suzuki偶联反应
- 格式:doc
- 大小:2.10 MB
- 文档页数:12
交叉偶联反应氯化铜-回复交叉偶联反应, 又称为Suzuki偶联反应,是有机合成中常用的一种重要的反应。
该反应以有机硼酸酯和有机卤素化合物为反应物,经过交叉偶联反应生成新的有机化合物,三苯基膦钯配合物是标准的催化剂,氯化铜是共催化剂,也可以用其他的铜盐作为辅助催化剂。
该反应在合成医药、农药、功能材料等领域具有重要的应用。
下面将详细介绍交叉偶联反应的机理以及氯化铜在该反应中的作用。
交叉偶联反应的机理交叉偶联反应的机理是一个复杂的过程,主要分为四个步骤:配体交换、还原消除、反应生成和再氧化消除。
首先,对[PdCl(PPh3)2]进行配体交换,生成活性的[PdCl(Ph3P)]催化剂。
其次,有机卤素化合物通过还原消除的方式与[PdCl(Ph3P)]催化剂发生反应,生成[Pd(Ph3P)2]催化剂和有机金属中间体。
然后,有机金属中间体与有机硼酸酯反应,生成交叉偶联产物。
最后,交叉偶联产物通过再氧化消除的方式与[Pd(Ph3P)2]催化剂发生反应,生成[PdCl(Ph3P)]催化剂和有机金属中间体。
这个过程又回到第二步,可以循环进行,直到反应结束。
氯化铜的作用氯化铜作为共催化剂,在交叉偶联反应中起到重要的作用。
首先,氯化铜与[Pd(Ph3P)2]催化剂形成一个配对,形成[PdCl2(Ph3P)2CuCl]共催化剂。
[PdCl2(Ph3P)2CuCl]共催化剂能够与[Pd(Ph3P)2]催化剂形成一种卟吩配合物,增强了催化剂与金属中间体的相互作用。
此外,氯化铜还能促进有机卤素化合物与有机硼酸酯之间的反应。
氯化铜可作为路易斯酸存在,与有机硼酸酯形成中间体,进而参与反应。
同时,氯化铜还可以从[PdCl2(Ph3P)2CuCl]共催化剂释放氯离子,促进反应的进行。
最后,氯化铜在反应过程中还能够吸收一些副反应生成的溴离子,防止溴离子与[Pd(Ph3P)2]催化剂反应,降低反应的副产物。
综合上述,氯化铜在交叉偶联反应中的作用主要有三个方面:增强催化剂与金属中间体的相互作用,促进反应进行以及吸收副反应生成的溴离子。
铃木反应维基百科,自由的百科全书(重定向自Suzuki反应)Suzuki反应(铃木反应),也称作Suzuki偶联反应、Suzuki-Miyaura反应(铃木-宫浦反应),是一个较新的有机偶联反应,是在钯配合物催化下,芳基或烯基的硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联。
[1][2]该反应由铃木章在1979年首先报道,在有机合成中的用途很广,具有很强的底物适应性及官能团耐受性,常用于合成多烯烃、苯乙烯和联苯的衍生物,从而应用于众多天然产物、有机材料的合成中。
[3][4][5]。
铃木章也凭借此贡献与理查德·赫克、根岸英一共同获得2010年诺贝尔化学奖。
[6]目录[隐藏]∙ 1 概述∙ 2 机理∙ 3 讨论∙ 4 展望∙ 5 参见∙ 6 参考文献∙7 外部链接[编辑]概述Suzuki反应对官能团的耐受性非常好,反应物可以带着-CHO、-COCH3、-COOC2H5、-OCH3、-CN、-NO2、-F等官能团进行反应而不受影响。
反应有选择性,不同卤素、以及不同位置的相同卤素进行反应的活性可能有差别,三氟甲磺酸酯、重氮盐、碘鎓盐或芳基锍盐和芳基硼酸也可以进行反应,活性顺序如下:R2-I > R2-OTf > R2-Br >> R2-Cl另一个广泛应用的底物是芳基硼酸,由芳基锂或格氏试剂与烷基硼酸酯反应制备(见Miyaura硼酸化反应,Miyaura反应)。
这些化合物对空气和水蒸气比较稳定,容易储存。
Suzuki反应靠一个四配位的钯催化剂催化,广泛使用的催化剂为四(三苯基膦)钯(0)Pd(PPh3)4与PdCl2(dppf),其他的配体还有:AsPh3、n-Bu3P、(MeO)3P,以及双齿配体Ph2P(CH2)2PPh2(dppe)、Ph2P(CH2)3PPh2(dppp)等。
(以上的所有Pd配体都是厌氧的,因此反应必须在氮气,氩气等惰性气体下反应)。
[7]Suzuki反应中的碱也有很多选择,最常用的是碳酸钠,碳酸铯,醋酸钾,磷酸钾等。
suzuki硼酸酯偶联机理摘要:一、Suzuki 偶联反应简介1.Suzuki 偶联反应的概念2.Suzuki 偶联反应在有机合成中的应用二、Suzuki 偶联反应的机理1.反应的起始阶段2.钯催化剂的作用3.偶联反应的过程4.反应的终止阶段三、Suzuki 偶联反应的优缺点1.优点a.反应条件温和b.产率高c.官能团兼容性好2.缺点a.钯催化剂昂贵b.反应过程中可能产生副反应四、Suzuki 偶联反应的发展趋势与展望1.新型钯催化剂的研究2.反应条件的优化3.Suzuki 偶联反应在实际应用中的拓展正文:Suzuki 偶联反应是一种在有机合成中广泛应用的反应,它以硼酸酯为偶联试剂,通过钯催化剂的作用,实现两个有机化合物的直接偶联。
这种反应具有反应条件温和、产率高、官能团兼容性好等优点,因此受到广大科研工作者的青睐。
在Suzuki 偶联反应中,首先,硼酸酯与钯催化剂形成配合物,这是反应的起始阶段。
钯催化剂在反应过程中起到关键作用,它能够降低反应的活化能,促进硼酸酯与有机卤化物的偶联。
在钯催化剂的作用下,硼酸酯与有机卤化物发生偶联反应,生成新的化合物,这是反应的过程。
最后,反应达到终止阶段,生成物从反应体系中析出。
尽管Suzuki 偶联反应具有很多优点,但也存在一定的缺点。
首先,钯催化剂价格昂贵,这限制了其在实际应用中的推广。
其次,在反应过程中,可能产生副反应,这会影响产物的纯度和收率。
因此,如何解决这些问题,优化Suzuki 偶联反应,是当前研究的一个重要方向。
展望未来,Suzuki 偶联反应的研究将不断深入。
新型钯催化剂的研究将有助于降低反应成本,提高反应效率。
反应条件的优化将使Suzuki 偶联反应更加绿色、环保。
suzuki金属偶联反应的条件
Suzuki金属偶联反应是一种重要的有机合成方法,广泛应用于药物合成和材料科学领域。
该反应的条件是指在进行Suzuki反应时所需要的反应物、催化剂和反应条件。
Suzuki金属偶联反应的反应物主要包括芳香卤化物和硼酸酯。
这两种物质在反应中起到了关键的作用,芳香卤化物作为底物提供了反应中的有机基团,而硼酸酯则通过金属催化剂的参与,与卤代物发生偶联反应。
Suzuki金属偶联反应的催化剂通常是钯催化剂,如钯(0)、钯(II)配合物或钯(II)络合物。
钯催化剂的选择对反应的效率和产率有着重要的影响,不同的催化剂适用于不同类型的底物。
通常情况下,催化剂通过与底物中的卤素发生配位作用,形成中间体,进而催化反应的进行。
Suzuki金属偶联反应需要在适当的反应条件下进行。
一般来说,反应需要在惰性气体保护下进行,以防止氧气和水分的干扰。
反应溶剂的选择也非常重要,常用的溶剂有二甲基亚砜(DMSO)、乙腈和二氯甲烷等。
Suzuki金属偶联反应的条件包括合适的反应物、适当的催化剂和适宜的反应条件。
这些条件的选择和控制对于反应的成功进行至关重要。
通过合理设计反应条件,可以实现高效、高产的Suzuki金属偶
联反应,为有机合成和材料科学领域的研究提供了重要的手段。
有机化学四大偶联反应有机化学是研究碳元素及其化合物的科学,是化学学科中的一个重要分支。
在有机化学中,有机合成反应是一项重要的研究内容。
有机化学四大偶联反应是有机合成中常用的四种反应类型,包括:Suzuki偶联反应、Stille偶联反应、Heck偶联反应和Sonogashira 偶联反应。
这些反应在有机合成中起到了重要的作用,为有机化学的发展做出了巨大的贡献。
我们来介绍Suzuki偶联反应。
Suzuki偶联反应是一种重要的芳香化合物合成方法,它是基于钯催化剂的反应。
该反应将有机硼酸酯和有机卤化物或磺酸酯作为底物,在适当的条件下,经过交叉偶联反应,生成目标产物。
Suzuki偶联反应在药物合成和材料科学中有着广泛的应用,可以高效地合成出具有重要生物活性和物理性质的化合物。
接下来是Stille偶联反应,它是一种重要的碳-碳键形成反应。
该反应是通过钯催化剂催化下的亲核取代反应来实现的,底物包括有机卤化物和有机锡化合物。
Stille偶联反应具有底物适用范围广、反应条件温和等优点,在天然产物的合成和药物研发中得到了广泛的应用。
第三种偶联反应是Heck偶联反应,它是一种重要的芳香化合物合成方法。
该反应是通过钯催化下的芳香取代反应实现的,底物包括有机卤化物和烯烃。
Heck偶联反应是一种高效、高选择性的反应,在药物研发和天然产物的合成中得到了广泛的应用。
最后是Sonogashira偶联反应,它是一种重要的炔烃合成方法。
该反应是通过钯催化下的炔烃与有机卤化物的偶联反应实现的。
Sonogashira偶联反应可以高效地合成炔烃化合物,对于合成具有炔烃结构的药物和功能材料具有重要意义。
在有机化学四大偶联反应中,每一种反应都有其独特的应用领域和优点。
这些反应的发展和应用为有机合成提供了新的思路和方法,为有机化学的发展做出了重要贡献。
总结起来,有机化学四大偶联反应包括Suzuki偶联反应、Stille偶联反应、Heck偶联反应和Sonogashira偶联反应。
suzuki硼酸酯偶联机理摘要:一、引言二、Suzuki 反应的背景与原理1.反应发现者2.反应的应用领域三、Suzuki 硼酸酯偶联反应的机理1.反应条件2.反应过程3.反应产物四、Suzuki 反应的优势与局限1.优势2.局限五、Suzuki 反应在现代有机合成中的应用六、结论正文:一、引言Suzuki 硼酸酯偶联反应是一种在有机合成中广泛应用的反应,尤其在药物合成和材料科学领域具有重要意义。
本文将详细介绍Suzuki 硼酸酯偶联反应的机理及其在现代有机合成中的应用。
二、Suzuki 反应的背景与原理1.反应发现者Suzuki 反应由日本化学家Akira Suzuki 在1990 年发现,该反应是一种有机硼酸酯与有机卤化物在钯催化剂的作用下进行偶联的反应。
2.反应的应用领域Suzuki 反应广泛应用于有机合成,尤其是药物合成和材料科学领域。
该反应具有条件温和、产率高、官能团兼容性好等优点。
三、Suzuki 硼酸酯偶联反应的机理1.反应条件Suzuki 反应通常在室温下进行,需要使用钯催化剂和偶联剂(如三苯基磷)。
2.反应过程在钯催化剂的作用下,有机硼酸酯与有机卤化物发生偶联反应,生成新的化学键。
此过程涉及钯催化剂的氧化加成、还原消除等步骤。
3.反应产物Suzuki 反应的产物为一个新的有机化合物,其中有机硼酸酯和有机卤化物通过偶联反应形成新的化学键。
四、Suzuki 反应的优势与局限1.优势Suzuki 反应具有条件温和、产率高、官能团兼容性好等优点,使其成为有机合成中不可或缺的反应。
2.局限尽管Suzuki 反应具有很多优势,但仍存在一些局限性,例如对某些底物的适用性有限,以及可能产生的副反应等。
五、Suzuki 反应在现代有机合成中的应用Suzuki 反应在现代有机合成中具有广泛的应用,如在药物合成中用于构建复杂的环状化合物,或在材料科学中用于合成具有特定性能的材料。
六、结论Suzuki 硼酸酯偶联反应是一种在有机合成中具有重要意义的反应,其温和的反应条件、高产率和良好的官能团兼容性使其在药物合成和材料科学等领域得到广泛应用。
suzuki -miyaura偶联反应概述说明1. 引言1.1 概述Suzuki-Miyaura偶联反应是有机合成中一种重要的偶联反应方法,它以其高效、高选择性和广泛的底物适用性而受到广泛关注。
该反应以有机卤化物和有机硼酸酯为底物,在铜盐和配体的催化下进行,生成相应的偶联产物。
该反应可以构建碳-碳键和碳-氮键,常用于构建芳香化合物、杂环化合物等复杂分子结构。
1.2 文章结构本文将首先介绍Suzuki-Miyaura偶联反应的原理,包括反应机理、催化剂和底物选择性以及该反应的发展历史与应用领域。
然后会详细说明该反应的条件与步骤,包括底物准备与选择、反应条件控制以及步骤与工艺优化。
接下来将介绍实验操作与注意事项,包括实验操作步骤、常见问题与解决方法以及安全注意事项。
最后我们将给出结论部分,总结Suzuki-Miyaura偶联反应的优势和局限性,并展望其在未来发展中的重要性,并提出研究方向和未解决问题。
1.3 目的本文的目的是介绍Suzuki-Miyaura偶联反应及其在有机合成中的重要性。
通过对该反应原理、条件与步骤以及实验操作和注意事项的详细讲解,旨在帮助读者更好地理解和应用该反应,并掌握其正确操作方法。
同时,我们也将指出该反应存在的局限性,并展望其在未来发展中的前景和研究方向,希望能够激发更多科学家对该领域的兴趣并促进相关研究的推进。
2. Suzuki-Miyaura偶联反应的原理2.1 反应机理Suzuki-Miyaura偶联反应是一种重要的C-C键形成方法,其基本反应机理可被概括为以下几个步骤。
首先,芳香环上的硼酸和卤代烷基(或烯基)底物在催化剂的存在下发生吕得霉素配合物与底物之间的交换反应,生成含有硼酸酯官能团的中间体。
接下来,中间体与有机卤化物经过还原消除反应,在钯催化剂参与下进行脱羧作用,生成新的碳-碳键以及相应的芳香环。
最后,在正常工作温度条件下,溶剂中反应产物与锡盐或锂盐等强碱进行水解,得到目标产物。
suzuki偶联反应j机理
1.Suzuki偶联反应
Suzuki偶联反应是一种重要的碳-碳键建立反应,由日本科学家本部顺三于1979年完成,目前已在有机合成中得到广泛的应用, 加强了有机合成化学家们的竞争地位。
2.Suzuki反应的类型
Suzuki偶联反应可分为三种:有机-金属-有机(OMO)反应、有机-有机(OO)反应、
有机-金属-金属(OMM)反应。
3.Suzuki反应的反应物
Suzuki反应中有三种基本反应物:第一种为迁移原子供体,如泛烃卤素,第二种就是钯催化剂,第三标是有机保护基团,如酰禄基。
4.Suzuki反应机理
Suzuki偶联反应的基本机理大致如下:首先,迁移原子供体经受钯催化剂催化作用,与接枝芳基或反应中的芳基进行叠氮异构,形成两个新的键,其中一个是非内振体键;之后,梭型钯催化剂催化破坏最后一个键,最终形成稳定和交联体。
5.Suzuki反应改善措施
(1)提高活性催化剂的高活性:活性催化剂主要是低活性钯催化剂或Pd(II)配体,可以采取装配活性催化剂的方法,比如用精确的添加剂,避免催化剂的腐蚀;
以上就是Suzuki偶联反应的机理介绍,以及改善Suzuki反应的措施。
其本质
原理是通过叠氮异构和钯催化剂的配合,使四元环的稳定性有了有效的提升,从而实现有机分子的碳碳键建立和胺基芳基的合成。
是一种优秀的有机合成化学反应。
Suzuki反应(铃木反应)铃木反应 - 简介Suzuki反应(铃木反应),也称作Suzuki偶联反应、Suzuki-Miyaura反应(铃木-宫浦反应),是一个较新的有机偶联反应,是在钯配合物催化下,芳基或烯基的硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联。
通式:铃木反应 - 概述Suzuki反应对官能团的耐受性非常好,反应物可以带着-CHO、-COCH3、-COOC2H5、-OCH3、-CN、-NO2、-F等官能团进行反应而不受影响。
反应有选择性,不同卤素、以及不同位置的相同卤素进行反应的活性可能有差别,三氟甲磺酸酯、重氮盐、碘鎓盐或芳基锍盐和芳基硼酸也可以进行反应,活性顺序如下:R2-I > R2-OTf > R2-Br >> R2-Cl 另一个底物一般是芳基硼酸,由芳基锂或格氏试剂与烷基硼酸酯反应制备。
这些化合物对空气和水蒸气比较稳定,容易储存。
Suzuki反应靠一个四配位的钯催化剂催化,广泛使用的催化剂为四(三苯基膦)钯(0),其他的配体还有:AsPh3、n-Bu3P、(MeO)3P,以及双齿配体Ph2P(CH2)2PPh2(dppe)、Ph2P(CH2)3PPh2(dppp)等。
Suzuki反应中的碱也有很多选择,最常用的是碳酸钠。
碱金属碳酸盐中,活性顺序为:Cs2CO3 > K2CO3 > Na2CO3 > Li2CO3 而且,加入氟离子(F−)会与芳基硼酸形成氟硼酸盐负离子,可以促进硼酸盐中间体与钯中心的反应。
因此,氟化四丁基铵、氟化铯、氟化钾等化合物都会使反应速率加快,甚至可以代替反应中使用的碱。
铃木反应 - 机理铃木反应示意图首先卤代烃2与零价钯进行氧化加成,与碱作用生成强亲电性的有机钯中间体4。
同时芳基硼酸与碱作用生成酸根型配合物四价硼酸盐中间体6,具亲核性,与4作用生成8。
最后8经还原消除,得到目标产物9以及催化剂1。
氧化加成一步,用乙烯基卤反应时生成构型保持的产物,但用烯丙基和苄基卤反应则生成构型翻转的产物。
Suzuki-Miyaura交叉偶联反应机理及其在有机合成中的应用学院:化学学院专业:有机化学学号:姓名:一、Suzuki-Miyaura 交叉偶联反应概念Suzuki 反应(铃木反应),也称作Suzuki 偶联反应、Suzuki-Miyaura 反应(铃木-宫浦反应),是一个较新的有机偶联反应,是在钯配合物催化下,芳基或烯基的硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联。
Z=Cl,Br,I自从1981年Suzuki 等报道了通过钯催化的有机硼化学物和卤代烃可以在很温和的条件下发生偶联反应制备不对称联芳烃以后,为芳-芳键的形成展开了一个新的领域[1]。
Suzuki-Miyaura 交叉偶联反应被证明是目前制备联芳基及其衍生物最为广泛利用的方法,因为其具有很强的底物适应性及官能团耐受性,常用于合成多烯烃、苯乙烯和联苯的衍生物,从而应用于众多天然产物、有机材料的合成中。
铃木章也凭借此贡献与理查德·赫克、根岸英一共同获得2010年诺贝尔化学奖。
二、Suzuki-Miyaura 交叉偶联反应机理Suzuki-Miyaura 交叉偶联的反应机理通常是一个普通的催化循环过程。
这个过程主要包括三个步骤:(1)氧化加成(oxidative addition) (2)转移金属化(transmetalation) (3)还原消除(reductive elimination)Ar-Pd-Ar 1Ar-ArPd(0)ArXArPdXArPdOHNaOHNaXB(OH)4ArB -(OH)3NaOHArB(OH)2氧化加成还原消除转移金属化ZB(OH)2BrZ+3% Pd(PPh 3)4Benzene, Na 2CO 3/H 2O首先,卤代芳烃与Pd(0)氧化加成后,与1mol 的碱生成有机钯氢氧化物中间物种,取代了键极性较弱的钯卤键,这种含有强极性的Pd-OH 的中间体具有非常强的亲电性;同时另1mol 的碱与芳基硼酸生成四价硼酸盐中间物种,具有非常强的富电性,有利于向Pd 金属中心迁移。
利用这两方面的协同作用从而形成有机钯配合物Ar-Pd-Ar ’,再经历还原消除生成芳基偶联的产物。
实际上,此反应机理与Heck 反应的机理相似,只是键的作用有所不同而已。
这在这个循环过程中氧化加成通常被认为是反应的控制步骤,这个反应的活性很大程度上受到芳环上取代基性质的影响,即推电子基团与供电子基团以及空间位阻的影响。
卤代芳烃反应速度的排列顺序是碘代芳烃>溴代芳烃>氯代芳烃,因此在多卤代物中就存在明显的化学选择性。
如果芳环上有多个位置同时被同种卤素原子取代,Suzuki 反应也有一定的区域选择性:通常来说,相同结构的卤代烃,芳环上的负电荷越强,空间位阻越大,则反应越慢。
Suzuki 反应对于官能团的耐受性非常好,可以带着多种官能团进行反应,比如:-CHO,-COCH 3,-COOC 2H 5,-OCH 3,-CN,-NO 2,-F 等。
B(OH)2TMS C 6H 13C 6H 13+IBr CH 13Pd(0)碱TMS C 6H 13C 6H 13CH 3BrIII+B(OH)2Pd(0)碱IFB OH OHNBrNFFF +Pd(PPh 3)4K 2CO 3THFCHOCHOFBOH OHNBrNFFF+Pd(PPh 3)4 K 2CO 3THFCH 2OHCH 2OHBrBrBMeOOH OHBrOMeNa 2CO 3, DME, refluxPd (PPh 3)4当然还有其他方面的影响,如反应中所用的碱的碱性、催化剂的价态、配体以及所用的溶剂都对Suzuki-Miyaura 交叉偶联反应有很大的影响。
1. 溶剂:在极性溶剂里此偶联反应的产率可以得到很大的提高:DMSO≥ DMF > dioxane > toluene 。
2. 碱:经过验证,KOAc 是应用于这个反应最合适的碱,其他的如K 3PO 4或K 2CO 3这些碱性略强的碱会进一步使原料芳基卤发生自偶联反应的结果。
3. 催化剂:对于制备溴代物和碘代物相应的芳基硼酸酯,Pd(dppf)Cl 2一般可以得到很好的结果,又由于其具有易于反应的后处理的优点,因此是实验室目前最常用的一类催化剂。
在Suzuki 反应中广泛使用的催化剂还有Pd(PPh 3)4。
其它的配体还有:AsPh 3,n-Bu 3P,(MeO)3P ,以及一些双齿配体Ph 2P(CH 2)2PPh 2(dppe),Ph 2P(CH 2)3PPh 2(dppp)等。
4. 反应:在Suzuki 芳基偶联反应中,通常要求芳基硼酸的量相对于卤代芳烃过量10%,以保证应有的产率,因为脱硼作用会造成芳基硼酸的损失,尤其是带吸电子的芳基硼酸这种脱硼作用更为显著,有时候,将芳基硼酸转化为酯后再用于偶联反应,可减少反应过程中硼酸的损失。
NNHBrClFCNB O ORR ConditionsNNHClFCNCNBOH HOCNBO OCNBO O0 %42 %100 %J. Organomet. Chem. 2002, 653, 269.BrMeO 2CB FOHOHMeO 2CFPd (dppf)Cl 2Na 2CO 3, DCM, refluxPatent; US2002/55631 A1 (2002/05/09)Suzuki-Miyaura 偶联反应主要有以下几个优点:(1)反应条件相对较温和,而且所用的各种硼酸及其衍生物相对于其他偶联反应中所用的有机金属试剂对环境是很稳定的,容易保存,也容易处理。
(2)反应的后处理很容易,且含硼副产物相对于别的有机溶剂容易除去,这对于工业生产来说是很有优势的。
(3)反应中所用到的硼试剂相对于很多的官能团(例如羰基,羟基,氨基等)都是很稳定的,这是由于硼原子的电负性(2.0)接近碳原子的电负性(2.5),而大大高于锂,镁以及大多数其他的过渡金属原子(电负性值介于0.85-1.75之间)。
(4)由于其使用的是低毒性的硼试剂并产生无毒的硼副产物,为用绿色化学合成碳-碳键提供了一条有效途径。
三、Suzuki-Miyaura 偶联反应在有机合成中的应用自从1981年被Suzuki 报道以后,Suzuki-Miyaura 交叉偶联反应方法主要应用于不对称联芳烃的合成,在以钯为催化剂通过卤代芳烃和芳基硼酸的偶联反应得到了很多有趣的研究结果。
而水相反应、微波合成和固相合成等手段的引入大大丰富了这一方法。
这些方法学的发展极大的促进了钯催化的Suzuki-Miyaura 反应在材料合成和天然产物的合成中的应用。
目前具体主要应用到以下几个领域:1、合成联苯基、联萘基及其衍生物的(非)对称联芳烃。
2、合成含杂原子(如氮、氧、硫等)的联芳烃。
3、合成液晶材料、非线性光学材料。
4、合成白光材料。
5、合成药物。
1、不对称联芳烃的合成。
Suzuki 提出了这种类型的反应条件即用硼酸与卤代芳烃在化学计量的碱存在下Pd (0)为催化剂(通常以三苯基膦为配体)发生偶联反应,后来这种反应广泛应用于联苯、联萘的合成。
举例[2]如下:2、合成含杂原子(如氮、氧、硫等)的联芳烃。
K 2CO 3IBrNO 3+SB OHOHBrNO 3SNO 3SR DME5%mmol Pd(PPh 3)4K 2CO 3DME5%mmol Pd(PPh 3)4最近Suzuki-Miyaura 交叉偶联反应也被大量的应用于合成含杂环原子联芳基化合物。
3、合成液晶材料、非线性光学材料。
联苯是一种重要的有机原料,由于其衍生物独特的结构而显示出特殊的作用,联苯类液晶具有优良的光稳定性、化学稳定性等,是目前应用最广泛的一类液晶材料。
以下是联苯类液晶单元[3]的合成路线:4、合成白光材料。
由湘潭大学化学学院朱卫国教授有机光电功能材料课题组合成出来的一种双核铂配合物[4],利用其聚集态与分子本身所发光混合后可以制得发白光的器件。
SBBOHOHHO HOSB B OOOOBrNO 2RSRRNO 2O 2NK 2CO 3DME5%mmol Pd(PPh 3)4IOBrIOH C 8H 7OB OH OHPd(OAc)2K 2CO 3THF rt2h+C 8H 7OOHbb +C 8H 7OOOINaH DMF 40o C4hNMeOOC Br B(OH)2O 2N+NMeOOCNO 2Pd (PPh 3)4aq. Na 2CO 3benzeneJ . Org. Chem. 1984, 49, 5237.F B OHOHNBrNFFF +Pd(PPh 3)4K 2CO 3THF1)K 2PtCl 4N FFN F FPt NO O2-ethoxyethanol/water 2)Na 2CO 3/Hpic 2-ethoxyethanol(dfppy)Pt(pic)另外该课题组也利用suzuki 偶联反应合成出了一类有机偏振发光材料[5]。
合成路线如下:5、合成药物。
(1) 1-烯基硼酸或其酯与1-溴代烯在Pd(PPh 3)4或PdCl 2(PPh 3)2催化下得到“头”-“头”偶联产物二烯,而且产率较高、反应具有高区域选择性和烯烃构型保持等特点。
为高区域选择性进行“头”-“头”偶联(避免“头”-“尾”偶联产物)需用强碱,如NaOEt 、NaOH 。
该方法已成功用于信息素Rombykol 的合成。
也已用于欧洲葡萄酒蛾、埃及棉叶虫信息素的合成。
Bu n HB(OH)2H +PhPd 催化剂碱Bu nPh+Bu nPh“头”-“头”偶联 “头”-“尾”偶联N BrOHNaH NBrOC n H 2n+1DMFOHBr R C n H 2n+1Br K 2CO 3/acetoneOC n H 2n+1BrRPdCl 2(dppf)CH 2Cl 2KOAc/DMSOO B O B OO C n H 2n+1Br OC n H 2n+1B RO ONOC n H 2n+1H 2n+1C n ORtoluene, ethanol Pd(PPh 3)4/K 2CO 3+ccNOC n H 2n+1H 2n+1C n ONH 2n+1C n OOC n H 2n+1Pt Pt Cl Cl 2-ethoxyethanol H 2OK 2PtCl 42-ethoxyethanolNa 2CO 3NOC n H 2n+1H 2n+1C n OPtOOR=H,n=4,8,12,16R=F,n=8,12,16NOO OONHOOCCOOHa1)K 2PtCl 4NFF2-ethoxyethanol/water 2)Na 2CO 3/a 2-ethoxyethanol(dfppy)2Pt(dipic)NFFPtN OOOOOONOOPt NFF(2) D. S. Ennis 等用Pd /C 做催化剂大批量的进行Suzuki-coupling 反应,以生产抗抑郁药物,SB-245570。