高考数学考点分布表
- 格式:doc
- 大小:143.00 KB
- 文档页数:3
全国新高考数学1卷近三年考点分布特点和2024年高考试题的展望一、近三年高考考点分布1.单选题(40分)4.解答题(70分)二、对2024年高考全国卷1卷的展望从2021年、2022年、2023年全国1卷的考点对比分析发现:重点内容重点考查,比如导数。
(一)选填问题:1.考试热点:集合、复数、平面向量、三角恒等变换、三角函数性质、体积、函数性质、曲线的切线、导数的应用、椭圆、直线和圆、统计的数字特征、数列。
2.考试冷点:圆锥、事件独立性判断、概率计算、二项式定理、排列组合、抛物线、双曲线。
3.压轴题:事件独立性判断;正四锥的体积范围(导数);三角恒等变换;奇偶性、对称性、周期性、导数;正方体、球体、四面体、圆柱体;正三棱柱、体积计算、线线垂直、线面垂直的判断;构造数列与错位相减求和;椭圆定义、直线和椭圆位置关系;双曲线离心率计算。
(二)解答题:1. 考试热点:数列、正余弦定理、二面角、面面垂直、导数与不等式证明、双曲线。
数学期望。
2.考试冷点:抛物线、概率与数列、独立性检验与条件概率、导数与函数零点。
3.题型的位置变化:变化最大的是数列:由2021年、2022年的第17题变到2023年的第20题,其次是概率统计由2021年的第18题变到2022年的第20题,再变到2023年第21题,再次是导数问题由2021年、2022年的第22题变到2023年的第19题,再次是立体几何由2021年的第20题变到2022年的第19题,再变到2023年第18题。
这种变化引起的社会的广泛关注。
(三)全卷的呼应:1、三角函数与解三角形的呼应:三角函数出现在小题中,解三角形出现在解答题中;2、解析几何的呼应:如果双曲线出现在大题中,那么椭圆与抛物线、圆、直线出现在小题中;3、立体几何的呼应:大题考查位置关系证明与空间角的计算,小题考查位置关系、体积、面积计算等;4、概率统计的呼应:大题考查统计分析与分布列,小题考查概率的计算;5、函数与导数的呼应:大题考查导数的综合应用,小题考查函数性质、图象、指对数计算,不尽然,导数可能多处出现,遍地开花。
2023年全国卷数学(理)高考真题考点分布汇总养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
总之,在最后的复习阶段,学生们不要加大练习量。
在这个时候,学生要尽快找到适合自己的答题方式,最重要的是以平常心去面对考试。
高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。
一、备考策略务必精准高三备考的不同阶段,目标和任务各不相同,就像打仗一样,攻克不同的山头有不同的打法,只有抓住要领,才能打赢主动仗。
一是细化“作战地图”。
从现在到一模考试前,主要任务是过课本、串教材,把基础知识再夯实,为专题复习奠定坚实基础。
各学科组教师要认真学习新课程、新课标、《中国考试评价体系及说明》和近三年高考原题,把高考考点和试题变化点做成“作战地图”,平时考试、练习要对照“作战地图”进行选题,并在“作战地图”上一一标注,确保考点训练无死角、考点覆盖无遗漏。
二是组织集体攻坚。
发挥学科组集体备考的优势,学科组内任务分解、责任到人,每次考试变式训练的预测由组长把关。
学科组坚持“一课一研”、“一考一研”,新老教师步调一致,节奏有序,充分发挥分工协作的集体教研智慧。
三是找准学科增分点。
认真研究本省、本市、本校近年来的高考数据,细化到每一个知识点的得失分情况,找准突破点和增分点,有目的进行专项训练和突破提升。
英语的阅读理解和小作文、语文的古文分析和作文、理科的做题速度、文科的答题思路等,都要制定详细的训练方案和突破的方法策略,在实践中调整提升,打破制约瓶颈,找到质量提升的突破口。
二、课堂教学务必高效。
课堂是教育教学是主阵地。
高三年级教学时间紧,教学任务重,更要切实发挥课堂40分钟的作用。
高考数学259个核心考点
高考数学的核心考点有很多,以下是其中的259个核心考点:
1. 数与代数
2. 算术平方根与整式的乘法
3. 二次函数的图像与性质
4. 二次函数与一次函数的关系
5. 二次函数与一次函数的交点
6. 二次函数与直线的交点
7. 二次函数与直线的位置关系
8. 二次函数与直线的性质
9. 二次函数与直线的方程
10. 二次函数与直线的解析式
11. 二次函数与直线的参数方程
12. 二次函数与直线的斜率
13. 二次函数与直线的截距
14. 二次函数与直线的判别式
15. 二次函数与直线的判定条件
16. 二次函数与直线的判定方法
17. 二次函数与直线的判定原理
18. 二次函数与直线的判定公式
19. 二次函数与直线的判定规则
20. 二次函数与直线的判定标准
21. 二次函数与直线的判定指标
22. 二次函数与直线的判定模型
23. 二次函数与直线的判定原则
24. 二次函数与直线的判定准则
25. 二次函数与直线的判定方式
26. 二次函数与直线的判定角度
27. 二次函数与直线的判定弧度
28. 二次函数与直线的判定角度制
29. 二次函数与直线的判定弧度制
30. 二次函数与直线的判定角度单位。
高中数学高考考点分布总结_高考数学考点分布高考数学的考点大致有一百多个,但高涨同学们需首先掌握重点考点,了解考点具体分布情况,下面店铺给大家带来高考数学考点分布,希望对你有帮助。
高中数学高考考点分布考点1集合考点2复数考点3四个命题及逻辑用语考点4奇偶函数考点5反函数考点6三角函数值的计算考点7排列组合考点8向量的平移考点9圆锥曲线的离心率考点10平面向量的计算考点11球体考点12函数在某点的切线及切线斜率考点13指对函数的比较大小考点14线性规划考点15二项式定律展开式的系数考点16解圆锥曲线的相关问题考点17直线与圆及点到直线的距离考点18 三视图考点19程序框图考点20图像问题考点21小题解三角形考点21圆锥曲线问题的参数计算考点22频率直方图、抽样调查、正态分布考点23与重要不等式相关的极值问题考点24导数与函数的零点和极值考点25函数的增减性、周期性极限与连续性考点26三角函数考点27概率考点28立体几何考点29解析几何考点30导数考点31几何证明考点32坐标系与参数方程极坐标考点33不等式高中数学学习方法课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。
高考数学是我国学生面临的一项重要考试,涉及的知识点和考点众多。
据统计,高考数学共涉及439个知识点和167个考点,这些知识点和考点涵盖了数学的各个方面,需要考生在备考过程中进行全面系统的学习和掌握。
下面将从知识点和考点两个方面进行详细介绍。
知识点:1.初等数论2.集合与图形3.函数及其应用4.三角函数与解三角形5.数列6.排列组合与概率7.数学归纳法8.不等式9.复数及其运算10.数域与方程11.三角恒等变换12.解析几何13.立体几何14.导数与微分15.不定积分16.定积分17.微分方程18.向量及其应用19.数理统计20.概率论21.数学建模22.其他考点:1.正数完全平方的因数2.正整数的奇偶性3.区间及其运算4.绝对值与不等式5.二次函数的图像与性质6.函数的奇偶性、周期性、对称性7.反函数8.对数函数9.微分中值定理10.微分中的一元微分方程11.积分中值定理12.不定积分的运算法则13.定积分的性质14.向量的数量积15.平面向量的坐标表示16.数量关系17.频率分布的度量18.期望与方差19.常见概率分布以上仅列举了部分知识点和考点,这些知识点和考点是高考数学考试的基础,考生需要进行系统全面的掌握并在实践中灵活运用。
在备考过程中,考生可以通过以下几点提高自己在各个知识点和考点上的掌握程度:1. 制定合理的学习计划,对各个知识点和考点进行分解和分类,分阶段有条不紊地进行系统学习。
2. 将数学知识点和考点串联起来,通过归纳和整理的方式加深记忆和理解。
3. 多做习题,尤其是高考真题和模拟题,通过做题检验自己的学习成果,发现自己在哪些知识点和考点上存在不足,及时调整学习计划,并加强巩固。
4. 寻求老师和同学的帮助,进行讨论和交流,通过交流能够不断纠正自己在学习上存在的问题和错误,加深对知识点和考点的理解。
5. 多进行练习和应用,尤其是一些现实生活中的应用题,通过应用可以更深入地理解知识点和考点。
高考数学259个核心考点高考数学的核心考点共有259个,以下是详细的列表:1. 实数与代数基础- 实数的性质与运算- 代数式与多项式的基本概念与运算- 一元一次方程与一元一次不等式- 二次根式与二次方程- 分式与分式方程- 绝对值与不等式2. 函数与图像- 一元函数的概念与性质- 一元函数的图像与性质- 一元函数的运算与复合函数- 一元函数的应用(包括函数的最值、函数的增减性、函数的奇偶性等)3. 三角函数与解三角形- 三角函数的基本概念与性质- 三角函数的图像与性质- 三角函数的运算与复合函数- 三角函数的应用(包括解三角形、三角函数的最值等)4. 平面向量与解析几何- 平面向量的基本概念与运算- 平面向量的数量积与向量积- 平面向量的应用(包括向量的共线、垂直、平行等)5. 空间几何与立体几何- 空间几何的基本概念与性质- 空间几何的运算与判断- 空间几何的应用(包括立体几何的体积、表面积等)6. 数列与数学归纳法- 数列的概念与性质- 等差数列与等比数列- 数列的通项公式与求和公式- 数学归纳法的应用7. 极限与导数- 极限的概念与性质- 极限的运算与判断- 导数的概念与性质- 导数的运算与应用(包括函数的最值、函数的单调性、函数的凹凸性等)8. 积分与微分方程- 积分的概念与性质- 积分的运算与应用(包括定积分、不定积分、曲线的长度、曲线的面积等)- 微分方程的基本概念与解法9. 概率与统计- 概率的基本概念与性质- 概率的运算与应用(包括事件的概率、条件概率、独立事件等)- 统计的基本概念与应用(包括样本调查、数据处理与分析等)10. 数学思想方法与证明- 数学思想方法(包括抽象思维、逻辑推理、归纳与演绎等)- 数学证明的基本方法与技巧以上是高考数学的259个核心考点,掌握这些考点将有助于应对高考数学考试。