配方法(一)教学设计1
- 格式:doc
- 大小:100.13 KB
- 文档页数:6
初中数学《配方法》教案维语第一章节:配方法的引入1.1 教学目标让学生理解配方法的概念和意义。
引导学生通过具体例子探索配方法的应用。
培养学生运用配方法解决问题的能力。
1.2 教学内容配方法的定义和意义配方法的基本步骤配方法在实际问题中的应用1.3 教学过程1. 引入:通过一个实际问题,引导学生思考如何将问题转化为完全平方形式。
2. 讲解:介绍配方法的定义和意义,讲解配方法的基本步骤。
3. 练习:让学生通过具体例子练习使用配方法,解决问题。
1.4 教学评价通过课堂练习和作业,评价学生对配方法的理解和应用能力。
第二章节:配方法的基本步骤2.1 教学目标让学生掌握配方法的基本步骤。
培养学生运用配方法解决问题的能力。
2.2 教学内容配方法的第一步:确定完全平方公式配方法的第二步:移项配方法的第三步:补全平方2.3 教学过程1. 复习:回顾上一章节的内容,引导学生回顾配方法的定义和意义。
2. 讲解:讲解配方法的基本步骤,通过具体例子进行解释。
3. 练习:让学生通过具体例子练习使用配方法的基本步骤。
2.4 教学评价通过课堂练习和作业,评价学生对配方法的基本步骤的理解和应用能力。
第三章节:配方法在实际问题中的应用3.1 教学目标让学生理解配方法在解决实际问题中的应用。
培养学生运用配方法解决实际问题的能力。
3.2 教学内容配方法在解决线性方程中的应用配方法在解决二次方程中的应用3.3 教学过程1. 引入:通过一个实际问题,引导学生思考如何使用配方法解决问题。
2. 讲解:讲解配方法在解决线性方程和二次方程中的应用。
3. 练习:让学生通过具体例子练习使用配方法解决实际问题。
3.4 教学评价通过课堂练习和作业,评价学生对配方法在实际问题中的应用能力的理解。
第四章节:配方法的扩展与深化4.1 教学目标让学生理解配方法在更复杂问题中的应用。
培养学生运用配方法解决更复杂问题的能力。
4.2 教学内容配方法在解决多项式问题中的应用。
教师姓名孙洋单位名称霍尔果斯市国门初级中学填写时间2020年8月21日学科数学年级/册九年级上册教材版本人教版课题名称21.2.1配方法(1)难点名称运用直接开平方法,把一个一元二次方程“降次”转化为两个一元一次方程。
难点分析从知识角度分析为什么难解一元二次方程不同于解一元一次方程,计算的难度变大了,需要学生有一定的数学基础和较强的计算能力。
难点教学方法1.通过复习回顾平方根的相关知识引入本节课内容,为后面探索解法作铺垫。
2.通过创设情境,激发学生探究新知的兴趣,通过四个问题,探索总结用直接开平方法解一元二次方程。
教学环节教学过程导入(一)复习回顾,引出课题问题1 试述平方根的意义和性质.平方根的意义:平方根的性质:问题2 写出下各数的平方根: 9,16,8,24,0,-25.回答:前面我们学习了一元二次方程的有关概念,今天我们开始研究一元二次方程的解法.21.2.1 配方法(一)知识讲解(难点突破)(二)创设情境,探索解法问题3 一桶某种油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1 未知数?等量关系?代数式?思考2 怎样解这个方程?思考3 所求方程的解是实际问题的解吗?解:问题4 根据平方根的意义我们可以求得方程x2=25的解,那么你能求出下列方程的解吗?(1)x2-9=0; (2)2x2=4; (3)3x2-81=0; (4)x2=a(a≥0).问题5 对照上述方程的求解过程,你知道如何解下列方程吗?(1)(x+1)2=2; (2)(x-1)2-4=0.问题6 前面我们依据平方根的意义求得一元二次方程的解,这种解一元二次方程的方法叫做直接开平方法.(1)当方程具有什么形式时,可以用直接开平方法求解?如何求解?回答:(2)用直接开平方法解一元二次方程的实质是什么?用直接开平方法解一元二次方程的实质是:问题7 你能用直接开平方法解方程x2+6x+9=2吗?分析:如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,就可以用直接开平方法求解.解:课堂练习(难点巩固)三、应用提高(一)巩固应用例1 解下列方程:(1)2x2-8=0; (2)9x2-5=3; (3)(x+6)2-9=0;(4)3(x-1)2-6=0; (5)x2-4x +4=5; (6)9x2+6x +1=4.解:解题心得:四、落实训练(一)当堂训练1.选择题(4道)2.填空题(2道)3.问答题(2道)小结(二)回顾提升思考:通过这节课的学习你有哪些收获?回顾交流,概括总结:。
21.2 解一元二次方程【本节分析】本节是本章的核心内容,主要是一元二次方程的各种解法.其中的一元二次方程的配方法和应用一元二次方程知识理解应用问题是重点,而这两个重点又是教学过程中的难点.一元二次方程的解法,尤其是公式法是学好本章的关键.因此,本节又是全章的重点,是学好本章的基础.一元二次方程的解法,课本介绍了四种,即直接开平方法、配方法、公式法及因式分解法.直接开平方法适用于x2=a或(x+m)2=a(a≥0)模式的方程.实际上,给出的一般方程只要存在实根,就可以用配方法转化为x2=a或(x+m)2=a(a≥0)的形式.例如,课本中将方程x2+6x+4=0转化为(x+3)2=5,因此配方法是直接开方法的延伸,而直接开平方法是配方法的基础.在配方法解一元二次方程的基础上,很自然地推出一元二次方程ax2+bx+c=0(a≠0)的求根公式,实际上就是对一般形式ax2+bx+c=0(a≠0)的一元二次方程实施配方法的结果.对于三种解法,公式法可以是一种“万能”方法,只要 ≥0,将系数a,b,c代入公式即可求解.在教学中要注意一元二次方程中的a≠0这一前提条件.在配方时应强调方程两边同时加上“一次项系数一半的平方”或在左端加上“一次项系数一半的平方”再减去“一次项系数一半的平方”,实质上是方程的一种同解变形,这里必须反复训练方可达到学生熟练进行配方的目的,它也是推导求根公式的基础.【学情分析】学生在七年级和八年级已经学习了一元一次方程、二元一次方程、分式方程的解法,在此基础上本节课将从实际问题入手,得出一元二次方程的解法.部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这类问题要以多练为主.【课时安排】7课时21.2.1配方法(第1课时)【教学目标】1.使学生知道形如x2=a (a≥0)的一元二次方程可以用直接开平方法求解;2.使学生知道直接开平方法求一元二次方程的解的依据是数的开平方;3.使学生能够熟练、准确的运用直接开平方法求一元二次方程的解.4.在学习与探究中使学生体会“化归”、“换元”与“分类讨论”的数学思想及运用类比的方法进行学习.5.使学生在学习中体会愉悦与成功感,感受数学学习的价值. 【教学重难点】重点: 使学生能够熟练而准确的运用直接开平方法求一元二次方程的解. 难点: 探究( x -m)2=a 的解的情况,培养分类讨论的意识. 【课前准备】多媒体课件教学设计(一)【教学过程设计】一、设计问题,创设情境问题1:求出或表示出下列各数的平方根. (1)121(2)-25(3)0.81(4)0(5)3(6)9/16问题2:一桶某种油漆可刷的面积为1 500 dm 2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题3:求出下列各式中x 的值,并说说你的理由. ⑴x 2=49;⑵9x 2=16;⑶x 2=6;⑷x 2=-9.师生活动:学生通过阅读理解题意,教师启发学生设未知数、列出方程,并解决问题. 设计意图:通过生活中的实际问题引导学生列出一元二次方程,让学生体会数学来自生活,并根据前面学习的平方根的意义试着解方程. 尤其是问题3的练习,深化学生对直接开平方法使用范围的理解,为学生在学习方程的其它解法后,面对解某一个具体方程,能做出正确合理的选择奠定基础; 二、信息交流,揭示规律一般地,对于方程x 2=p ,学生先独立思考,然后小组交流.师生活动:学生得出解这类方程的方法:(1)当p >0时,根据平方根的定义,方程有两个不等的实数根,(2)当p=0时,方程有两个不等的实数根,x 1=x 2=0,(3)当p <0时,因为对于任意实数x ,都有x 2≥0,所以方程无实数根.(幻灯片展示)设计意图:让学生通过练习归纳出解一元二次方程x 2=p 的方法,让学生体会分类讨论的数学思想.三、运用规律,解决问题 探究解方程:(x + 3)2= 252得x=±5,由此想到:由方程(x + 3)2① 得 x+3=±5 即x+3=5 或② 于是方程:(x + 3)2= 25的两个根为:x 1=2,x 2=-8师生活动:这个题可找学生试着解决,教师进行点评上面的解法中,由方程①得到②,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.设计意图: 本环节的设置是为了让学生体会整体思想,将一元二次方程的问题转化为一元一次方程来解决. 四、变练演编,深化提高 1.题组一: 解下列方程:(1)2x 2-8=0; (2)9x 2-5=3 (3)(x+6)2-9=0 (4)x 2-4x+4=5 2.归纳:如何解简单的一元二次方程(x+m)23.题组二: 明察秋毫.(1)下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.(31y+1)2-5=0 解: (31y+1)2=5 ①31y+1=5 ② 31y=5-1 ③y=35-1 ④(2)市区内有一块边长为15米的正方形绿地,经城市规划,需扩大绿化面积,预计规划后的正方形绿地面积将达到400平方米,这块绿地的边长增加了多少米? 题组三: 解下列方程:(1)3(x-1)2-6=0; (2)9x 2+6x+1=4 设计意图:师生活动:学生独立完成题目,教师针对学生解答过程中出现的问题进行汇总,并及时总结一元二次方程(x+m)2=n 的解法.注意对n 进行讨论.设计意图:通过题组引导学生探索、发现一元二次方程(x+m)2=n 的解法,培养学生分类讨论的思想,并进一步提高问题解决能力.而且逐步增加难度,变换不同类型的题目,进一步巩固所学的知识,体会数学来源于生活,并服务于生活. 五、反思小结,观点提炼 本节课你又学会了哪些新知识呢? 1.数学思想:整体思想、转化思想2.会解原方程可变为x 2=p(p ≧0) 或(x+m)2=n(n ≥0)的形式(其中m 、n 、p 是常数)的简单一元二次方程.当p<0(n<0)时,原方程无解. 师生活动:学生总结,老师点评.设计意图:引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,帮助学生全面理解,掌握所学的知识,同时也培养了归纳的能力. 六、布置作业必做:课本第16页习题21.2第1题 选做:课本第16页习题21.2第2题设计意图:及时作业是巩固课堂学习知识的重要环节,练习题主要训练一元二次方程的解法.选做题是让学生为后面的配方法做准备. 七、板书设计:通过本节课的学习,使学生体会整体思想,讨论得出解方程的方法,将“二次”降为“一次”,使“新方程”转化为“旧方程”,这样就明确了解一元二次方程的关键问题——如何降次.九、备课资料:(2014•济宁,第13题3分)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则= 4 .=±,则有,然后两边平方得到=,=4。
人教版数学九年级上册22.2.1《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,主要介绍了配方法的概念、意义和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,使问题更易于解决。
这一节内容是学生学习二次方程解决实际问题的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的代数基础,对于解决一些简单的数学问题已经有了一定的方法。
但是在解决复杂的二次方程问题时,还需要进一步引导和培养。
在教学过程中,教师需要关注学生的学习情况,针对不同学生的特点进行有针对性的教学,帮助学生理解和掌握配方法。
三. 教学目标1.理解配方法的概念和意义,掌握配方法的基本步骤。
2.能够运用配方法解决一些简单的二次方程问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.配方法的概念和意义的理解。
2.配方法的基本步骤的掌握。
3.运用配方法解决实际问题的能力的培养。
五. 教学方法1.讲解法:教师通过讲解配方法的概念、意义和步骤,帮助学生理解和掌握。
2.案例教学法:教师通过举例讲解,引导学生运用配方法解决实际问题。
3.小组合作学习:学生分组讨论,共同解决问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学课件:教师准备相关的教学课件,帮助学生直观地理解和掌握配方法。
2.练习题:教师准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入配方法的概念,激发学生的兴趣和好奇心。
2.呈现(10分钟)教师讲解配方法的概念、意义和步骤,通过举例讲解,让学生理解和掌握。
3.操练(10分钟)学生分组讨论,共同解决问题,教师巡回指导,帮助学生巩固学习效果。
4.巩固(10分钟)教师出示一些相关的练习题,学生独立完成,教师点评和讲解。
5.拓展(10分钟)教师引导学生运用配方法解决一些实际问题,培养学生的解决问题的能力。
配方法教学设计一、教学目标1、理解配方法的概念和基本原理。
2、掌握用配方法解一元二次方程的步骤。
3、通过配方法的学习,培养学生的观察、分析和运算能力。
二、教学重难点1、重点(1)配方法的概念和原理。
(2)用配方法解一元二次方程。
2、难点配方法的正确运用,特别是在配方过程中,如何在方程两边加上适当的常数,使方程左边成为完全平方式。
三、教学方法讲授法、练习法、讨论法相结合。
四、教学过程1、导入通过一个简单的一元二次方程 x²+ 6x + 5 = 0 ,提问学生如何求解。
引导学生回忆之前学过的直接开平方法,发现此方程不能直接用直接开平方法求解,从而引出配方法。
2、讲解配方法的概念(1)以完全平方公式(a + b)²= a²+ 2ab + b²为例,讲解完全平方式的特点。
(2)通过将方程 x²+ 6x + 5 = 0 变形为(x + 3)² 4 = 0 ,让学生观察方程左边是如何通过配方变成完全平方式的。
(3)总结配方法的概念:将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
3、配方法解一元二次方程的步骤(1)移项:把常数项移到方程右边。
(2)二次项系数化为 1:方程两边同时除以二次项系数。
(3)配方:在方程两边加上一次项系数一半的平方。
(4)变形:将方程左边写成完全平方式。
(5)开方:根据平方根的意义,方程两边开平方。
(6)求解:解出方程的两个根。
4、例题讲解以方程 x²+ 4x 5 = 0 为例,详细演示配方法的解题过程。
解:(1)移项:x²+ 4x = 5(2)二次项系数化为 1:x²+ 4x/1 = 5/1(3)配方:x²+ 4x +(4/2)²= 5 +(4/2)²,即 x²+ 4x + 4 =5 + 4 ,(x + 2)²= 9(4)开方:x + 2 = ±3(5)求解:x + 2 = 3 或 x + 2 =-3 ,解得 x₁= 1 ,x₂=-55、学生练习让学生自己动手解几道用配方法求解的一元二次方程,如 x² 2x 3= 0 ,2x²+ 4x 6 = 0 等。
21.2.1配方法(第一课时)教案教学目标1、知识与技能(1)会用直接开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程。
(2)理解开方是“降次”将一元二次方程转化为两个一元一次方程,体会数学化归思想。
2、过程与方法(1)通过合作探究,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。
(2)经历“平方根的意义—解一元二次方程”的过程,发展学生分析问题、解决问题的能力。
3、情感、态度与价值观在数学活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,从而提高学生学习数学的兴趣。
重点难点重点:用直接开方法解一元二次方程。
难点:直接开方后得两个一元一次方程。
(降次思想)教学过程设计意图一、复习引入1、如果一个数的平方等于9,则这个数是,若一个数的平方等于7,则这个数是。
一个正数有几个平方根,它们具有怎样的关系?2、用字母表示完全平方公式。
3、你会解下列一元二次方程吗?(1)x2=5 (2)(x+5)2=5 (3)x2+12x+36=0 (教师给出题目,学生思考、回答)第3小题设疑,激发学生的探究热情。
二、探索新知1.探求解决:问题1 解方程x 2 = 25解得x1 = 5,x2 = - 5追问:你的依据是什么?答:平方根的意义请解下列方程:x2 = 3,2x2 - 8=0,x2 = 0,x2 = - 2…这些方程有什么共同的特征?结构特征:方程可化成x2 = p的形式,(当p≥0 时)一般地,对于方程x2 = p,(1)当P>0时,根据平方根的义,方程x2 = p有两个不等的实数根(2)当P=0时,方程x2 = p有两个相等的实数根x1 = x2 = 0;按照从特殊到一般、从具体到抽象的认识过程,启发学生温故而知新。
让学生类比发现、自己总结结论,实现学生主动参与、探究新知的目的。
p x±=p x-=1p x=2(3)当P <0时,因为对任意实数,都有x 2≥0,所以方程x 2 = p 无实数根设计意图 三、问题解决例1、解方程 (x+3)2=5(分析)由方程x 2 = 25得 x 1 = 5,x 2 = - 5.由此想到:由 方程 (x+3)2=5得 即 于是,方程 (x+3)2=5的两个根为归纳:(小组讨论归纳总结,用时3分钟)用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程,这样就把原方程转化为我们会解的方程了。
配方法教学设计一、教学目标1、使学生理解配方法,会用配方法解一元二次方程。
2、通过对配方法的探究,培养学生观察、分析、归纳、概括的能力。
3、让学生在探索配方法的过程中,感受数学的严谨性和数学方法的多样性,体验数学学习的乐趣。
二、教学重难点1、教学重点:掌握用配方法解一元二次方程。
2、教学难点:如何配方。
三、教学方法讲授法、讨论法、练习法四、教学过程(一)引入新课同学们,咱们先来玩一个小游戏。
假设老师有一个神秘的盒子,这个盒子里装着一些数字。
老师告诉你们,当我在这个数字上加上 5,然后平方,得到的结果是 49 。
你们能猜猜这个数字是多少吗?这时候大家就开始七嘴八舌地讨论啦,有的同学说:“老师,是不是 2 呀?” 有的说:“不对不对,应该是 4 。
” 那咱们一起来算一算。
假设这个数字是 x ,那么根据题意可以列出方程:(x + 5)²= 49 。
接下来咱们就要用今天要学的配方法来解开这个方程,找到这个神秘的数字啦。
(二)讲解新课1、什么是配方法咱们先来看一个简单的方程 x²+ 6x + 4 = 0 。
为了用配方法解方程,我们要把方程左边变成一个完全平方式。
那怎么变呢?我们在方程两边加上 9 ,得到 x²+ 6x + 9 + 4 9 = 0 ,整理一下就是(x +3)² 5 = 0 。
这就是配方法,通过在方程两边加上一个适当的常数,把方程左边变成一个完全平方式。
2、用配方法解方程咱们再来看看刚才那个方程(x + 5)²= 49 。
这时候咱们就可以开平方啦,得到 x + 5 = ±7 。
所以 x =-5 ± 7 ,也就是 x₁= 2 ,x₂=-12 。
咱们再来看一个例子,解方程 x² 4x 5 = 0 。
首先在方程两边加上4 ,得到 x² 4x + 45 4 = 0 ,整理一下就是(x 2)² 9 = 0 。
沪科版数学八年级下册《配方法》教学设计1一. 教材分析《配方法》是沪科版数学八年级下册的教学内容,主要目的是让学生掌握配方法的基本概念、原理和应用。
通过配方法的学习,使学生能够解决一些简单的二次方程和函数问题,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、函数等基础知识,具备一定的逻辑思维和运算能力。
但部分学生对于二次方程的解法和函数的性质还不够熟悉,因此在教学过程中需要关注这部分学生的学习情况,及时进行针对性的辅导。
三. 教学目标1.知识与技能目标:使学生掌握配方法的基本概念、原理和应用,能够解决一些简单的二次方程和函数问题。
2.过程与方法目标:通过自主学习、合作交流等环节,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和团队协作精神。
四. 教学重难点1.重点:配方法的基本概念、原理和应用。
2.难点:如何运用配方法解决实际问题。
五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考、探究问题。
2.案例分析法:教师通过讲解典型例题,使学生掌握配方法的应用。
3.小组讨论法:学生分组讨论,共同解决问题,培养团队协作精神。
4.反馈评价法:教师及时给予学生反馈,鼓励学生自主学习。
六. 教学准备1.教师准备:深入了解学生的学习情况,设计针对性的教学方案。
2.学生准备:预习教材,了解配方法的基本概念。
3.教学资源:多媒体课件、例题、练习题等。
七. 教学过程1.导入(5分钟)教师通过提问方式,了解学生对配方法的了解程度,然后引入新课。
2.呈现(10分钟)教师通过讲解教材中的典型例题,使学生掌握配方法的基本原理和步骤。
3.操练(10分钟)学生分组讨论,运用配方法解决教材中的练习题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师设计一些拓展题目,让学生独立完成,巩固所学知识。
5.拓展(10分钟)教师引导学生运用配方法解决实际问题,如解析几何中的最值问题等。
第二章 一元二次方程2.配方法(一)三、教学过程分析本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节:复习回顾活动内容:1、如果一个数的平方等于4,则这个数是 ,若一个数的平方等于7,则这个数是 。
一个正数有几个平方根,它们具有怎样的关系?2、用字母表示完全平方公式。
3、用估算法求方程0242=+-x x 的解?你喜欢这种方法吗?为什么?你能设法求出其精确解吗?活动目的:以问题串的形式引导学生逐步深入地思考,通过前两个问题,引导学生复习开平方和完全平方公式,通过后一个问题的回答让学生进一步体会用估计法解一元二次方程较麻烦,激发学生的求知欲,为学生后面配方法的学习作好铺垫。
实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。
第3问由学生独立练习,通过练习,学生既复习了估算法,同时又进一步体会到了估算法较麻烦,达到了激发学生探索新解法的目的。
第二环节:情境引入活动内容:(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100CM 2正方形,请你帮他想一想,这个正方形的边长应为 ;若它的面积为75CM 2,则其边长应为 。
(选1个同学口答)(2)如果一个正方形的边长增加cm 3后,它的面积变为264cm ,则原来的正方形的边长为 。
若变化后的面积为248cm 呢?(小组合作交流)(3)你会解下列一元二次方程吗?(独立练习)52=x ; 5)2(2=+x ; 036122=++x x 。
(4)上节课,我们研究梯子底端滑动的距离)(m x 满足方程015122=-+x x ,你能仿照上面几个方程的解题过程,求出x 的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)活动目的:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识。
实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。
第2问让学生合作解决,学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm ,根据题意列出了一元二次方程48)3(;64)3(22=+=+x x 然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。
在第2问的基础上,学生很快解决了第3问。
但学生在解决第4问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成n m x =+2)( )0(≥n 的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。
第三环节:讲授新课活动内容1:做一做:(填空配成完全平方式,体会如何配方)填上适当的数,使下列等式成立。
(选4个学生口答)22)6(_____12+=++x x x 22)3(____6-=+-x x x 22___)(____8+=++x x x 22___)(____4-=+-x x x 问题:上面等式的左边常数项和一次项系数有什么关系?对于形如ax x +2的式子如何配成完全平方式?(小组合作交流)活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。
实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。
通过小组的合作交流,学生发现要把形如ax x +2的式子如何配成完全平方式,只要加上一次项系数一半的平方即加上2)2(a即可。
而且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。
事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。
由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。
活动内容2:解决例题(1)解方程:x 2+8x-9=0.(师生共同解决)解:可以把常数项移到方程的右边,得x 2+8x =9两边都加上(一次项系数8的一半的平方),得x 2+8x +42=9+42.(x+4)2=25开平方,得 x+4=±5,即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解决梯子底部滑动问题:015122=-+x x (仿照例1,学生独立解决) 解:移项得 x 2+12x=15,两边同时加上62得,x 2+12x+62=15+36,即(x+6)2=51两边开平方,得x+6=±51所以:6511-=x ,6512--=x ,但因为x 表示梯子底部滑动的距离所以6512--=x 不合题意舍去。
答:梯子底部滑动了)651(-米。
活动内容3:及时小结、整理思路用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组合作交流)活动目的:通过对例1和例2的讲解,规范配方法解一元二次方程的过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及关键是将方程转化成)0()(2≥=+n n m x 形式,同时通过例2提醒学生注意:有的方程虽然有两个不同的解,但在处理实际问题时要根据实际意义检验结果的合理性,对结果进行取舍。
由于此问题在情境引入时出现过,因此也达到前后呼应的目的。
最后由问题“用这种方法解一元二次方程的思路是什么?”引出配方法的定义。
实际效果:学生经过前一环节对配方法的特点有了初步的认识,通过两个例题的处理,进一步完善对配方法基本思路的把握,是对配方法的学习由探求迈向实际应用的第一步。
最后利用两个问题,通过小组的合作交流得出配方法的基本思路和解决问题的关键,结论的得出来源于学生在实例分析中的亲身感受,体现学生学习的主动性。
活动内容4、应用提高例3:如图,在一块长和宽分别是16米和12米的长方形耕地上挖两条宽度相等的水渠,使剩余的耕地面积等于原来长方形面积的一半,试求水渠的宽度。
(先独立思考,再小组合作交流)活动目的:在前两个例题的基础上,通过例3进一步提高学生分析问题解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫。
实际效果:大部分学生通过独立思考,结合图形很快列出了方程,在交流过程中小组成员之间产生了分歧,有的同学认为,如果设水渠的宽为x 米,则方程应该是161221)12)(16(⨯⨯=--x x ;有的同学认为如果设水渠的宽为x 米,则方程应该是161221161212162⨯⨯=+--⨯x x x ,并且给出了合理的解释;有的同学则认为,如果剩余的耕地面积等于原来的一半则意味着水渠的面积也等于原来长方形面积的一半,所以方程可以列为:16122116122⨯⨯=-+x x x 。
面对这些问题,组织学生解他们所列出的几个方程,然后再让小组成员合作交流讨论,通过讨论,学生发现这三种方法都正确,并且指出第一种方法可以利用平移水渠,把分割成的四部分拼在一起,构成了一个较大的矩形(如下图),然后再利用矩形的面积公式列出方程,此种方法在解决此类问题时最简单。
这样通过学生之间的争论、辩论提高了课堂效率,激发了学生学习数学的热情,达到了资源共享。
第四环节:练习与提高活动内容:解下列方程98)4(0)14()3(;16)2(;72510)1(222+==-=+=+-x x x x x x x x活动目的:对本节知识进行巩固练习。
实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解解二次项系数为1、一次项系数为偶数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解。
第五环节:课堂小结活动内容:师生互相交流、总结配方法解一元二次方程的基本思路和关键,以及在应用配方法时应注意的问题。
活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)。
实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。
第六环节:布置作业课本50页习题2.3 1题、2题四、教学反思1、创造性地使用教材教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。
学生在初一、初二已经学过完全平方公式和如何对一个正数进行开方运算,而且普遍掌握较好,所以本节课从这两个方面入手,利用几个简单的实际问题逐步引入配方法。
教学中将难点放在探索如何配方上,重点放在配方法的应用上。
本节课老师安排了三个例题,通过前两个例题规范用配方法解一元二次方程的过程,帮助学生充分掌握用配方法解一元二次方程的技巧,同时本节课创造性地使用教材,把配方法(3)中的一个是设计方案问题改编成一个实际应用问题,让学生体会到了方程在实际问题中的应用,感受到了数学的实际价值。
培养了学生分析问题,解决问题的能力。
2、相信学生并为学生提供充分展示自己的机会课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。
3、注意改进的方面在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。