八年度级数学上学期期中压轴题总汇
- 格式:pdf
- 大小:2.21 MB
- 文档页数:16
八年级上学期数学期中考试压轴题训练一、选择题1、如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.9.6B.8C.6D.4.8解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,如图所示.∵S△ABC=BC•AD=AC•BQ,∴BQ==9.6.故选:A.2、如图,在△ABC中,AC=BC,∠B=30°,D为AB的中点,P为CD上一点,E为BC延长线上一点,P A=PE.下列结论:①∠P AB+∠PEB=30°;②△P AE为等边三角形;③AC=CE+DP;④S四边形AECP =S△ABC.其中正确结论的个数是()A.1B.2C.3D.43、如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△P AC:S△P AB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()A.只有①②B.只有③④C.只有①③④D.①②③④4、如图,在四边形ABCD中,BD平分∠ABC,CD⊥BD,AC=5,BC﹣AB=2,则△ADC面积的最大值为()A.2B.2.5C.4D.5二、填空题5、AD是△ABC中BC边上的中线,若AB=6,AC=10,则AD的取值范围是.6、如图,在四边形ABCD中,∠C=70°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,则∠EAF的度数为.7、如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为.8、如图,在平面直角坐标系中,A(5,0),B(0,y),连接AB,过点A作AC⊥AB,若AC=AB,x轴上的一点M(﹣1,0),连接CM,当点B在y轴上移动时,CM的最小值为.三、解答题9、如图,△ABC中,AB=AC,点P从点B出发沿线段BA移动(点P不与A,B重合),同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)求证:PD=QD;(2)过点P作直线BC的垂线,垂足为E,P,Q在移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.10、如图,△ABC中,∠ACB=90°,AC=BC,BD平分∠ABC,AE⊥BD,垂足为E.(1)求∠EAC的度数;(2)若AE=2,求BD的长.11、在平面面角坐标系中,A(﹣5,0),B(0,5).点C为x轴正半轴上一动点,过点A作AD⊥BC交y轴于点E.(1)如图①,若C(4,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OC<5.其它条件不变,连接DO,求证:DO平分∠ADC;(3)若点C在x轴正半轴上运动.当OC+CD=AD时,求∠OBC的度数.12、如图,在平面直角坐标系xOy中,已知A(0,a),B(﹣b,0),且a,b满足+|a﹣2b+2|=0.(1)求证∠OAB=∠OBA;(2)如图1,若BC⊥AC,求∠ACO的度数;(3)如图2,若点D是AO的中点,DE∥OB,点F在AB的延长线上,∠EOF =45°,连接EF,试探究OE与EF的数量关系和位置关系.13、如图,平面直角坐标系中,A(0,a),B(b,0)且a、b满足|a+2b﹣6|+|a ﹣2b+2|=0.E为线段上一动点,∠BED=∠OAB,BD⊥EC,垂足在EC的延长线上,试求:(1)判断△OAB的形状,并说明理由;(2)如图1,当点E与点A重合时,探究线段AC与BD的数量关系,并证明你的结论;(3)如图2,当点E在线段AB(不与A、B重合)上运动时,试探究线段EC 与BD的数量关系,证明你的结论.14、等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标=18.分别以(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN 交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.。
2023-2024学年八年级数学上学期复习备考高分秘籍【人教版】专题4.6期中考前必刷解答题(压轴真题60道,八上人教)一.解答题(共60小题)1.(2022秋•盐津县期中)在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?2.(2022秋•盐津县期中)如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B,∠ACB的数量关系,并证明.3.(2022秋•金安区校级期中)我们将内角互为对顶角的两个三角形称为“对顶三角形”.例如,在图1中,△AOB的内角∠AOB与△COD的内角∠COD互为对顶角,则△AOB与△COD为“对顶三角形”,根据三角形内角和定理知“对顶三角形”有如下性质:∠A+∠B=∠C+∠D.(1)如图1,在“对顶三角形”△AOB与△COD中,∠AOB=70°,则∠C+∠D=°.(2)如图2,在△ABC中,AD、BE分别平分∠BAC和∠ABC,若∠C=60°,∠ADE比∠BED大6°,求∠BED的度数.4.(2022秋•蜀山区校级期中)如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD交BC于G,EG平分∠BEH,EH⊥BE交BC于H.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=47°,求∠BAC的度数.5.(2022春•白云区校级期中)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM 平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H 作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.6.(2022春•罗定市期中)如图,在△ABC中,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)点H在FE的延长线上,若∠EDH=∠C,∠F=2∠H﹣40°,求∠BAC的度数.7.(2022春•仓山区校级期中)已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(60﹣3α)2+|2β﹣40|=0.(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中FPN 1∠Q 的值是否改变?若不变,请求出其值;若变化,请说明理由.(注:三角形外角等于与它不相邻的两个内角和.)8.(2022春•东平县期中)(问题背景)∠MON =90°,点A 、B 分别在OM 、ON 上运动(不与点O 重合).(问题思考)(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB = .(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D .①若∠BAO =70°,则∠D = °.②随着点A 、B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由;(问题拓展)(3)在图②的基础上,如果∠MON =α,其余条件不变,随着点A 、B 的运动(如图③),∠D = .(用含α的代数式表示)9.(2022秋•阜阳期中)如图,△AOB 与△COD 中的∠AOB 与∠COD 是对顶角.(1)如图1,证明:∠A+∠B=∠C+∠D;(2)如图2,AP,DP分别是∠BAO,∠CDO的平分线,探索∠P,∠B和∠C之间的数量关系并加以证明;(3)如图3,∠BAO与∠CDO的相邻补角平分线交于点P,探索∠P,∠B和∠C之间的数量关系并加以证明.10.(2022秋•滨海新区校级期中)如图所示,在△ABC中,AD平分∠BAC.(1)当点P在线段AD上时,PE⊥AD交BC的延长线于点E.如图1,①若∠B=35°,∠ACB=85°,求∠E的度数;②设∠B=α,∠ACB=β(β>α),求∠E的大小.(用含α、β的代数式表示)(2)当点P在线段AD的延长线上运动时,PE⊥AD交直线BC于点E,请在图2中补全图形,设∠ABC =α,∠ACB=β(β>α),直接写出∠PEB的大小.(用含α,β的代数式表示)11.(2022秋•桓台县期中)如图,在△ABC中,AE,CD分别是∠BAC,∠ACB的平分线,且AE,CD相交于点F.(1)若∠BAC=80°,∠ACB=40°,求∠AFC的度数;(2)若∠B=80°,求∠AFC的度数;(3)若∠B=x°,用含x的代数式表示∠AFC的度数.12.(2022秋•霍邱县期中)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.【问题解决】(1)如图②,在△ABC中,∠A=75°,∠B=45°,若∠B邻AB三分线BD交AC于点D,则∠BDA =;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且∠BPC=90°,求∠A的度数;【延伸推广】(3)在△ABC中,BP、CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,∠A=α,请求出∠BPC 的度数.(用含α的代数式表示)13.(2022秋•铜官区校级期中)△ABC中,三个内角的平分线交于点O,过点O作OD垂直OB,交边BC 于点D.(1)如图1,猜想并直接写出∠COD与∠BAC的数量关系,不需要说明理由;(2)如图2,作△ABC的外角∠ABE交CO的延长线于点F,求证:BF∥OD.14.(2022春•滨海县期中)在△ABC中,BD平分∠ABC交AC于点D,点E是射线AC上的动点(不与点D重合),过点E作EF∥BC交直线BD于点F,∠CEF的角平分线所在直线与射线BD交于点G.(1)如图1,点E在线段AD上运动.①若∠ABC=40°,∠C=60°,则∠BGE=°;②若∠A=70°,则∠BGE=;③探究∠BGE与∠A之间的数量关系,并说明理由;(2)若点E在射线DC上运动时,∠BGE与∠A之间的数量关系与(1)③中的数量关系是否相同?若不同,请写出它们之间的数量关系并说明理由.15.(2022秋•新兴县校级期中)综合与探究:小新在学习过程中,发现课本有一道习题,他在思考过程中,对习题做了一定变式,让我们来一起看一下吧,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图1,如果∠A=80°,求∠BPC的度数.(2)在(1)的条件下,如图2,作△ABC的外角∠MBC,∠NCB的平分线交于点Q,求∠Q的度数.(3)如图3,作△ABC的外角∠MBC,∠NCB的平分线交于点Q,延长线段BP,QC交于点E,在△BQE中,是否存在一个内角等于另一个内角的2倍,若存在,请直接写出∠A的度数;若不存在,请说明理由.16.(2022秋•苏州期中)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:△BDE≌△CDF;(2)若AE=13,AF=7,试求DE的长.17.(2022秋•肇源县校级期中)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC.(2)写出AB+AC与AE之间的等量关系,并说明理由.18.(2022秋•思明区校级期中)如图,在△ABC中,∠B=∠C,点D是边BC上一点,CD=AB,点E在边AC上.(1)若∠ADE=∠B,求证:BD=CE;(2)若BD=CE,∠BAC=70°,求∠ADE的度数;(3)若∠ADE=∠C,试判断∠DAE与∠AED的数量关系,并说明理由.19.(2022秋•新野县期中)为了解学生对所学知识的应用能力,某校老师在八年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:甲:如图1,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可;乙:如图2,先确定直线AB,过点B作直线BE⊥AB,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.甲、乙两个同学的方案是否可行?请说明理由.20.(2022秋•金州区期中)如图,△ABC中,AB=AC,∠BAC>90°,BD⊥AC垂足为D,点E在AD上,BE平分∠ABD,点F在BD延长线上,BF=CE,延长FE交BC于点H.(1)求证:∠CBE=45°;(2)写出线段BH和EH的位置关系和数量关系,并证明.21.(2022秋•常州期中)如图,A、B两点分别在射线OM,ON上,点C在∠MON的内部,且AC=BC,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)若AD=3,BO=4,求AO的长.22.(2022春•茂南区期中)如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE 与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.23.(2022秋•长垣市期中)如图所示,人教版八年级上册数学教材P53数学活动中有这样一段描述:如图,四边形ABCD中,AD=CD,AB=CB.我们把这种两组邻边分别相等的四边形叫做“筝形”.(1)试猜想筝形的对角线AC与BD有什么位置关系?并用全等三角形的知识证明你的猜想;(2)过点D作DE∥AB交BC于点E,若BC=10,CE=4,求DE的长.24.(2022秋•邓州市期中)如图,AE,BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A方向以3cm/s的速度匀速运动,点Q从点D出发,沿D→E方向以1cm/s的速度匀速运动.P,Q两点同时出发,当点P回到点A时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)当t=1s时,AP=cm,当t=2s时,AP=cm;(2)求证:AB∥DE;(3)连接PQ,当线段PQ经过点C时,DQ的长为cm.25.(2022秋•西城区校级期中)问题提出:(1)我们把两个面积相等但不全等的三角形叫做偏等积三角形,如图△ABC中,AC=7,BC=9,AB=10,P为AC上一点,当AP=时,△ABP与△CBP是偏等积三角形;问题探究:(2)如图,△ABD与△ACD是偏等积三角形,AB=2,AC=6,且线段AD的长度为正整数,过点C作CE∥AB交AD的延长线于点E,求AD的长度为;问题解决:(3)如图,四边形ABED是一片绿色花园,CA=CB,CD=CE,∠ACB=∠DCE=90°(0°<∠BCE <90°).△ACD与△BCE是偏等积三角形吗?请说明理由.26.(2022秋•莱阳市期中)在一个支架的横杆点O处用一根绳悬挂一个小球A,小球A可以摆动,如图,OA表示小球静止时的位置.当小球从OA摆到OB位置时,过点B作BD⊥OA于点D,当小球摆到OC 位置时,OB与OC恰好垂直,过点C作CE⊥OA于点E,测得CE=24cm,OA=OB=OC=30cm.(1)试说明OE=BD;(2)求AD的长.27.(2022秋•淅川县期中)已知:AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,(1)如图1,求证:BE =CD .(2)如图2,连接AF ,在不添加任何辅助线的情况下,请直接写出图2中所有的全等三角形.28.(2022秋•海城市期中)如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连接AD 、AG .试猜想线段AD 与AG 的关系,并证明你的猜想.29.(2022秋•南沙区校级期中)如图,已知A (a ,0),B (0,b )且a 、b 满足a 2+2ab +b 2=0,C 、D 分别是OA 、OB 边上的动点,同时从原点O 以相同的速度分别匀速向点A 、点B 运动(点C 不与O 、A 重合,点D 不与O 、B 重合),AD 和BC 相交于点M ,过点O 作OE ⊥AD 交AB 于点E ,过点E 作EF ⊥BC 交BO 于点F .(1)求证:△AOD ≌△BOC .(2)在C 、D 运动的过程中,AD−EF OE 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.30.(2022秋•盐津县期中)如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.31.(2022秋•郯城县期中)如图,点C在线段AB上,∠A=∠B,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)求证:DF=EF.32.(2022秋•延平区校级期中)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)已知AE=5.8,AB=4.7,求AC的长.33.(2022秋•安次区校级期中)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.(1)如图1,求证:BC=AD;(2)如图2,若点E是AB的中点,试判断OE和AB的位置关系,并给予证明;(3)延长AD、BC相交于点E(自己画图),若∠AOB=130°,则∠E=(直接写出答案).34.(2022秋•淇滨区校级期中)问题原型:(1)如图1,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E;连接BE,使BE=AC.求证:DE=CD.问题拓展:(2)如图2,在问题原型的条件下,F为BC的中点,连接EF并延长至点M,使FM=EF,连接CM、AM,则△ACM为三角形.35.(2022秋•云阳县期中)【问题背景】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.36.(2022秋•东宝区校级期中)如图,△ABC中,AB=AC,点P从点B出发沿线段BA移动(点P不与A,B重合),同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)求证:PD=QD;(2)过点P作直线BC的垂线,垂足为E,P,Q在移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.37.(2022秋•北仑区期中)如图,点B,C分别在射线AM,AN上,点E,F都在∠MAN内部的射线AD 上,已知AB=AC,且∠BED=∠CFD=∠BAC.(1)求证:△ABE≌△CAF;(2)试判断EF,BE,CF之间的数量关系,并说明理由.38.(2022秋•宁乡市校级期中)如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC 于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=12∠B.39.(2022秋•蕲春县期中)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.40.(2022秋•东莞市校级期中)已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形.41.(2022秋•郾城区期中)如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?42.(2022秋•颍泉区期中)在边长为9的等边三角形ABC中,点P是AB上一动点,以每秒1个单位长度的速度从点A向点B运动,设运动时间为t秒.(1)如图1,若点Q是BC上一定点,BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位长度的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?43.(2022秋•夏津县期中)已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED =EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB (填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).44.(2022秋•滨江区校级期中)已知:如图,点D在△ABC的外部,DE过点C,BC与AD交于点O.∠1=∠2=∠3,AB=AD.(1)求证:△ACE是等腰三角形;(2)过点A作AF⊥DE于点F,若AB=√21,AE=3,BC=6,求线段AF的长.45.(2022秋•思明区校级期中)在△ABC中,∠B=∠C,点D在BC边上(点B、C除外)点E在AC边上,且∠4=∠AED.(1)如图1,若∠B=∠C=45°,①当∠1=60°时,求∠2的度数;②试猜想∠1与∠2的数量关系(不用证明,直接写出猜想)(2)深入探究:如图2,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠1与∠2的数量关系.要求有简单的推理过程.46.(2022秋•和平区校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形?47.(2022秋•香洲区校级期中)如图,在△ABC中,AB=AC,以BC为边作等边三角形BDC,点E在△ABC外,∠CBE=150°,∠ACE=60°.(1)直接写出∠ADC的度数为;(2)判断△ACE的形状并加以证明;(3)连接DE,若DE⊥CD,AD=4,求DE的长.48.(2022秋•汉阴县期中)如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BG平分∠ABC,交AD于点E,交AC于点G(1)求证:AE=AG;(2)如图2,过点E作EF∥BC,交AC于点F,若∠C=30°,求证:AG=GF=FC.49.(2022秋•韩城市期中)如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.50.(2022秋•滨海新区校级期中)如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P 到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?51.(2022秋•南昌期中)如图,在△ABC中,∠A=90°,∠B=30°,AC=6cm,点D从点A出发以1cm/s 的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,运动的时间为t秒,解决以下问题:(1)当t为何值时,△DEC为等边三角形;(2)当t为何值时,△DEC为直角三角形.52.(2022秋•公安县期中)概念学习:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(1)如图1,在△ABC中,CD为角平分线,∠A=30°,∠B=50°,求证:CD为△ABC的等角分割线;(2)如图2,在△ABC中,若∠A=40°,CD是△ABC的等角分割线,请直接写出∠B的度数.53.(2022秋•江南区期中)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=°,∠C=°;(2)若M为线段BD上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.54.(2022秋•西湖区校级期中).探究与发现:在△ABC中,∠B=∠C,点D在BC边上(点B、C除外)点E在AC边上,且∠ADE=∠AED.(1)如图①,若∠B=∠C=45°,①当∠BAD=60°时,求∠CDE的度数;②试猜想∠BAD与∠CDE的数量关系.(2)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.要求有简单的推理过程.55.(2022春•鸡西期中)在△ABC中,AB=AC,点D在BC边所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在BC边上时,如图①,求证:DE+DF=AC;(2)当点D在BC边的延长线上时,如图②:当点D在BC边反向延长线上时,如图③,请分别猜想出图②、图③中DE、DF、AC之间的数量关系,不需要证明.56.(2022春•武功县期中)如图,在△ABC中,AB=AC,AD是BC边上的中线,AC的垂直平分线分别交AC、AD于点E、O,连接OB,OC.(1)求证:点O在AB的垂直平分线上;(2)若∠CAD=24°,求∠OBC的度数.57.(2022秋•南岗区校级期中)已知AB∥CD,点M,N分别在直线AB,CD上,点E在直线AB,CD之间,EP平分∠MEN,交直线CD于点P.(1)如图1,若∠AME=24°,∠EPN=30°,求∠ENC的度数.(2)如图2,在(1)问的条件下,过点P作PF∥EN,交直线EM于点F,交直线AB于点K,连接NF,交直线AB于点Q,过点F作FG⊥EP于点G;当NF平分∠ENP时,求∠NFG的度数.(3)如图3,已知FG=6,EH=3,点E到FN的距离与线段HF的长度之比是2:9,点P到FN的距离等于7,求线段HP的长度.58.(2022春•南城县期中)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=12cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为多少时,△PBQ是等边三角形?(2)P、Q在运动过程中,△PBQ的形状不断发生变化,当t为多少时,△PBQ是直角三角形?请说明理由.59.(2022秋•巴彦县期中)如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且AD=BD,CE 平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,求证:∠FEC=3∠3.60.(2022秋•金乡县期中)如图,在△ABC中,点D是边BC上一点,点E在边AC上,且BD=CE,∠BAD=∠CDE,∠ADE=∠C.(1)如图1,求证:△ADE是等腰三角形;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠CDE相等的角(∠CDE除外).。
期中考试压轴题考点训练(一)1.如图,将ABC D 沿DE EF 、翻折,使其顶点A B 、均落在点O 处,若72CDO CFO Ð+Ð=o ,则C Ð的度数为( )A .36oB .54oC .64oD .72o 【答案】B 【详解】解:延长FO 交AC 于点M ,∵将ABC D 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,∴A DOE Ð=Ð,B EOF Ð=Ð,∴DOF A B Ð=Ð+Ð,∵180A B C Ð+Ð+Ð=°,∴180A B C Ð+Ð=°-Ð ,由三角形外角定理可知:DOF MDO DMO Ð=Ð+Ð,DMO C CFM Ð=Ð+Ð,∴DOF C CDO CFO Ð=Ð+Ð+Ð,即:180DOF C CDO CFO C Ð=Ð+Ð+Ð=°-Ð,∴72180C C Ð+°=°-Ð ,∴54CÐ=°,故选:B .2.如图,点D ,E 分别是△ABC 边BC ,AC 上一点,BD =2CD ,AE =CE ,连接AD ,BE 交于点F ,若△ABC 的面积为18,则△BDF 与△AEF 的面积之差S △BDF ﹣S △AEF 等于( )A .3B .185C .92D .63.如图,点C 在线段BD 上,AB BD ^于B ,ED BD ^于D .90ACE Ð=°,且5cm AC =,6cm CE =,点P 以2cm/s 的速度沿A C E ®®向终点E 运动,同时点Q 以3cm/s 的速度从E 开始,在线段EC 上往返运动(即沿E C E C ®®®®×××运动),当点P 到达终点时,P ,Q 同时停止运动.过P ,Q 分别作BD 的垂线,垂足为M ,N .设运动时间为s t ,当以P ,C ,M 为顶点的三角形与QCN △全等时,t 的值为( )A .1或3B .1或115C .1或115或235D .1或115或5【答案】C【详解】解:当点P 在AC 上,点Q 在CE 上时,∵以P ,C ,M 为顶点的三角形与△QCN 全等,∴PC =CQ ,∴5−2t =6−3t ,∴t =1,当点P 在AC 上,点Q 第一次从点C 返回时,4.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为( )A.105°B.115°C.120°D.130°【答案】B【详解】解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图:此时BE+EF最小.∵AD是△ABC的角平分线,∠BAC=50°,∴∠BAD=∠B′AD=25°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,在△ABG 和△AB ′G 中,BAG B AG AG AGAGB AGB Ð=Ðìï=íïТ=Ðî¢,∴△ABG ≌△AB ′G (ASA ),∴BG =B ′G , AB =AB ′,∴AD 垂直平分BB ′,∴BE =BE ′,在△ABE ′和△AB ′E ′中,BE BE AE AE AB AB ¢¢¢¢ìï=íï=î=,∴△ABE ′≌△AB ′E ′(SSS ),∴∠AE ′B =AE ′B ′,∵AE ′B ′=∠BAD + AF ′E ′=25°+90°=115°,∴∠AE ′B =115°.即当BE +EF 的值最小时,∠AEB 的度数为115°.故选B .5.将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止.当n =3时,a 的值为( )A .1.8或1.5B .1.5或1.2C .1.5D .1.2则第3次操作时,剪下的正方形边长为2﹣a ,剩下的长方形的两边分别为2﹣a 、(2a ﹣2)﹣(2﹣a )=3a ﹣4,则2﹣a =3a ﹣4,解得a =1.5.故选:B .6.如图,图1是长方形纸带,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,若图3中108CFE Ð=°,则图1中的DEF Ð的度数是______.【答案】24°【详解】∵AD BC ∥,∴设∠DEF =∠EFB =a ,图2中,∠GFC =∠BGD =∠AEG =180°﹣2∠DEF =180°﹣2a ,图3中,∠CFE =∠GFC ﹣∠EFG =180°﹣2a ﹣a =108°.解得a =24°.即∠DEF =24°,故答案为:24°.7.如图,在等腰ABC V 中,120180BAC °<Ð<°,AD BC ^于点D ,以AC 为边作等边三角形ACE ,ACE V 与ABC V 在直线AC 的异侧,直线BE 交直线AD 于点F ,连接FC 交AE 于点M .若10BE =,2AF =,则FC =______.【答案】6【详解】解:如图1,∵AB AC =,∴12Ð=Ð,∵AD BC ^,∴直线AD 垂直平分BC ,∴FB FC =,∴FBC FCB Ð=Ð,∴12FBC FCB Ð-Ð=Ð-Ð,即34Ð=Ð,∴在等边三角形ACE 中,AC AE =,∴AB AE =,∴35Ð=Ð,∴45Ð=Ð,∵FME CMA Ð=Ð,∴EFC CAE Ð=Ð,∵在等边三角形ACE 中,60CAE Ð=°,∴60EFC Ð=°;在FC 上截取FN ,使FN FE =,连接EN ,∵60EFC Ð=°,FN FE =,∴EFN V 是等边三角形,∴60FEN Ð=°,EN EF =,∵ACE V 为等边三角形,∴60AEC Ð=°,EA EC =,∴FEN AEC Ð=Ð,∴FEN MEN AEC MEN -Ð=Ð-Ð,即56Ð=Ð,在EFA △和ENC △中,56EF EN EA EC =ìïÐ=Ðíï=î,∴()EFA ENC SAS △≌△,∴FA NC =,∴FE FA FN NC FC +=+=,∵102BE AF ==,,∴EF AF BF CF BE EF +===-,∴210EF EF +=-,∴4EF =,∴6CF =,故答案为:6.8.如图,在△ABC 中,AD⊥BC 于点D ,过A 作AE ∥BC ,且AE =AB ,AB 上有一点F ,连接EF .若EF =AC ,CD =4BD ,则ABC AEFS S V V =_____.9.如图1六边形的内角和123456Ð+Ð+Ð+Ð+Ð+Ð为m 度,如图2六边形的内角和123456Ð+Ð+Ð+Ð+Ð+Ð为n 度,则m n -=________.【答案】0【详解】如图1所示,将原六边形分成了两个三角形和一个四边形,∴123456m =Ð+Ð+Ð+Ð+Ð+Ð=180°×2+360°=720°如图2所示,将原六边形分成了四个三角形∴123456n =Ð+Ð+Ð+Ð+Ð+Ð=180°×4=720°∴m-n=0故答案为0.10.在ABC V 中,已知点D 、E 、F 分别是边AE 、BF 、CD 上的中点,若ABC V 的面积是14,则DEF V 的面积为_________.【答案】2【详解】解:如图,连接AF ,BD ,CE ,∵点D 是AE 的中点,点E 是BF 的中点,∴BD 是ABE D 的中线,DE 是BDF D 的中线,∴ABD BDE S S D D =,DEF BDE S S D D =,∴ABD BDE DEF S S S D D D ==;同理可得BCE CEF DEF S S S D D D ==;ACF ADF DEF S S S D D D ==;∴ABD BDE S S D D ==BCE CEF S S D D ==ACF ADF DEF S S S D D D ==,∵ABD BDE S S D D ++BCE CEF S S D D ++ACF ADF DEF ABC S S S S D D D D ++=,14ABC S D =,∴714DEF ABC S S D D ==,解得2DEF S D =,11.如图1,在等边三角形ABC 中,AD BC ^于,D CE AB ^于,E AD 与CE 相交于点O .(1)求证:2OA DO =;(2)如图2,若点G 是线段AD 上一点,CG 平分,60,BCE BGF GF ÐÐ=°交CE 所在直线于点F .求证:GB GF =.(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作60,BGF Ð=°边GF 交CE 所在直线于点F .猜想:,OG OF OA 、三条线段之间的数量关系,并证明.【答案】(1)见解析;(2)见解析;(3)OF =OG +OA ,理由见解析∵CA =CB ,CE ⊥AB,∴AE =BE ,∴OA =OB ,∴∠OAB =∠OBA =30°,∴∠AOB =120°,∠AOM =∠BOM =60°,∵OM =OG ,∴△OMG 是等边三角形,∴GM =GO =OM ,∠MGO =∠OMG =60°,∵∠BGF =60°,∴∠BGF =∠MGO ,∴∠MGF =∠OGB ,∵∠GMF =120°,∴∠GMF =∠GOB ,在△GMF 和△GOB 中,MGF OGB GM GOGMF GOB Ð=Ðìï=íïÐ=Ðî,∴△GMF ≌△GOB (ASA ),∴MF =OB ,∴MF =OA ,∵OF =OM +MF ,∴OF =OG +OA .12.阅读下列材料:阳阳同学遇到这样一个问题:如图1,在ABC D 中AB AC =,BD 是ABC D 的高,P 是BC 边上一点,PM 、PN 分别与直线AB ,AC 垂直,垂足分别为点M 、N .求证:BD PM PN =+.阳阳发现,连接AP ,有ABC ABP ACP S S S D D D =+,即111222AC BD AB PM AC PN ×=×+×.由AB AC =,可得BD PM PN =+.他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示,他猜想此时BD 、PM 、PN 之间的数量关系是:BD PN PM =-.请回答:(1)请补全阳阳同学证明猜想的过程;证明:连接AP .ABC APC S S D D =-Q ________,1122AC BD AC \×=×________12AB -×________.AB AC =Q ,BD PN PM \=-.(2)参考阳阳同学思考问题的方法,解决下列问题:在ABC D 中,AB AC BC ==,BD 是ABC D 的高.P 是ABC D 所在平面上一点,PM 、PN 、PQ 分别与直线AB 、AC 、BC 垂直,垂足分别为点M 、N 、Q .①如图3,若点P 在ABC D 的内部,猜想BD 、PM 、PN 、PQ 之间的数量关系并写出推理过程.②若点P 在如图4所示的位置,利用图4探究得此时BD 、PM 、PN 、PQ 之间的数量关系是:_______.(直接写出结论即可)【答案】(1)S △APB ;PN ;PM ;(2)①BD =PM +PN +PQ ,证明见解析②BD =PM +PQ −PN .【详解】解:(1)证明:连接AP .∵S △ABC =S △APC −S △APB ,13.如图,在△ABC 中,∠ABC 的平分线BD 交∠ACB 的平分线CE 于点O .(1)求证:1902BOC A Ð=Ð+°.(2)如图1,若∠A =60°,请直接写出BE ,CD ,BC 的数量关系.(3)如图2,∠A =90°,F 是ED 的中点,连接FO .①求证:BC −BE −CD =2OF .②延长FO 交BC 于点G ,若OF =2,△DEO 的面积为10,直接写出OG 的长.∵∠BOC=1∠A+90°=120°,2∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴OM=2OF.∵F是ED的中点,∴EF=DF,∵∠DFO=∠EFM,14.在ABC V 中,90,ACB AC BC Ð=°=,直线MN 经过点C ,且AD MN ^于D ,BE MN ^于E ,(1)当直线MN 绕点C 旋转到图1的位置时,显然有:DE AD BE =+(不必证明);(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.【答案】(1)见解析;(2)见解析;(3)DE =BE -AD【详解】解:(1)∵△ABC 中,∠ACB =90°,∴∠ACD +∠BCE =90°,又直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°∴∠ACD +∠DAC =90°,∴∠BCE =∠DAC ,在△ADC 和△CEB 中,ADC CEB DAC ECB AC BC Ð=ÐìïÐ=Ðíï=î,∴△ADC ≌△CEB (AAS ),∴CD =BE ,CE =AD ,∴DE =CD +CE =AD +BE ;(2)∵△ABC 中,∠ACB =90°,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =∠BCE +∠CBE =90°,而AC =BC ,∴△ADC ≌△CEB ,∴CD =BE ,CE =AD ,∴DE =CE -CD =AD -BE ;(3)如图3,∵△ABC 中,∠ACB =90°,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =∠BCE +∠CBE =90°,∴∠ACD =∠CBE ,∵AC =BC ,∴△ADC ≌△CEB ,∴CD =BE ,CE =AD ,∴DE =CD -CE =BE -AD ;DE 、A D 、BE 之间的关系为DE =BE -A D .15.在ABC V 中,90ABC Ð=°,AB BC =,D 为直线AB 上一点,连接CD ,过点B 作BE CD ^交CD 于点E ,交AC 于点F ,在直线AB 上截取AM BD =,连接FM .(1)当点D ,M 都在线段AB 上时,如图①,求证:BF MF CD +=;(2)当点D 在线段AB 的延长线上,点M 在线段BA 的延长线上时,如图②;当点D 在线段BA 的延长线上,点M 在线段AB 的延长线上时,如图③,直接写出线段BF ,MF ,CD 之间的数量关系,不需要证明.【答案】(1)见解析;(2)图②:BF MF CD -=;图③:FM BF CD+=【详解】(1)证明:如图,过点A 作AN AB ^交BF 的延长线于点N .0∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB ABC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB ABC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45NAF NAB BAC Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BN FN BF =+,∴BF MF CD +=.(2)图②:BF MF CD -=.证明:过点A 作AN AB ^交BF 于点N .∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB DBC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB DBC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45CAB MAF Ð=Ð=°,∵90NAM Ð=°∴45NAF NAM MAF Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BF FN BN -=,∴BF MF CD -=.图③:FM BF CD +=.证明:如图,过点A 作AN AB ^交BF 的延长线于点N .∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB ABC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB ABC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45NAF NAB BAC Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BN FN BF =+,∴BF MF CD +=.。
八年级上册数学压轴题专题练习(解析版)一、压轴题1.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P在线段 AB上以1cm/s的速度由点 A向点 B运动,同时,点 Q在线段 BD上由点 B向点 D运动.它们运动的时间为t(s).(1)若点 Q的运动速度与点 P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段 PC和线段 PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.2.在Rt ABC中,∠ACB=90︒,∠A=30︒,BD是ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:EBC是等边三角形;(2)如图2,点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM下方作∠BMG=60︒,MG交DE延长线于点G.求证:AD=DG+MD;(3)如图3,点N是线段AD上的点,以BN为一边,在BN的下方作∠BNG=60︒,NG交DE延长线于点G.直接写出ND,DG与AD数量之间的关系.3.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线l1,l2,l3上,∠BAC=90︒,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向l1作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变ABC的形状.如图2,AB=AC,∠BAC=120︒,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变ABC的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线l1,l2,l3上,且l1与l2之间的距离为1,l2与l3之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.4.在ABC中,AB=AC,D是直线AB上一点,E在直线BC上,且DE=DC.(1)如图1,当D在AB上,E在CB延长线上时,求证:∠EDB=∠ACD;(2)如图2,当ABC为等边三角形时,D是BA的延长线上一点,E在BC上时,作EF//AC,求证:BE=AD;(3)在(2)的条件下,∠ABC的平分线BF交CD于点F,连AF,过A点作AH⊥CD于点H,当∠EDC=30︒,CF=6时,求DH的长度.5.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.6.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.7.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM,FM为折痕,折叠后的C点落在B 1M或B1M的延长线上,那么EMF的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线上,那么EMF的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM,FM为折痕,折叠后的C点落在B1M或B1M的延长线上左侧,且EMF80,求C1MB1的度数;②把一张长方形的纸片按如图④所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线右侧,且EMF60,求C1MA1的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB,FB为折痕,设ABC,EBF,A1BC1,求,,之间的数量关系.8.已知ABC和ADE都是等腰三角形,AB AC,AD AE,DAE BAC.(初步感知)(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则DB__________EC.(填>、<或=)(2)发现证明:如图②,将图①中的ADE绕点A旋转,当点D在ABC外部,点E 在ABC内部时,求证:DB EC.(深入研究)(3)如图③,ABC和ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为__________;线段CE,BD之间的数量关系为__________.(4)如图④,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,点C、D、E在同一直线上,AM为ADE中DE边上的高,则∠CDB的度数为__________;线段AM,BD,CD之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,将ADE绕点A逆时针旋转,连结BE、CD.当AB=5,AD=2时,在旋转过程中,△ABE与ADC的面积和的最大值为__________.9.直角三角形ABC中,∠ACB=90︒,直线l过点C.(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E,ACD与△CBE是否全等,并说明理由;(2)当AC=8cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF,点M是AC上一点,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,点M,N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒,当△CMN为等腰直角三角形时,求t的值.10.已知:ABC中,过B点作BE⊥AD,∠ACB=90︒,AC=BC.(1)如图1,点D在BC的延长线上,连AD,作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC 于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出DB的值.BC11.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).12.已知ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接 PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点 P在ABC内时,①若 y=70,s=10,t=20,则 x=;②探究 s、t、x、y之间的数量关系,并证明你得到的结论.(2)当点 P在ABC外时,直接写出 s、t、x、y之间所有可能的数量关系,并画出相应的图形.13.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.14.探索发现:11111111 =1-;=-;=-……1⨯222⨯3233⨯434根据你发现的规律,回答下列问题:(1)11=,=;n⨯(n+1)4⨯5111⋅+++1⨯22⨯33⨯4+1n⨯(n+1)(2)利用你发现的规律计算:(3)利用规律解方程:111112x-1 ++++=x(x+1)(x+1)(x+2)(x+2)(x+3)(x+3)(x+4)(x+4)(x+5)x(x+5) 15.数学活动课上,老师出了这样一个题目:“已知:MF⊥NF于F,点A、C分别在NF和MF上,作线段AB和CD(如图1),使∠FAB-∠MCD=90︒.求证:AB//CD”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A作AG//FM,交CD于G.请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明.(2)若点E在直线CD下方,且知∠BED=30︒,直接写出∠ABE和∠CDE之间的数量关系.16.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在∆ABC中,∠C=90︒,若点D为AB的中点,则CD=请结合上述结论解决如下问题:1AB.2已知,点P是射线BA上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,其中Q为AB的中点(1)如图2,当点P与点Q重合时,AE与BF的位置关系____________;QE与QF的数量关系是__________(2)如图3,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明.(3)如图4,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.17.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).18.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.19.(1)如图1,ABC和DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P,求证:BE=AD.(2)如图2,在BCD中,若∠BCD<120︒,分别以BC,CD和BD为边在BCD外部作等边ABC,等边△CDE,等边BDF,连接AD、BE、CF恰交于点P.①求证:AD=BE=CF;②如图2,在(2)的条件下,试猜想PB,PC,PD与BE存在怎样的数量关系,并说明理由.20.阅读并填空:如图,ABC是等腰三角形,AB=AC,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD=BE,为什么?解:过点E作EF AC交BC于F所以∠ACB=∠EFB(两直线平行,同位角相等)∠D=∠OEF(________)在OCD与△OFE中⎧∠COD=∠FOE(________)⎪⎨OD=OE⎪∠D=∠OEF⎩所以△OCD≌△OFE,(________)所以CD=FE(________)因为AB=AC(已知)所以∠ACB=∠B(________)所以∠EFB=∠B(等量代换)所以BE=FE(________)所以CD=BE【参考答案】***试卷处理标记,请不要删除一、压轴题⎧t=2⎧t=1⎪1.(1)全等,垂直,理由详见解析;(2)存在,⎨或⎨3x=1x=⎩⎪2⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP和△BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC和线段 PQ的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP和△BPQ中,AP=BQ{∠A=∠BAC=BP∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC与线段PQ垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,⎧3=4-t ⎨t =xt⎩解得⎨⎧t =1;x =1⎩②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,⎧3=xt ⎨t =4-t⎩⎧t =2⎪解得:⎨3x =⎪⎩2⎧t =2⎧t =1⎪综上所述,存在⎨或⎨3使得△ACP 与△BPQ 全等.x =1x =⎩⎪⎩2【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.2.(1)证明见解析;(2)证明见解析;(3)结论:AD =DG -ND ,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出∠ABC =60︒,再根据角平分线的性质可得CD =ED ,然后根据三角形的判定定理与性质可得BC =BE ,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF =MD ,连接MF ,先根据直角三角形的性质、等边三角形的判定得出∆MDF 是等边三角形,再根据等边三角形的性质、角的和差得出∠F =∠MDB ,MF =MD ,∠FMG =∠DMB ,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证∆HDN 是等边三角形,再根据等边三角形的性质、角的和差得出∠H =∠NDG ,NH =ND ,∠HNB =∠DNG ,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)∠ACB =90︒,∠A =30︒∴∠ABC =90︒-∠A =60︒BD 是∠ABC 的角平分线,DE ⊥AB∴CD =ED⎧CD=ED在∆BCD和∆BED中,⎨BD=BD⎩∴∆BCD≅∆BED(HL)∴BC=BE∴∆EBC是等边三角形;(2)如图,延长ED使得DF=MD,连接MF∠ACB=90︒,∠A=30︒,BD是∠ABC的角平分线,DE⊥AB∴∠ADE=∠BDE=60︒,AD=BD∴∠MDF=∠ADE=60︒,∠MDB=180︒-∠ADE-∠BDE=60︒∴∆MDF是等边三角形∴MF=DM,∠F=∠DMF=60︒∠BMG=60︒∴∠DMF+∠DMG=∠BMG+∠DMG,即∠FMG=∠DMB⎧∠F=∠MDB=60︒⎪在∆FMG和∆DMB中,⎨MF=MD⎪∠FMG=∠DMB⎩∴∆FMG≅∆DMB(ASA)∴GF=BD,即DF+DG=BD∴AD=DF+DG=MD+DG即AD=DG+MD;(3)结论:AD=DG-ND,证明过程如下:如图,延长BD使得DH=ND,连接NH由(2)可知,∠ADE=60︒,∠HDN=180︒-∠ADE-∠BDE=60︒,AD=BD ∴∆HDN是等边三角形∴NH=ND,∠H=∠HND=60︒∠BNG=60︒∴∠HND+∠BND=∠BNG+∠BND,即∠HNB=∠DNG⎧∠H=∠NDG=60︒⎪在∆HNB和∆DNG中,⎨NH=ND⎪∠HNB=∠DNG⎩∴∆HNB≅∆DNG(ASA)∴HB =DG ,即DH +BD =DG∴ND +AD =DG即AD =DG -ND .【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.3.(1)5;(2)【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,221221;(3)33⎧∠AMB =∠CNA ⎪⎨∠MAB =∠NCA ,⎪AB =AC ⎩∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22+12=5;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,⎧∠AMB=∠CNA⎪⎨∠ABM=∠NAC,⎪AB=AC⎩∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=11 BM,NQ=NC,22∵PB=1,CQ=2,设PM=a,NQ=b,∴a2+12=4a2,b2+22=4b2,解得:a=323,b=,332⎛23⎫43=∴CN=AM=22+ ,⎪3⎪3⎝⎭∴AB=AP2+BP2=(AM+PM)2+BP2=221;3(3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,⎧∠BNC=∠CMA⎪⎨∠NBC=∠MAC,⎪BC=AC⎩∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,BP2+NP2=BN2,即22+NP2=4NP2,解得:NP=23,3∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,AQ2+QM2=AM2,即32+QM2=4QM2,解得:QM=3,∴AM=23=CN,∴PC=CN-NP=AM-NP=在△BPC中,BP2+CP2=BC2,43,3⎛43⎫221即BC=BP2+CP2=22+ ,=⎪3⎪3⎝⎭2∴AB=BC=221.3【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.4.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,1CF=3.2⎧∠EDF=∠DCA⎪⎨∠DFE=∠CAD,⎪DE=CD⎩∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,⎧AB=BC⎪⎨∠ABF=∠CBF,⎪BF=BF⎩△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=11AF=CF=3,22∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.5.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=∵BD=CE,∴CF=OF=1 CE,21BD,2∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.6.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.7.90︒,45︒;20︒,30︒;a +γ=2β,a -γ=2β.【解析】【分析】(1)①如图①知∠EMC 1=11∠BMC 1,∠C 1MF =∠C 1MC 得22∠EMF =1(∠BMC 1+∠C 1MC )可求出解.2111∠ABC 1,∠C 1BF =∠C 1BC 得∠EBF =(∠ABC 1+∠C 1BC )可222②由图②知∠EBA 1=求出解.(2)①由图③折叠知∠CMF =∠FMC 1,∠BME =∠EMB 1,可推出(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,即可求出解.②由图④中折叠知∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,可推出290︒-60︒+∠A 1MC 1=90︒,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a -β=β-γ、a -β=β+γ,即可求得()a +γ=2β、a -γ=2β.【详解】解:(1)①如图①中,11∠EMC 1=∠BMC 1,∠C 1MF =∠C 1MC ,22∴∠EMF =∠EMC 1+∠C 1MF =故答案为90︒.②如图②中,11(∠BMC 1+∠C 1MC )=⨯180︒=90︒,2211∠EBA 1=∠ABC 1,∠C 1BF =∠C 1BC ,22∴∠EBF =∠EBC 1+∠C 1BF =故答案为45︒.(2)①如图③中由折叠可知,11(∠ABC 1+∠C 1BC )=⨯90︒=45︒,22∠CMF =∠FMC 1,∠BME =∠EMB 1,∠C 1MF +∠EMB 1-∠EMF =∠C 1MB 1,∴∠CMF +∠BME -∠EMF =∠C 1MB 1,∴(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,∴180︒-80︒=∠C 1MB 1=20︒;②如图④中根据折叠可知,∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,︒2∠CMF +2∠ABE +∠AMC =90,11︒∴2(∠CMF +∠ABE )+∠AMC 11=90,(∴2(90∴290︒-∠EMF +∠A 1MC 1=90︒,︒)-60︒+∠A 1MC 1=90︒,)︒∴∠AMC =30;11(3)如图⑤-1中,由折叠可知,a -β=β-γ,∴a +γ=2β;如图⑤-2中,由折叠可知,a -β=β+γ,∴a -γ=2β.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.8.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC =,结合AB=AC ,得到DB=EC ;AB AC(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB EC=,AB AC∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中⎧AD =AE⎪⎨∠DAB =∠EAC,⎪AB =AC⎩∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.9.(1)全等,理由见解析;(2)t=3.5秒或5秒1×AC×AD=5+2=7,2【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,⎧∠ADC =∠CEB⎪⎨∠DAC =∠ECB,⎪CA =CB⎩∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.10.(1)见详解,(2)BD =2CF ,证明见详解,(3)【解析】【分析】(1)欲证明BF =AD ,只要证明∆BCF ≅∆ACD 即可;(2)结论:BD =2CF .如图2中,作EH ⊥AC 于H .只要证明∆ACD ≅∆EHA ,推出CD =AH ,EH =AC =BC ,由∆EHF ≅∆BCF ,推出CH 2.3=CF 即可解决问题;(3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE⊥AD于E,∴∠AEF=∠BCF=90︒,∠AFE=∠CFB,∴∠DAC=∠CBF,BC=AC,∴∆BCF≅∆ACD(AAS),∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHF=∠BCF=90︒,∠EFH=∠BFC,EH=BC,∴∆EHF≅∆BCF,∴FH=FC,∴BD=CH=2CF.(3)如图3中,作EH⊥AC于交AC延长线于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHM=∠BCM=90︒,∠EMH=∠BMC,EH=BC,∴∆EHM≅∆BCM,∴MH=MC,∴BD=CH=2CM.AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴DB2a2==.BC3a3【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.11.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.12.(1)①100;②x=y+s+t;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t.利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE 与AC 的交点为G ,∵∠PGD =∠EGC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.14.(1)【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和1111n -,-;(2);(3)见解析.45n n +1n +114⨯51n ⨯(n +1)(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】111111=-=-,解:(1);n (n +1)n n +14⨯545故答案为1111-,-45n n +111111+-+-+22334+111n -=1-= ;n n +1n +1n +1(2)原式=1-1111-+-+(3)已知等式整理得:x x +1x +1x +2112x -1-=所以,原方程即:,x x +5x (x +5)方程的两边同乘x (x +5),得:x +5﹣x =2x ﹣1,解得:x =3,检验:把x =3代入x (x +5)=24≠0,∴原方程的解为:x =3.【点睛】+112x -1-=x +4x +5x (x +5)本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.15.(1)见解析;(2)∠ABE -∠CDE =30︒【解析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:∠AGC=∠MCD,∠F+∠GAF=90︒,再证明∠MCD=∠BAG,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A作AG//FM,交CD于G,∴∠AGC=∠MCD,∠F+∠GAF=90︒,FN⊥FM,∴∠F=90︒,∴∠GAF=90︒,∠FAB-∠MCD=90︒,∴∠FAB-∠GAF=∠MCD=∠BAG,∴AB//CD;(2)解:∠ABE-∠CDE=30︒,理由如下:如图3,AB//CD,∴∠BPD=∠ABE,∠BPD=∠CDE+∠BED,∠BED=30︒,∴∠BPD-∠CDE=30︒,∴∠ABE-∠CDE=30︒.。
华东师大版八年级上期数学期中考试压轴题训练1、已知x,y为实数,且y=﹣+4,则+=.2、已知非零实数a,b满足|2a﹣4|+|b+2|++4=2a,则a+b等于()A.﹣1B.0C.1D.23、已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形4、公式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2].(1)已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为()A.0B.1C.2D.3(2)已知实数x,y,z,a满足x+a2=m,y+a2=m+1,z+a2=m+2,且xyz=108.求代数式的值.5、已知x,y,z是正整数,x>y,且x2﹣xy﹣xz+yz=23,则x﹣z等于()A.﹣1B.1或23C.1D.﹣1或﹣236、已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为.7、若x﹣2y+z=0,则代数式x2+2xz+z2﹣4y2﹣3的值为.8、问题:若(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设(8﹣x)=a,(x﹣6)=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2,∴(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10;请仿照上例解决下面的问题:问题发现:(1)若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值.(2)若x满足(2022﹣x)2+(x﹣2023)2=2021,求(2022﹣x)(x﹣2023)的值.(3)如图,在四边形ABCD中,对角线AC⊥BD于点O,且BD﹣AC=2,BD2+AC2=100,则四边形ABCD的面积为.(4)如图,正方形ABCD的边长为x,AE=1,CG=2,长方形EFGD的面积是5,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).(5)如图,长方形ABCD的周长是12cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为20cm2,求长方形ABCD的面积.9、如图①是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②.请你直接写出下列三个式子:(a+b)2、(a﹣b)2、ab之间的等量关系式为;(2)若m、n均为实数,且m+n=﹣2,mn=﹣3,运用(1)所得到的公式求m﹣n的值;(3)如图③,S1、S2分别表示边长为x、y的正方形的面积,且A、B、C三点在一条直线上,若S1+S2=20,AB=x+y=6,求图中阴影部分的面积.10、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=度.11、如图,过边长为8的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连接PQ交AC边于D,则DE的长为.12、已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.13、如图,在等边△ABC中,点D为线段BC上一点(不含端点),AP平分∠BAD交BC于点E,PC与AD的延长线交于点F,连接EF,且∠PEF=∠AED,以下结论:①EB=EF;②△ABE≌△CPE;③△AFC是等腰三角形;④连结PB,∠BPF=120°;⑤AP=PF+PC.其中正确的有.(请写序号)14、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AD.(1)①求证:△BOC≌△ADC;②当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当∠1为多少度时,△AOD是等腰三角形?15、如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定16、我们知道“对称补缺”的思想是解决与轴对称图形有关的问题的一种重要的添加辅助线的策略,参考这种思想解决下列问题如图,在△ABC中,D为△ABC外一点.(1)若AC平分∠BAD,CE⊥AB于点E,∠B+∠ADC=180°,求证:BC=CD;(2)若∠ACB=90°,AC=BC,F是AC上一点,AD⊥BF交BF延长线于点D,且BF是∠CBA的角平分线.求证:2AD=BF17、(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC 上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.18、如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.19、如图,点A(a,0),点B(0,b),且a、b满足(a﹣5)2+|b﹣3|=0.(1)填空:a=,b=;(2)如图1,作等腰Rt△ABC,∠ABC=90°,AB=BC,求C点坐标;(3)如图2,点M(m,0)在x轴负半轴上,分别以AB、BM为腰,点B为直角顶点,在第一、第二象限作等腰Rt△ABD、等腰Rt△MBE,连接DE交y 轴于点F,求点F的坐标用含m的式子表示).。
【压轴题】八年级数学上期中试题含答案一、选择题1.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°2.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144m m -=;④()3236xy x y =。
他做对的个数是( ) A .1B .2C .3D .4 3.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .144.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( ) A .x x y - B .22x y C .2x y D .3232x y 5.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45° 6.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1) 7.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .78.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角9.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒ 10.若分式 25x x -+的值为0,则x 的值是( ) A .2 B .0 C .-2 D .-511.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4B .480x -480+4x =20C .480x -480+20x =4D .4804x --480x=20 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 15.若x-y≠0,x-2y=0,则分式1011x y x y --的值________. 16.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 17.七边形的内角和为_____度,外角和为_____度.18.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .19.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .20.若4422222+6a b a a b b +=-+,则22a b +=______.三、解答题21.已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . 求证:AD =AE .22.计算(1)212111x x x -⎛⎫-÷ ⎪--⎝⎭. (2)211a a a --- 23.计算:(1)332111x x x x ⎛⎫-⋅ ⎪-⎝⎭. (2)224244x x x x x ---++. 24.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a ,h .求作:△ABC ,使AB=AC ,且∠BAC=∠α,高AD=h .25.如图,在ABC n 中,AB AC =,点D 在ABC n 内,BD BC =,DBC 60∠︒=,点E 在ABC n 外,BCE 150∠︒=,ABE 60∠︒=.(1)求ADB ∠的度数;(2)判断ABE n 的形状并加以证明;(3)连接DE ,若DE BD ⊥,DE 8=,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.2.A解析:A【解析】分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.详解:①-22=-4,故本小题错误;②a 3+a 3=2a 3,故本小题错误;③4m -4=44m,故本小题错误; ④(xy 2)3=x 3y 6,故本小题正确;综上所述,做对的个数是1.故选A .点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的性质,是基础题,熟记各性质是解题的关键.3.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C .【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.4.A解析:A【解析】【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222xx x y x y x y=---, B 、224x 4x y y =, C 、()2222x 4222x x y y y == , D 、()()33322232x 243822x x y yy ⨯==, 故选A .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.5.C解析:C【解析】【分析】连接OB ,OC ,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB ,∵∠BAC=50°,AO 为∠BAC 的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC ,∴∠ABC=∠ACB=65°.∵DO 是AB 的垂直平分线,∴OA=OB ,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO 为∠BAC 的平分线,AB=AC ,∴直线AO 垂直平分BC ,∴OB=OC ,∴∠OCB=∠OBC=40°,∵将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE 中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.6.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.7.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.8.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A;根据三角形的内角和定理判断B;根据三角形的高的定义及性质判断C;根据三角形外角的性质判断D.【详解】A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B.【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.9.C解析:C【解析】【分析】根据多边形的内角和公式()2180n-•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】Q正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,Q多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.10.A解析:A【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值.详解: 根据题意得:x-2=0,且x+5≠0,解得 x=2.故答案为A.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.11.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.12.D解析:D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选D.二、填空题13.120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 15.9【解析】【分析】【详解】解:∵x-2y=0x-y≠0∴x=2yx≠y ∴==9故答案为:9解析:9【解析】【分析】【详解】解:∵x-2y=0,x-y≠0,∴x=2y ,x≠y ,∴ 1011x y x y --=201192y y y y y y-=-=9, 故答案为:916.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m ∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4- 解析:4m ≤且2m ≠【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.17.360【解析】【分析】n边形的内角和是(n﹣2)•180°把多边形的边数代入公式就得到多边形的内角和任何多边形的外角和是360度【详解】(7﹣2)•180=900度外角和为360度【点睛】已知多边形解析:360【解析】【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.任何多边形的外角和是360度.【详解】(7﹣2)•180=900度,外角和为360度.【点睛】已知多边形的内角和求边数,可以转化为方程的问题来解决.外角和是一个定植,不随着边数的变化而变化.18.22【解析】【分析】底边可能是4也可能是9分类讨论去掉不合条件的然后可求周长【详解】试题解析:①当腰是4cm底边是9cm时:不满足三角形的三边关系因此舍去②当底边是4cm腰长是9cm时能构成三角形则解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答. 19.【解析】试题分析:如图连接OA∵OBOC分别平分∠ABC和∠ACB∴点O到ABACBC的距离都相等∵△ABC的周长是20OD⊥BC于D且OD=3∴S△ABC=×20×3=30考点:角平分线的性质解析:【解析】试题分析:如图,连接OA,∵OB 、OC 分别平分∠ABC 和∠ACB ,∴点O 到AB 、AC 、BC 的距离都相等,∵△ABC 的周长是20,OD ⊥BC 于D ,且OD=3,∴S △ABC =12×20×3=30. 考点:角平分线的性质.20.3【解析】【分析】先对原式进行变形得(a2+b2)2-(a2+b2)-6=0经过观察后又可变为(a2+b2-3)(a2+b2+2)=0又a2+b2≥0即可得出本题的结果【详解】由变形后(a2+b2)解析:3【解析】【分析】先对原式进行变形得(a 2+b 2) 2-(a 2+b 2)-6=0,经过观察后又可变为(a 2+b 2-3)(a 2+b 2+2)=0,又a 2+b 2≥0,即可得出本题的结果.【详解】由4422222+6a b a a b b +=-+变形后(a 2+b 2) 2-(a 2+b 2)-6=0,(a 2+b 2-3)(a 2+b 2+2)=0,又a 2+b 2≥0,即a 2+b 2=3,故答案为3.【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则.三、解答题21.见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB 即可.试题解析:∵AB=AC,点D 是BC 的中点,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB 平分∠DAE,∴∠BAD=∠BAE.在△ADB 和△AEB 中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.22.(1)x+1;(2)11a -; 【解析】分析:这是一组分式的混合运算题,按照分式运算的相关运算法则进行计算即可.详解:(1)原式=11(1)(1)112x x x x x x --+-⨯=+--; (2)原式=222(1)(1)111111a a a a a a a a a +--+-==----. 点睛:本题考查的是应用分式的相关运算法则进行分式的混合运算,熟记分式的相关运算法则是解题的关键.23.(1)-1;(2)2644x x--. 【解析】【分析】(1)先算括号内的减法,再算乘法即可;(2)分子分母能因式分解的先因式分解,化简后根据异分母分式的减法法则进行计算.【详解】 解:(1)原式33111x x x x -=⋅=--; (2)原式()()()()()()()22222642222222422x x x x x x x x x x x x x x x x +--++---=-=-==-++---. 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.24.见解析【解析】【分析】作∠CAB=∠α,再作∠CAB 的平分线,在角平分线上截取AD=h ,可得点D ,过点D 作AD 的垂线,从而得出△ABC .【详解】解:如图所示,△ABC 即为所求.【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.25.(1) 150°;(2) △ABE 是等边三角形,理由见解析;(3)4【解析】【分析】(1)首先证明△DBC 是等边三角形,推出∠BDC=60°,再证明△ADB ≌△ADC ,推出∠ADB=∠ADC 即可解决问题.(2)结论:△ABE 是等边三角形.只要证明△ABD ≌△EBC 即可.(3)首先证明△DEC 是含有30度角的直角三角形,求出EC 的长,理由全等三角形的性质即可解决问题.【详解】(1)解:∵BD=BC ,∠DBC=60°,∴△DBC 是等边三角形,∴DB=DC ,∠BDC=∠DBC=∠DCB=60°,在△ADB 和△ADC 中,AB AC AD AD DB DC =⎧⎪=⎨⎪=⎩,∴△ADB ≌△ADC ,∴∠ADB=∠ADC ,∴∠ADB=12(360°﹣60°)=150°. (2)解:结论:△ABE 是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE ,在△ABD 和△EBC 中, 150AB EB ADB BCE ABD CBE =⎧⎪∠=∠=︒⎨⎪∠=∠⎩,∴△ABD ≌△EBC ,∴AB=BE ,∵∠ABE=60°,∴△ABE 是等边三角形.(3)解:连接DE .∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=30°,∴EC=12DE=4,∵△ABD ≌△EBC ,∴AD=EC=4. 【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质.。
八上期中几何压轴题1、在平面直角坐标系中,A,P分别是x轴、y轴正半轴上的点,B是线段OA上一点,连接PB.(1)如图1,CA⊥x轴于点A,BC⊥PB,D是OP上一点,且∠BDO=∠PBO;①求证:∠DBO=∠CBA;②若OP=OA,求证:BD+BC=BP;(2)如图2,A(5,0),B(2,0),G是PB 的中点,连接AG,M是x轴负半轴上一点,PM=2AG,当点P在y轴正半轴上运动时,点M 的坐标是否会发生变化?若不变,求点M的坐标;若改变,求出其变化的范围.2、在等边△ABC中,AB=4,点D和点E分别在边AB,BC上,以DE为边向右侧作等边△DEF,连接CF.(1)如图1,当点D和点A重合时,试求∠ACF的度数;(2)当点D是边AB的中点时,①如图2,判断线段FE与FC的数量关系并证明;②如图3,在点E从点B沿BC运动到点C的过程中,请直接写出点F的运动轨迹的长度.3、如图,在平面直角坐标系中,已知三点A(0,a)(a>0),B(0,b)(b≤0),C(c,0)(c<0),且(a﹣b)2=c2.(1)试判断线段AB与OC的数量关系,并证明;(2)如图1,当b=0时,连接AC,点P是线段AC上一点,CQ⊥OP于Q,连接AQ.若∠AQP=45°,试探究CQ和OQ之间数量关系;(3)如图2,当b<0时,点D在x轴负半轴上,位于点C的左侧,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠CED的度数是否为定值?如果是,请求出∠CED的度数;如果不是,请说明理由.4、如图,在平面直角坐标系中,点A坐标是(0,4),点B(﹣4,0)、C(4,0),点D在x 轴上,DE⊥AD且DE=AD.(1)在图1中,①若点D坐标为(2,0),则点E坐标为;②若点E的坐标为(3m﹣1,m﹣2),求点D的坐标;(2)在图2中,若点M在x轴上运动,点N在直线BE上运动,点F坐标为(0,3),当△FMN为等腰直角三角形时,请直接写出点M的坐标.5、在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴上一动点,以AB为腰作等腰Rt△ABC,∠BAC=90°.(1)如图1,点B在x轴负半轴上,点C的坐标是(2,﹣2);(2)如图2,点B在x轴负半轴上,AC交x轴于点D,且点C的纵坐标是﹣3,求线段BD 的长;(3)如图3,点B在x轴正半轴上,以BC为边在BC左侧作等边△BCE,CO,若∠COE =60°,求△AOC的面积.6、【问题背景】如图1,在△ABC与△ADE中,若AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE;【尝试运用】如图2,在△ABC和△DEC中,∠ACB=∠DCE=120°,AC=BC,CD=CE,∠ADC=90°,延长ED交AB于点F.求证:F为AB的中点;【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC边上的高为√3,点M是直线BC上一动点,连接AM,在直线AM的右侧作等边△AMN,连接BN,则AN+BN的最小值=.7、如图,点A(a,0),B(0,b),满足(a﹣1)2+|2﹣2b|=0,若点P为射线OA上异于原点O和点A的一个动点.(1)如图1,①直接写出点A的坐标为,点B的坐标为;②当点P位于点O与点A之间时,连接PB,以线段PB为边作等腰直角△BPE(P为直角顶点,B,P,E按逆时针方向排列),连接AE.求证:AB⊥AE;(2)点D是直线AB上异于点A与点B的一点,使得∠BPO=∠APD,过点D作DF⊥BP交y轴于点F,探究BP,DP,DF之间的数量关系,并证明.。
专题期中模拟测试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(24-25八年级上·河北廊坊·阶段练习)在下列条件:①∠AA+∠BB=∠CC,②∠AA:∠BB:∠CC=5:3:2,③∠AA= 90°−∠BB,④∠AA=2∠BB=3∠CC,⑤一个外角等于与它相邻的内角.中,能确定△AABBCC是直角三角形的条件有()A.2个B.3个C.4个D.5个2.(24-25八年级上·全国·单元测试)已知数轴上点A,B,C,D对应的数字分别为−1,1,x,7,点C在线段BBBB上且不与端点重合,若线段AABB,BBCC,CCBB能围成三角形,则x可能是()A.2 B.3 C.4 D.53.(23-24八年级上·内蒙古呼伦贝尔·期中)如图,EEBB交AACC于点MM,交FFCC于点BB,∠EE=∠FF=90°,∠BB=∠CC,AAEE=AAFF,给出下列结论:①∠1=∠2;②BBEE=CCFF;③△AACCAA≌△AABBMM;④CCBB=BBAA,其中正确的有()A.①②③B.①②④C.①③④D.②③④4.(24-25八年级上·江苏无锡·阶段练习)如图,∠AA=∠BB=90°,AABB=60,EE、FF分别为线段AABB和射线BBBB上的一点,若点EE从点BB出发向点AA运动,同时点FF从点BB出发向点BB运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AACC上取一点GG,使△AAEEGG与△BBEEFF全等,则AAGG的长为()A.18 B.88 C.88或62 D.18或705.(24-25八年级上·湖北荆州·阶段练习)如图,在△AABBCC中,∠AACCBB=90°,AACC=BBCC,点C的坐标为(−2,0),点B的坐标为(1,6),则A点的坐标为()A.(8,−2)B.(−8,3)C.(−6,2)D.(−6,3)6.(23-24八年级上·福建莆田·期中)如图,在五边形AABBCCBBEE中,∠BBAAEE=142°,∠BB=∠EE=90°,AABB=BBCC,AAEE=BBEE.在BBCC,BBEE上分别找一点MM,AA,使得△AAMMAA的周长最小时,则∠AAMMAA+∠AAAAMM的度数为()A.76° B.84° C.96° D.109°7.(24-25八年级上·重庆江北·开学考试)如图,点D是△AABBCC边BBCC上的中点,点E是AABB上一点且BBEE=3AAEE,F、G是边AABB上的三等分点,若四边形FFGGBBEE的面积为14,则△AABBCC的面积是()A.24 B.42 C.48 D.56 8.(2024·江苏·模拟预测)如图,将四边形纸片AABBCCBB沿MMAA折叠,使点AA落在四边形CCBBMMAA外点AA′的位置,点BB落在四边形CCBBMMAA内点BB′的位置,若∠BB=90°,∠2−∠1=36°,则∠CC等于()A.36°B.54°C.60°D.72°9.(23-24八年级上·江苏南通·期中)如图,在△AABBCC中,∠BBAACC和∠AABBCC的平分线AAEE,BBFF相交于点OO,AAEE交BBCC 于EE,BBFF交AACC于FF,过点OO作OOBB⊥BBCC于BB,下列四个结论:①∠AAOOBB=90°+12∠CC;②当∠CC=60°时,AAFF+ BBEE=AABB;③OOEE=OOFF;④若OOBB=aa,AABB+BBCC+CCAA=2bb,则SS△AAAAAA=aabb.其中正确的结论是()A.①②③B.②③④C.①③④D.①②④10.(23-24八年级上·湖北荆门·期末)如图,C为线段AAEE上一动点(不与点A,点E重合),在AAEE同侧分别作等边△AABBCC和等边△CCBBEE,AABB交于点O,AABB与BBCC交于点P,BBEE与CCBB交于点Q,连接PPPP,OOCC.以下六个结论:①AABB=BBEE;②PPPP∥AAEE;③AAPP=BBPP;④BBEE=BBPP;⑤∠AAOOBB=60°;⑥OOCC平分∠AAOOEE,其中正确的结论的个数是()A.3个B.4个C.5个D.6个评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(24-25八年级上·江苏宿迁·阶段练习)在的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△AABBCC关于某条直线对称的格点三角形,最多能画个个.12.(24-25八年级上·黑龙江哈尔滨·阶段练习)风筝又称“纸鸢”、“风鸢”、“纸鹞”等,起源于中国东周春秋时期,距今已有2000多年的历史,如图是一款风筝骨架的简化图,已知AABB=AABB,BBCC=CCBB,AACC=90cm,BBBB=60cm,制作这个风筝需要的布料至少为cm2.13.(24-25八年级上·四川德阳·阶段练习)如图所示,由五个点组成的图形,则∠AA+∠BB+∠CC+∠BB+∠EE=度.14.(24-25八年级上·内蒙古呼和浩特·阶段练习)如图,在Rt△AABBCC中,∠AACCBB=90°,AACC=6,BBCC=8,AABB=10,AABB是∠BBAACC的平分线,若PP,PP分别是AABB和AACC上的动点,则PPCC+PPPP的最小值是.15.(24-25八年级上·福建福州·阶段练习)如图,在△AABBCC中,AABB=AACC,∠BBAACC=120°,AABB⊥BBCC于点D,点P是CCAA延长线上一点,点O在AABB延长线上,OOPP=OOBB,下面的结论:①∠AAPPOO−∠OOBBBB=30°;②△BBPPOO是等边三角形;③AABB−AAPP=AAOO;④SS四边形AAAAAAAA=2SS△AAAAAA,其中正确的结论是.评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(23-24八年级上·山东菏泽·期末)如图,在平面直角坐标系中,AA(−1,4),BB(−3,3),CC(−2,1).(1)画出△AABBCC关于xx轴的对称图形△AA1BB1CC1;(2)求△AABBCC的面积;(3)在yy轴上找一点PP,使得△PPBBCC的周长最小.17.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在四边形AABBCCBB中,AACC平分∠BBAABB,过CC作CCEE⊥AABB 于EE,并且∠AABBCC+∠AABBCC=180°.(1)求证:BBCC=BBCC.(2)求证:AAEE=12(AABB+AABB).18.(6分)(24-25八年级上·湖北孝感·阶段练习)如图,△AABBBB和△CCAAEE是等腰直角三角形,其中∠BBAABB=∠CCAAEE=90°,AABB=AABB,AAEE=AACC,过A点作AAFF⊥CCBB,垂足为点F.(1)求证:△AABBCC≌△AABBEE;(2)若CCAA平分∠BBCCEE,求证:CCBB=2BBFF+BBEE.19.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在△AAOOBB和△CCOOBB中,OOAA=OOBB,OOCC=OOBB,若∠AAOOBB=∠CCOOBB=60°,连接AACC、BBBB交于点P;(1)求证∶△AAOOCC≌△BBOOBB.(2)求∠AAPPBB的度数.(3)如图(2),△AABBCC是等腰直角三角形,∠AACCBB=90°,AACC=BBCC,AABB=14cm,点D是射线AABB上的一点,连接CCBB,在直线AABB上方作以点C为直角顶点的等腰直角△CCBBEE,连接BBEE,若BBBB=4cm,求BBEE的值.20.(6分)(23-24八年级上·江苏南通·阶段练习)如图:△AABBCC是边长为6的等边三角形,P是AACC边上一动点.由点A向点C运动(P与点AA、CC不重合),点Q同时以点P相同的速度,由点B向CCBB延长线方向运动(点Q不与点B重合),过点P作PPEE⊥AABB于点E,连接PPPP交AABB于点D.(1)若设AAPP的长为x,则PPCC=_________,PPCC=____________.(2)当∠BBPPBB=30°时,求AAPP的长;(3)点PP,PP在运动过程中,线段EEBB的长是否发生变化?如果不变,直接写出线段EEBB的长;如果变化,请说明理由.21.(8分)(24-25八年级上·湖北省直辖县级单位·阶段练习)如图①,在△AABBCC中,∠AABBCC与∠AACCBB的平分线相交于点P.(1)若∠AA=60°,则∠BBPPCC的度数是;(2)如图②,作△AABBCC外角∠MMBBCC,∠AACCBB的角平分线交于点Q,试探索∠PP,∠AA之间的数量关系;(3)如图③,延长线段BBPP,PPCC交于点E,在△BBPPEE中,存在一个内角等于另一个内角的3倍,请直接写出∠AA的度数是.22.(8分)(23-24八年级上·湖北黄石·期末)在平面直角坐标系中,AA(−5,0),BB(0,5),点C为x轴正半轴上一动点,过点A作AABB⊥BBCC交y轴于点E.(1)如图①,若CC(3,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OOCC<5,其它条件不变,连接BBOO,求证:BBOO平分∠AABBCC;(3)若点C在x轴正半轴上运动,当OOCC+CCBB=AABB时,求∠OOBBCC的度数.23.(9分)(24-25八年级上·山东济宁·阶段练习)(1)问题背景:如图1,在四边形AABBCCBB中,AABB=AABB,∠BBAABB= 120°,∠BB=∠AABBCC=90°,E、F分别是BBCC,CCBB上的点,且∠EEAAFF=60°,探究图中线段BBEE、EEFF、FFBB之间的数量关系.小李同学探究此问题的方法是:延长FFBB到点G,使BBGG=BBEE.连接AAGG,先证明△AABBEE≌△AABBGG,再证明△AAEEFF≌△AAGGFF,可得出结论.他的结论应是______________________.(2)如图2,在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,EE,FF分别是边BBCC,CCBB上的点,且∠EEAAFF= 12∠BBAABB.(1)中的结论是否仍然成立?请写出证明过程.(3)在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,E,F分别是边BBCC,CCBB所在直线上的点,且∠EEAAFF= 12∠BBAABB.请直接写出线段EEFF,BBEE,FFBB之间的数量关系.。
人教版八年级数学上册期中考试压轴题专题复习题1、在△ABC中,AB=BC,△ABC≌△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点,观察并猜想线段EA1与FC有怎样的数量关系?并证明你的结论.2、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.求证:(1)△ABE≌△ACD;(2)DC⊥BE.3、如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.4、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.5、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.6、如图,△ABC为等腰直角三角形,点D是边BC上一动点,以AD为直角边作等腰直角△ADE,分别过A、E点向BC边作垂线,垂足分别为F、G.连接BE.(1)证明:BG=FD;(2)求∠ABE的度数.7、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.8、如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.9、如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC 与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.10、CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:.②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.11、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧..作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90º,则∠BCE= º.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α、β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α、β之间有怎样的数量关系?请画出图形,并直接写出你的结论.12、在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC 于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.13、如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.14、问题背景:如图1:在四边形ABC 中,AB=AD,∠BAD=120∘,∠B=∠ADC=90∘.E,F 分别是BC,CD 上的点。
期中复习(压轴题50题)一、单选题1.如图,长方形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为()A.B.C.D.2.如图,分别以Rt△ACB的直角边AB和斜边AC为边向外作正方形ABGF和正方形ACDE,连结EF.已知CB=6,EF=10,则△AEF的面积为()A.B.C.24D.123.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1,S2,S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.18D.204.如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.985.若△ABC的三边长a、b、c满足a2+b2+c2=6a+8b+10c−50,那么△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形6.如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=( )A.50B.C.100D.7.在一个正方形的内部按照如图方式放置大小不同的两个小正方形,其中较大的正方形面积为12,重叠部分的面积为3,空白部分的面积为6,则较小的正方形面积为( )A.11B.10C.9D.88.如图,在平面直角坐标系中,有一点N自P0(0,−1)处向右运动1个单位至P1(1,−1),然后向上运动2个单位至P2处,再向左运动3个单位至P3处,再向下运动4个单位至P4处,再向右运动5个单位至P5处,…,如此继续运动下去,则P107的坐标为()A.(53,−54)B.(−55,54)C.(−54,53)D.(−53,−53)9.如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点,其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→⋅⋅⋅根据这个规律,第2022个点的坐标为()A.(45,1)B.(45,2)C.(45,3)D.(45,4)10.如图,在平面直角坐标系上有个点A(−1,0),点A第1次向上跳动一个单位至点A1(−1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2024次跳动至点A2024的坐标是()A.(−506,1012)B.(−507,1012)C.(507,1012)D.(506,1013)11.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( )A .1个B .2个C .3个D .4个12.如图,已知直线a :y =x ,直线b :y =−12x 和点P 1,0,过点P 作y 轴的平行线交直线a 于点P 1,过点P 1作x 轴的平行线交直线b 于点P 2,过点P 2作y 轴的平行线交直线a 于点P 3,过点P 3作x 轴的平行线交直线b 于点P 4,…,按此作法进行下去,则点P 2023的横坐标为( )A .−21011B .−21010C .−22023D .−2202213.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .12≤t <2B .12<t ≤1≤t≤2且t≠1C.1<t≤2D.1214.如图,△ABC的顶点A(−8,0),B(−2,8),点C在y轴的正半轴上,AB=AC,将△ABC向右平移得到△A′B′C′,若A′B′经过点C,则点C′的坐标为( )A B.(3,6)C,6D.(4,6)15.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相km/h;④当乙车出发2小时时,两遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是403车相距13km.其中正确的结论是()A.①③B.①④C.②③D.②④16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B7的坐标是()A.(31,16)B.(63,32)C.(64,32)D.(127,64)17.把直线y=−x−3向上平移m个单位后,与直线y=2x+4的交点在第二象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<4二、填空题18.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.19.如图,矩形ABCD中,AD=6,AB=8.点E为边DC上的一个动点,△AD'E与△ADE关于直线AE 对称,当△CD'E为直角三角形时,DE的长为.20.如图,长方体的底面边长分别为2cm和3cm,高为5cm.若一只蚂蚁从P点开始经过四个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为cm.21.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,这时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.22.如图,在△ABC中,∠C=90°,BC=8,AC=6,点D为边AC的中点,点P为边BC上任意一点,若将△CDP沿DP折叠得△EDP,若点E在△ABC的中位线上,则CP的长度为.23.如图,已知△ABC中,AB=AC=2,∠BAC=90°,∠EPF=90°,点P是BC的中点,给出以下结论:①图中只有两对全等三角形;②AE=CF,③2EF≥BC,④S四边形AEPF=S△APC,⑤PE⑥B E2+C F2=E F2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合)上述结论始终正确的有(填序号).24.a,b为有理数,且a=a+b=.25.已知5+a,b,则(a+b)2019=.26.在平面直角坐标系中,已知正方形OABC,其中点A(−4,0),B(−4,4),C(0,4).给出如下定义:若点P向上平移2个单位,再向左平移3个单位后得到P′,点P′在正方形OABC的内部或边上,则称点P为正方形OABC的“和谐点”,若在直线y=kx+6上存在点Q,使得点Q是正方形OABC的“和谐点”,则k的取值范围是.27.如图,在平面直角坐标系中,点A(﹣2,0),直线l:y=+x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x 轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.28.如图,直线AB:y=2x+4交x轴于点A,交y轴于点B,C(1,0),P为直线AB上一点,将线段PC绕点C顺时针旋转90°得CQ,则线段QO的最小值为.29.在平面直角坐标系中,点A的坐标为(6,4),过点A分别作AB⊥x轴于点B,AC⊥y轴于点C,已知经过点P(2,3)的直线y=kx+b将矩形OBAC分成的两部分面积比为3:5时,则k的值为.30.如图①,一种圆环的外圆直径是8cm,环宽1cm.如图②,若把2个这样的圆环扣在一起并拉紧,则其长度为cm;如图③,若把x个这样的圆环扣在一起并拉紧,其长度为ycm,则y与x之间的关系式是.三、解答题31.如图,点C为线段BD上一点,△ABC,△CDE都是等边三角形,AD与CE交于点F,BE与AC相交于点G.(1)求证:△ACD≌△BCE;(2)求证:△ACF≌△BCG(3)若CF+CG=8,BD=25,求△ACD的面积.32.已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°.(1)如图1,若D为△ACB内部一点,请判断AE与BD的数量关系,并说明理由;(2)如图2,若D为AB边上一点,AD=5,BD=12,求DE的长.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,已知∠CAE=90°,AC=AE,∠ABC=45°,AB=BC=1,求BE的长.图1图2图333.【知识感知】我们把对角线互相垂直的四边形叫做垂美四边形.(1)【概念理解】如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)【性质探究】如图1,试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系,并证明你的猜想.(3)【性质应用】如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=8,AB=10,求GE长.34.细心观察如图,认真分析各式,然后解答问题.O A22=1+2=2,S1=O A23=1+2=3,S2=O A24=1+2=4,S3=……(1)O A10=_____;(2)用含n(n是正整数)的等式表示上述面积变化规律:O A2n=_____,S n=_____;(3)______个三角形;(4)求出S21+S22+S23+S24+⋯+S210的值.35.已知:2x−1和4x +3是m 的两个不同的平方根,2y +2(1)求x ,y ,m 的值.(2)求1+4y 的平方根.36.阅读材料:数学上有一种根号内又带根号的数.m 、n ,使m 2+n 2=a ,且mn ==|m ±n |.从而达到化去一层根号的目的.∵5=3+2且6=3×2,∴(1)=______.m 的最小值和最大值.(3)37.阅读下列解题过程:11=;…解答下列各题:(1= ;(2= .(3)利用这一规律计算:(11+1+1+…+1)×).38.如图,在平面直角坐标系xOy中,点A a,0,B c,c,C0,c,且满足(a+8)2+0,P 点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标,AO和BC位置关系是 ;(2)如图(1)当P、Q分别在线段AO,OC上时,连接PB,QB,使S△PAB=4S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请直接写出∠OPQ和∠PQB的数量关系.39.如图,长方形OABC中,点A,C在坐标轴上,其中A点的坐标是(a,0),C点的坐标是(0,b)且满足|2−a|+0,点P在y轴上运动(不与点O,C重合)(1)a=______,b=______,B点的坐标为______.(2)点P在y轴上运动的过程中,是否存在三角形OPA的面积是长方形OABC面积的1,若存在,请求出3点P的坐标,若不存在请说明理由.(3)点P在y轴上运动的过程中,∠APB与∠PAO、∠PBC之间有怎样的数量关系,请直接写出.40.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额一成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a 的最大值.41.某商场准备购进甲乙两种服装进行销售.甲种服装每件进价160元,售价210元;乙种服装每件进价120元,售价150元.现计划购进两种服装共100件,其中甲种服装不少于60件.设购进甲种服装x 件,两种服装全部售完,商场获利y元.(1)求y与x之间的函数关系式;(2)若购进100件服装的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装每件进价减少b元,售价不变,且a−b=4,若最大利润为4000元,求a的值.42.【探索发现】如图1,在等腰直角三角形ABC中,∠ACB=90°,若点C在直线DE上,且AD⊥DE,BE⊥DE,则△BEC≌△CDA.我们称这种全等模型为“k型全等”.【迁移应用】设直线y=kx+3(k≠0)与x轴,y轴分别交于A,B两点.(1)若k=−3,且△ABE是以B为直角顶点的等腰直角三角形,点E在第一象限,如图2.2①直接填写:OA= ,OB= ;②求点E的坐标.(2)如图3,若k>0,过点B在y轴左侧作BN⊥AB,且BN=AB,连结ON,当k变化时,△OBN 的面积是否为定值?请说明理由.【拓展应用】(3)如图4,若k=−2,点C的坐标为(3,0).设点P,Q分别是直线y=−2和直线AB上的动点,当△PQC是以CQ为斜边的等腰直角三角形时,求点Q的坐标.43.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时候,两车相距200km.44.要从甲、乙两仓库向A,B两工地运送水泥.已知甲、乙两个仓库分别可运出800吨和1200吨水泥;A,B两工地分别需要水泥1300吨和700吨.从两仓库运往A,B两工地的运费单价如下表:A工地(元/吨)B工地(元/吨)甲仓库1215乙仓库1018(1)设甲仓库运往A工地水泥x吨,求总运费y关于x的函数表达式及自变量x的取值范围.(2)当甲仓库运往A工地多少吨水泥时,总运费最省?最省的总运费是多少元?(3)若甲仓库运往A工地的运费下降了a元/吨(2≤a≤6),则最省的总运费为多少元?45.如图,直线y=﹣x﹣4交x轴和y轴于点A和点C,点B(0,2)在y轴上,连接AB,点P为直线AB上一动点.(1)直线AB的解析式为 ;(2)若S△APC=S△AOC,求点P的坐标;(3)当∠BCP=∠BAO时,求直线CP的解析式及CP的长.46.如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,过点A作AD⊥l交于点D,过点B作BE⊥l交于点E,易得△ADC≌△CEB,我们称这种全等模型为“K型全等”.如图2,在直角坐标系中,直线l1:y=kx+2分别与y轴,x轴交于点A、B(−1,0).(1)求k的值和点A的坐标;(2)在第二象限构造等腰直角△ABE,使得∠BAE=90°,求点E的坐标;(3)将直线l1绕点A旋转45°得到l2,求l2的函数表达式.47.为了落实“乡村振兴”政策,A,B两城决定向C,D两乡运送水泥建设美丽乡村,已知A,B两城分别有水泥200吨和300吨,从A城往C,D两乡运送水泥的费用分别为20元/吨和25元/吨;从B城往C,D两乡运送水泥的费用分别为15元/吨和24元/吨,现C乡需要水泥240吨,D乡需要水泥260吨.(1)设从A城运往C乡的水泥x吨.设总运费为y元,写出y与x的函数关系式并求出最少总运费.(2)为了更好地支援乡村建设,A城运往C乡的运费每吨减少a(0<a<7)元,这时A城运往C乡的水泥多少吨时总运费最少?48.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若C是线段OA上一点,将线段CB绕点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上①求点C和点D的坐标;②若点P在y轴上,Q在直线AB上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q的坐标,否则说明理由.49.【探索发现】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD⊥DE于点D.过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为“k型全等”.(不需要证明)【迁移应用】已知:直线y=kx+6(k≠0)的图象与x轴、y轴分别交于A、B两点.(1)如图2,当k=2时,在第二象限构造等腰直角△ABC,∠CAB=90°;①直接写出OA= ,OB= ;②点C的坐标是;(2)如图3,当k的取值变化,点A随之在x轴负半轴上运动时,在y轴左侧过点B作BN⊥AB,并且BN=AB,连接ON,问△OBN的面积是否发生变化?若不变,请求出这个定值.若变,请说明理由;(3)【拓展应用】如图4,在平面直角坐标系,点B(6,4),过点B作AB⊥y轴于点A,作BC⊥x轴于点C,P为线段BC上的一个动点,点Q(a,2a−4)位于第一象限.问点A,P,Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出a的值;若不能,请说明理由.50.如图,在平面直角坐标系中,直线AD:y=−x+4交y轴于点A,交x轴于点D.直线AB交x轴于点B (−3,0),点P为直线AB上的动点.(1)求直线AB的关系式;(2)连接PD,当线段PD⊥AB时,直线AD上有一点动M,x轴上有一动点N,直接写出△PMN周长的最小值;∠BAO,直接写出点P的纵坐标.(3)若∠POA=12。
八年级上学期压轴题汇总
12.如图,△ABC中,AB=AC,∠BAC=90°,BE平分ABC交AC于F,CE⊥BF于E,EG ⊥AB于G,连AE,下列结论:①AB+AF=BC;②BF=2CE;③FC=GE;④∠GEA=∠CBF,其中正确的结论个数有()
A.1 B.2 C.3 D.4
16.下图都是由同样大小的正三角形按一定的规律组成的,其中第1个图中有1个正三角形,第2个图形中共有5个正三角形,第3个图形中共有13个正三角形……,按照此规律第5个图形中正三角形的个数为__________
24.(本题10分)如图,D为等边△ABC外一点,且BD=CD,∠BDC=120°,点M、N分别在AB、AC上,若BM+CN=MN
(1) 求∠MDN=_________度
(2) 作出△DMN的高DH,并证明DH=BD
25.(本题12分)如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y 轴于G,连OB、OC
(1) 判断△AOG的形状,并予以证明
(2) 若点B、C关于y轴对称,求证:AO⊥BO
(3) 在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标
..。