和△BAD中,,∴△OAC≌△BAD(SAS)∴BD=OC,∴△BCD周长=BC+BD+CD=BC+OC+CD=OB+CD,当CD最小时,△BCD周长最小,∵ACD是等边三角形,∴CD=AC,当AC⊥OB时,即OC=2,AC最小,最小值为=2,∴△BCD周长的最小值为4+2,此时a=2;(3)解:当点C在x轴的负半轴上时,∠BDC=90°,则∠ADB=30°,∵△OAC≌△BAD,∴∠ACO=∠ADB=30°,∴∠BCD=30°,∴BD=BC,∴OC=BC,∴OC=4,则a=-4;当点C在线段OB上时,∠BDC=120°,∴不存在以B、C、D为顶点的三角形是直角三角形,∴a不存在;当点C在点B的右侧时,∠BCD=90°,则∠ACO=30°,∵∠AOC=60°,∴∠OAC=90°,又∠ACO=30°,∴OC=2OA=8,∴a=8.【解析】(1)根据旋转变换的性质、等边三角形的判定定理证明;(2)证明△OAC≌△BAD,根据全等三角形的性质得到BD=OC,根据等边三角形的性质计算即可;(3)分点C在x轴的负半轴上、点C在线段OB上、点C在点B的右侧三种情况,根据直角三角形的性质计算.本题考查的是旋转变换的性质、等边三角形的判定和性质、直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.。
2018-2019学年八年级上期末测试数学卷一、选择题(本题共6个小题,每小题2分,共12分) 1.以长为3cm ,5cm ,7cm ,10cm 的四条线段中的三条线段为边,能构成三角形的情况有( )A.1种B.2种C.3种D.4种2.已知等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C. 50°或80°D. 40°或65°3.下列运算正确的是( )A .623a a a ÷=B .222a b 2a b a b +-- ()()=2C .235a a a -= ()D .5a 2b 7ab +=4.下面式子从左边到右边的变形是因式分解的是( )A. 2x x 2x x 12--=--()B. 22a b a b a b +-=- ()()C. 2x 4x 2x 2-=+- ()()D. 1x 1x 1x -=-()5.下列因式分解正确的是( )A. 2x xy x x x y -+=-()B. 3222a 2a b ab a a b -+=-()C. 22x 2x 4x 13-+=-+()D. 2ax 9a x 3x 3-=+- ()()6.△ABC 中AB 边上的高,下列画法中正确的是( )A. B. C. D.二、填空题(本题共8个小题;每小题3分,共24分)7.若2x 2a 3x 16+-+()是完全平方式,则a = _ _ .8.禽流感病毒的形状一般为球形,直径大约为0.000000102m ,该直径用科学记数法表示为m .9.如果分式x 1x 1--的值为零,那么x = . 10.我们已经学过用面积来说明公式.如222x 2xy y x y ++=+()就可以用下图甲中的面积来说明.请写出图乙的面积所说明的公式:x 2+(p +q )x +pq = ___ ____ .11.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A =100°,则∠1+∠2+∠3+∠4= .12.如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =2,则PQ 的最小值为 ____ .13.如图,△ABC 中∠C =90°,AB 的垂直平分线DE 交BC 于点E ,D 为垂足,且EC =DE ,则∠B 的度数为 .14.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为 .三、解答题(本题共4个小题;每小题5分,共20分)15.计算:220122013012 1.5201423----⨯+()()().16 计算: 23y z 2y z z 2y --+-+()()()17 计算: 2223322m n 3m n 4n ---÷ ()18.解方程2313x 16x 2-=--四、解答题(本题共4个小题;每小题7分,共28分)19.先化简,再求值:22x4x4x x1 x4x2x2-+--÷-++(),其中x =-3.20. 如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.21. 列方程解应用题:八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,走了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.22. 已知:如图∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.(保留作图痕迹,不写做法)23. 在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上)(1)写出△ABC的面积;(2)画出△ABC关于y轴对称的△A1B1C1;(3)写出点A及其对称点A1的坐标.24.已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD(2)BE⊥AC25.我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:①如果一个三角形的一条中线和一条高相互重合,则这个三角形是等腰三角形.②如果一个三角形的一条高和一条角平分线相互重合,则这个三角形是等腰三角形.③如果一个三角形的一条中线和一条角平分线相互重合,则这个三角形是等腰三角形.我们运用线段垂直平分线的性质,很容易证明猜想①的正确性.现请你帮助小明判断:(1)他的猜想②是命题(填“真”或“假”).(2)他的猜想③是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.26.如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,以相同的速度分别由A向B、由C向A爬行,经过t分钟后,它们分别爬行到了D、E处.设在爬行过程中DC与BE的交点为F.(1)当点D、E不是AB、AC的中点时,图中有全等三角形吗?如果没有,请说明理由;如果有,请找出所有的全等三角形,并选择其中一对进行证明.(2)问蜗牛在爬行过程中DC与BE所成的∠BFC的大小有无变化?请证明你的结论.八年级数学第一学期试题参考答案及评分标准一、选择题:二、填空题:7.7或-1; 8.71.0210-⨯; 9.-1; 10.(x+p )(x+q ); 11.280°; 12.2; 13.30°; 14.10°三、解答题:(共46分)15.原式=4- 1.5+1 …………………2分=3.5 …………………3分16. 23y z 2y z z 2y --+-+()()()=22223y 2yz z 4y z -+--()()…………………2分 =22y 6yz 4z --+ …………………4分172223322m n 3m n 4n ---÷ () =443324m n 3m n 4n ---⋅÷ …………………5分=434323m n --+--() …………………7分=3mn …………………8分 18. 解:22x 4x 4x x 1x 4x 2x 2-+--÷-++() =x 2x x 1x+2x 2x 2---÷++() …………………2分 =2x 1-- …………………4分 当x =-3时,原式=12. …………………5分 19. 解:方程两边同时乘以2(3x ﹣1),得4﹣2(3x ﹣1)=3, …………………2分解得 x=. …………………3分检验:x=时,2(3x ﹣1)=2×(3×﹣1)≠0所以,原分式方程的解为x=. …………………5分20. 解:∵AD 是高 ∴∠ADC=90° ……………1分∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20° ………2分∵∠BAC=50°,∠C=70°,AE 是角平分线∴∠BAO=25°,∠ABC=60° ……………4分 ∵BF 是∠ABC 的角平分线 ∴∠ABO=30° ……………5分 ∴∠BOA=180°﹣∠BAO ﹣∠ABO=125°. ……………6分21. 解:设骑自行车的速度是x 千米/小时,154015x 603x-= ……………3分 解得 x=15 ……………4分 经检验x=15是方程的解.答:骑自行车的同学的速度是15千米/小时. ……………6分22.①做出角平分线 (2)②做出MN 的垂直平分线 (4)③下结论...............得1分(共计7分)23.(1)S △ABC =72721=××.........3分 (2)画出正确的图形...........3分(3)写出点A (-1,3) A 1(1,3)... 1分24.. 证明:(1)∵AD ⊥BC∴∠ADC=∠ADB=90° ........1分又∵∠ACB=45°∴∠DAC=45° ............2分∴∠ACB=∠DAC ...........3分∴AD=CD ..................4分又∵∠BAD=∠FCD∠ADB=∠FDC∴△ABD ≌△CFD ..............5分(2)∵△ABD ≌△CFD ∴BD=FD ................6分∴∠1=∠2 ............... 7分又∵∠FDB=90°∴∠1=∠2=45°.............又∵∠ACD=45°∴△BEC中,∠BEC=90° .......∴BE⊥AC ...................8分25. 解:(1)真. ……………1分(2)已知:在△ABC中,D为BC的中点,AD平分∠BAC.求证:△ABC是等腰三角形. ……………2分证明:作DE⊥AB,DF⊥AC,垂足分别为E、F,……3分∵AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF,∵D为BC的中点∴CD=BD,∴Rt△CFD≌Rt△BED(HL),…………5分∴∠B=∠C,∴AB=AC.即△ABC是等腰三角形. …………6分26. 解:(1)有全等三角形:△ACD≌△CBE;△ABE≌△BCD. ……2分证明:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴∠A=∠BCE=60°,CE=AD.在△ACD和△CBE中,,∴△ACD≌△CBE. …………4分(2)DC和BE所成的∠BFC的大小保持120°不变.………5分证明:∵由(1)知△ACD≌△CBE,∠ACB=60°∴∠FBC+∠BCD=∠ACD+∠BCD=∠ACB=60°∴∠BFC=180°﹣(∠FBC+∠BCD) =120°.…………7分- 11 -。
安徽省亳州涡阳县联考2018-2019学年八上数学期末试卷一、选择题1.若数a 使得关于x 的不等式组32235(12)x x x a x --⎧<⎪⎨⎪+≥-⎩,有且仅有四个整数解,且使关于y 的分式方程42322a y y y ++-++=1有整数解,则所有满足条件的整数a 的值之和是( ) A .3 B .2 C .﹣2 D .﹣32.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x 千米/小时,则方程可列为( )A .180x +4060=1801.5x B .180x -4060=1801.5x x - C .1801.5x x - +1=180x ﹣4060D .1801.5x x - +1=180x +4060 3.化简22(1)11212x x x x x x --+÷+++-,得( ) A.21x x -+ B.2x x -- C.22x - D.221x x -+ 4.已知实数x 、y2y ﹣6y+9=0和axy ﹣3x =y ,则a 的值是( ) A .14 B .-14 C .74 D .-745.若33×9m =311 ,则m 的值为 ( )A .2B .3C .4D .56.如图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2abB .2()a b +C .2()a b -D .22 a b -7.在下列学校校徽图案中,是轴对称图形的是( )A. B. C . D .8.如图,将绕点按逆时针方向旋转得,且点在 上,交于点,若,则的度数为( )A.B.C.D.9.在△ABC 与△DEF 中,∠A =∠D ,AB =DE ,则不能使△ABC ≌△DEF 成立的条件是( )A .∠B =∠E B .∠C =∠F C .BC =EFD .AC =DF10.如图,点 B ,C ,D ,E 在同一条直线上,△ABC 为等边三角形,AC=CD ,AD=DE ,若AB=3,AD=m ,试用 m 的代数式表示△ABE 的面积( )A .264m m + B .342m +m C .32m 2 D .3m 211.如下图,点E 是BC 的中点,AB BC ⊥,DC BC ⊥,AE 平分BAD ∠,下列结论:①90AED ∠= ②ADE CDE ∠=∠ ③DE BE = ④AD AB CD =+四个结论中成立的是( )A.①②④B.①②③C.②③④D.①③④ 12.如图,在中,D 是BC 边的中点,AE 是的角平分线,于点E ,连接DE .若,,则AC 的长度是( )A.5B.4C.3D.213.有长为8,6,5,3的四根木条,选其中三根构成一个三角形,共可以构成( )个三角形.A.4B.3C.2D.1 14.已知三角形的两边长分别为3cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .12cmB .10cmC .6cmD .3cm 15.下列哪一种正多边形不能..铺满地面( ) A .正三边形B .正四边形C .正六边形D .正八边形 二、填空题16.若关于x 的方程1x 2-=2m x x ---3有增根,则增根为x=_______. 17.如果a 2﹣b 2=8,且a+b=4,那么a ﹣b 的值是__.18.如图,在ABC ∆中,90BAC ︒∠=,AB AC =,点D 为AC 中点,连接BD ,CE BD ⊥交BD 延长线于点E ,CE 与BA 延长线交于点M .若6AB =,则BCM ∆的面积为__________.19.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.20.如图,在Rt ABC ∆中,90C ∠=︒,BD 平分ABC ∠,交AC 于点D ,DE ⊥AB ,E 为AB 的中点,且DE=10cm ,则AC=___.三、解答题21.解分式方程:2303(3)x x x x --=++ 22.计算和化简求值(1)计算:()()220200221433π-⎛⎫-+--- ⎪⎝⎭ (2)先化简再求值:()()()()()22322352x y y x x y x y x y -+-----+,其中2x =,12y =. 23.如图,AB=AE ,∠B=∠E ,BC=ED ,点F 是CD 的中点,(1)AC与AD相等吗?为什么?(2)AF与CD的位置关系如何?说明理由;(3)若P为AF上的一点,那么PC与PD相等吗?为什么?24.如图,已知B,F,E,D在同一条直线上,AB=CD,AB∥CD,BF=DE,求证:AE=CF.25.叙述并证明“三角形的内角和定理”.(要求根据下图写出已知、求证并证明)【参考答案】***一、选择题16.217.18.2719.820.30cm三、解答题21.原方程无解.22.(1)13;(2)原式259y xy=-,231594y xy-=-.23.(1)AC=AD,见解析;(2)AF⊥CD,见解析;(3)PC=PD,见解析.【解析】【分析】(1)由已知条件:AB=AE,∠B=∠E,BC=ED,可证得△ABC∽△AED,由此得AC=AD.(2)由于△ACD 是等腰三角形,根据等腰三角形三线合一的性质即可得到AF ⊥CD .(3)由(2)易知:AF 垂直平分线段CD ,即可根据线段垂直平分线的性质判定PC=PD .【详解】(1)AC=AD.理由如下:在△ABC 与△AED 中AB AE B E BC ED =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△AED (SAS )∴AC=AD(2)AF ⊥CD ,理由如下:∵AC=AD ,点F 是CD 的中点∴AF ⊥CD(3)PC=PD ,理由如下:∵点F 是CD 的中点,AF ⊥CD∴AF 是CD 的垂直平分线∵点P 在AF 上∴PC=PD【点睛】此题主要考查了全等三角形的判定和性质、等腰三角形的性质以及线段垂直平分线的性质;熟练掌握并灵活应用性质是解答本题的关键24.证明见解析【解析】【分析】利用SAS 证明△ABE ≌△CDF ,根据全等三角形,对应边相等,可得到结论AE=CF .【详解】证明:∵BF=DE ,∴BE+EF=DE+EF .即BE=DF ,∵AB ∥CD ,∴∠B=∠D ,在△ABE 和△CDF 中,BE DF B D AB CD ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF .∴AE=CF .【点睛】本题考查了全等三角形的判定和性质;证明线段相等往往可以通过全等三角形来证明,这是一种经常用、很重要的方法,要注意掌握.25.180。
2018—2019学年度第一学期八年级上册数学期末试卷1(考试时间:100分 ,总分:120分) 班级:__________姓名:__________分数:____________一.选择题(共10小题,每小题3分,满分30分)题目 1 2 3 4 5 6 7 8 9 10答案13.一个多边形的内角和是其外角和的3倍,则此多边形的边数为____________14.如图,在△ABC 中,∠B=45°,∠C=30°,AD ⊥BC 于点D,BD=4cm,则AC 长为_____________cm. 15.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO,CO,则∠BOC= ____________16.如图,从边长为(a+5)cm 的正方形纸片中剪去一个边长为 (a+2) cm 的正方形(a >0),剩余部分沿虚线拼成一个长方形(不重叠无缝隙),则长方形的面积为____________ cm ² 三.解答题(一)(本大题3小题,每小题6分,共18分)17.因式分解:x 3—2x 2+ x 18.已知多项式A=(x+1)²—(x ²—4y ).(1)化简多项式A. (2)若x+2y=1,求A 的值.19.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=6,求CD的长.22.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数. 五.解答题(三)(本大题3小题,每小题9,共27分)23、如图,正五边形ABCDE的对角线BD,CE相交于点F,图中等腰三角形有____个,分别是________________________。
安徽省亳州蒙城县联考2018-2019学年八上数学期末考试试题一、选择题1.观察下列等式:1a n =,2111a a =-,3211a a =-,…;根据其蕴含的规律可得( ) A .2013a n = B .20131n a n -= C .201311a n =- D .201311a n=- 2.当x=2时,下列各式的值为0的是( )A .2232x x x --+B .12x -C .249x x --D .21x x +- 3.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A .13x =18x-5 B .13x =18x +5 C .13x =8x -5 D .13x =8x +5 4.已知25,2 3.2,2 6.4,210====a b c d ,则+++a b c d 的值为( )A.5B.10C.32D.645.下列计算正确的是( )A .(2x)3=2x 3B .(x+1)2=x 2+1C .(x 2)3=x 6D .x 2+x 3=x 56.已知二次三项式2x bx c ++分解因式()()31x x -+,则b c +的值为( )A .1B .-1C .-5D .57.如图,在直角坐标系中,点A 的坐标为(3,-2),直线MN ∥x 轴且交y 轴于点C(0,1),则点A 关于直线MN 的对称点的坐标为( )A .(-2,3)B .(-3,-2)C .(3,4)D .(3,2)8.已知两点A (3,2)和B (1,-2),点P 在y 轴上且使AP +BP 最短,则点P 的坐标为( )A .(0,1)B .(0,-1)C .(0,2)D .(0,-2)9.点P(a-1,-b+2)关于x 轴对称与关于y 轴对称的点的坐标相同,则a ,b 的值分别是( )A.1-,2B.1-,2-C.2-,1D.1,210.如图,在△ABC 中,已知AB=AC ,D 、E 两点分别在边AB 、AC 上.若再增加下列条件中的某一个,仍不能判定△ABE ≌△ACD ,则这个条件是( )A.BE ⊥AC ,CD ⊥ABB.∠AEB=∠ADCC.∠ABE=∠ACDD.BE=CD11.如图,在△ABC 与△BAD 中,AC=BD ,若使△ABC ≌△BAD ,还需要增加下列一个条件( )A .∠C=∠DB .∠BAC=∠ABDC .AE=BED .CE=DE12.下列说法:①若点C 是AB 的中点,则AC =BC ;②若AC =BC ,则点C 是AB 的中点;③若OC 是∠AOB 的平分线,则∠AOC =12∠AOB ;④若∠AOC =12∠AOB ,则OC 是∠AOB 的平分线.其中正确的有( ) A .1个B .2个C .3个D .4个 13.如图,A 、B 、C 分别是线段A 1B 、B 1C 、C 1A 的中点,若△A 1B l C 1的面积是14,那么△ABC 的面积是( )A .2B .143C .3D .7214.如图,已知点A 是射线BE 上一点,过A 作CA ⊥BE 交射线BF 于点C ,AD ⊥BF 交射线BF 于点D ,给出下列结论:①∠1是∠B 的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF ;④与∠ADB 互补的角共有3个.则上述结论正确的个数有( )A.1个B.2个C.3个D.4个15.如图,AD ,CE 为△ABC 的角平分线且交于O 点,∠DAC=30°,∠ECA=35°,则∠ABO 等于( )A.25°B.30°C.35°D.40° 二、填空题16.计算:若113x y -=,求4353x xy y y xy x--+-的值是 . 17.分解因式:32231827m m n mn -+=____________________18.如图,∠AOP =∠BOP =15°,PC ∥OA ,PD ⊥OA ,若PD =3cm ,则PC 的长为_____cm .19.一个多边形的每一个内角都等于它相邻外角的2倍,则这个多边形的边数是__________.20.如图1,三角形纸片ABC ,AB AC =,将其折叠,如图2,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,如果40A ∠=︒,那么DBC ∠的度数为________三、解答题21.先化简,再求值: 22212144x x x x--+--,其中5x =. 22.规定两数a 、b 之间的一种运算,记作(a ,b );如果c a b =,那么(a ,b )=c.例如:因为328=,所以(2,8)=3.(1)根据上述规定,填空:(4,16)=_________,(7,1)=___________,(_______,125)=-2. (2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3)4n x n =,即(3)4x n n= 所以34x =,即(3,4)=x ,所以(3n ,4n )=(3,4).请你尝试运用这种方法解决下列问题:①证明:(6,45)-(6,9)=(6,5)②猜想:((1)m x +,(1)m y -)+((1)n x +,(2)n y -)=(____________,____________),(结果化成最简形式).23.已知ABC 是等边三角形,点D 是直线BC 上一点,以AD 为一边在AD 的右侧作等边ADE . ()1如图①,点D 在线段BC 上移动时,直接写出BAD ∠和CAE ∠的大小关系;()2如图②图③,点D 在线段BC 的延长线上或反向延长线上移动时,猜想DCE ∠的大小是否发生变化,若不变请直接写出结论并选择其中一种图示进行证明;若变化,请分别写出图②、图③所对应的结论.24.如图①,在四边形ABCD 中,∠A =x°,∠C =y°(0°<x <180°,0°<y <180°).(1)∠ABC +∠ADC = °.(用含x ,y 的代数式表示)(2)如图1,若x=y=90°,DE 平分∠ADC ,BF 平分与∠ABC 相邻的外角,请写出DE 与BF 的位置关系,并说明理由.(3)如图2,∠DFB 为四边形ABCD 的∠ABC 、∠ADC 相邻的外角平分线所在直线构成的锐角, ①当x <y 时,若x+y=140°,∠DFB=30°,试求x 、y .②小明在作图时,发现∠DFB 不一定存在,请直接指出x 、y 满足什么条件时,∠DFB 不存在.25.阅读下列材料,完成下列各题:平面内的两条直线有相交和平行两种位置关系。
(1)如图1,若//AB CD ,点P 在AB ,CD 之间,求证:∠BPD=∠B+∠D ;(2)在图1中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图2,请写出BPD ∠,∠B ,D ∠,BQD ∠之间的数量关系并说明理由;(3)利用(2)的结论,求图3中A B C D E F ∠+∠+∠+∠+∠+∠+∠G=n×90°,则n=____.【参考答案】***一、选择题16.﹣.17.23(3)m m n -18.619.620.30三、解答题21.2x x +;57. 22.(1)2,0,5; (2)①证明见解析;②(x+1),(y 2-3y+2).23.(1)相等,理由详见解析;(2)不变,理由详见解析.【解析】【分析】(1)由等边三角形的性质可得∠BAC=∠DAE=60°,再由角的减法运算,可得∠BAD=∠CAE ;(2)由等边三角形的性质可得AD=AE ,AB=AC ,∠BAC=∠DAE=∠AC B=60°,可证△BAD ≌△CAE ,可得∠B=∠ACE=60°,即可求∠DCE=60°.【详解】解:()1相等理由如下:ABC ,ADE 是等边三角形AD AE ∴=,AB AC =,BAC DAE 60∠∠==,∴∠BAC-∠DAC=∠DAE-∠DAC ,BAD CAE ∠∠∴=()2不变如图ABC ②,ADE 是等边三角形AD AE ∴=,AB AC =,BAC DAE ACB 60∠∠∠===,BAD CAE ∠∠∴=,BAD ∴≌()CAE SASB ACE 60∠∠∴==DCE 180ACB ACE 60∠∠∠∴=--=.【点睛】全等三角形的判定和性质、等边三角形的性质是本题的考点,熟练运用全等三角形的判定和等边三角形的性质是解题的关键.24.(1)360°-x-y ;(2)DE ⊥BF ;(3)①x =40°,y =100°;②x=y.【解析】【分析】(1)利用四边形内角和定理得出答案即可;(2)利用角平分线的性质结合三角形外角的性质得出即可;(3)①利用角平分线的性质以及三角形内角和定理,得出∠DFB=12y-12x=30°,进而得出x ,y 的值; ②当x=y 时,∠ABC 、∠ADC 相邻的外角平分线所在直线互相平行,此时∠DFB 不存在.【详解】(1)∠ABC+∠ADC=360°-x-y ;故答案为:360°-x-y ;(2)如图1,延长DE 交BF 于G∵DE平分∠ADC,BF平分∠MBC,∴∠CDE=12∠ADC,∠CBF=12∠CBM,又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC)=∠ADC,∴∠CDE=∠CBF,又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,∴∠BGE=∠C=90°,∴DG⊥BF(即DE⊥BF);(3)①由(1)得:∠CDN+∠CBM=x+y,∵BF、DF分别平分∠CBM、∠CDN,∴∠CDF+∠CBF=12(x+y),如图2,连接DB,则∠CBD+∠CDB=180°-y,得∠FBD+∠FDB=180°-y+12(x+y)=180°-12y+12x,∴∠DFB=12y-12x=30°,解方程组:1401130 22x yy x==+︒⎧⎪⎨-︒⎪⎩,解得:40100xy︒⎧⎨︒⎩==;②当x=y时,∠ABC、∠ADC相邻的外角平分线所在直线互相平行,此时∠DFB不存在.【点睛】此题主要考查了多边形的内角和角平分线的性质以及三角形内角和定理等知识,正确应用角平分线的性质是解题关键.25.(1)见解析(2)∠BPD=∠B+∠D+∠BQD(3)6。